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Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and
burstiness in a wide range of processes including interevent time distributions, duration of interactions in
temporal networks, and human mobility. Here, we propose a non-Markovian majority-vote model (NMMV) that
introduces non-Markovian effects in the standard (Markovian) majority-vote model (SMV). The SMV model
is one of the simplest two-state stochastic models for studying opinion dynamics, and displays a continuous
order-disorder phase transition at a critical noise. In the NMMV model we assume that the probability that an
agent changes state is not only dependent on the majority state of his neighbors but it also depends on his age,
i.e., how long the agent has been in his current state. The NMMV model has two regimes: the aging regime
implies that the probability that an agent changes state is decreasing with his age, while in the antiaging regime
the probability that an agent changes state is increasing with his age. Interestingly, we find that the critical
noise at which we observe the order-disorder phase transition is a nonmonotonic function of the rate β of the
aging (antiaging) process. In particular the critical noise in the aging regime displays a maximum as a function
of β while in the antiaging regime displays a minimum. This implies that the aging/antiaging dynamics can
retard/anticipate the transition and that there is an optimal rate β for maximally perturbing the value of the
critical noise. The analytical results obtained in the framework of the heterogeneous mean-field approach are
validated by extensive numerical simulations on a large variety of network topologies.
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I. INTRODUCTION

Many natural, social, and technological phenomena can
be well described by stochastic binary-state models formed
by a large number of interacting agents. Depending on the
application, various types of dynamical rules determining the
stochastic switch of the states of the agents can be considered.
This framework includes very well known processes, such as
the Ising model, the voter model, and the susceptible-infected-
susceptible model, that have been used to model magnetic
materials [1], opinion formation [2,3], and epidemic spreading
[4,5], among others [6,7]. Strikingly, extensions or modifica-
tions for the models can lead in a variety of cases to dynamical
behaviors drastically different from the original ones. For
example, the presence of nontrivial structure in the interacting
patterns such as heavy-tailed degree distribution [4,8], meso-
scopic structures [9,10], multilayer structures [11–13], can
induce significant change in the dynamics. Moreover, relevant
effect can be obtained also changing the dynamical rules by
introducing of more than two states [14,15], time delay [16],
nonhomogeneous interevent intervals [17–20], a fraction of
zealot [21,22], or latency period [23].
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The majority-vote (MV) model is a simple nonequilibrium
Ising-like system with up-down symmetry that presents an
order-disorder phase transition at a critical value of noise [24].
The MV model is also one of the paradigmatic models for
studying opinion dynamics, and it has been extensively stud-
ied in regular lattices [25–29], random graphs [30,31], and in
complex networks including small-world networks [32–34],
scale-free networks [35–38], modular networks [39], com-
plete graphs [40], and spatial networks [41]. Some extensions
were also proposed, such as multistate MV models [42–48],
inertial effect [49–51], frustration due to anticonformists [52],
and cooperation in multilayer structures [53,54].

Most of stochastic binary-state models are based on a
memoryless Markovian assumption, which implies that the
switching rates from one state to the other depend only on
the present state of the system. One of important properties
of Markovian processes is that the interevent time intervals
follow an exponential distribution and the number of events
in a given time interval follows a Poissonian distribution. The
Markovian assumption facilitates theoretical analysis of mod-
els. However, there is growing evidence that human activity
follows a non-Markovian dynamics driven by memory effects.
Non-Markovian bursty dynamics characterized by heavy tail
inter-event time distributions is ubiquitous in human activities
[55–61], and strongly affects the duration of interactions in
temporal networks [62–64]. Memory effects have also shown
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to be essential to model human mobility and random walks
over complex networks [58,65,66]. Therefore, the Markovian
assumption provides only an approximate picture of the real
world.

In recent years, there is an increasing interest in un-
derstanding the role of non-Markovian effects in stochastic
binary-state models, from the theoretical [67–72] and from
the numerical [73,74] perspective as well.

One important development of non-Markovian effects in
stochastic binary-state models have been introduced by as-
suming that the switching probability between states depends
on the age of the agent, i.e., how long an agent has been
in its current state [75,76]. The induced effects of this non-
Markovian dynamics are also called aging effects when the
switching probability decreases with the agent’s age and an-
tiaging effects when the switching probability increases with
the agent’s age. These non-Markovian effects usually induce
a slow-down of the relaxation dynamics toward the stationary
state. In particular in social systems they can be related to
behavioral inertia accounting for a tendency for a belief or
an opinion to endure once formed.

A very important class of models describing opinion dy-
namics is the voter model and its variations. In the standard
voter model, each agent updates his state by copying the state
of one of his neighbors. The model exhibits ordering dynam-
ics toward either of consensus states in finite-size systems
[3]. The effects of introducing a non-Markovian dynamics
within the voter model and its variations have been consid-
ered in several works. In Ref. [75], Stark et al. reported a
counterintuitive phenomenon induced by aging in the voter
model. They showed that the transition probability between
two opposite states decreases with age, but the time to reach a
macroscopically ordered state can be accelerated. In Ref. [77],
Peralta et al. studied systematically the aging version of the
voter model at the mean-field level, and they showed that
the model reaches consensus or gets trapped in a frozen
state depending on the specific form describing the transition
probability and the nodes’ age. They also considered the an-
tiaging case when the transition probability is an increasing
function of age. For the latter case, the model always reaches
a steady state with coexistence of two states. In the noisy
voter model, additional stochastic effects are introduced in the
opinion dynamics. In particular given an agent of a noisy voter
model and his randomly selected neighbor, the agent does not
adopt the neighbor opinion deterministically. An important
consequence of this is that a stationary state can be achieved
without consensus [78]. In Refs. [79,80], it has been shown
that the aging effects in the noisy voter model can alter the
character of the phase transition. In the absence of aging,
the model show a finite-size discontinuous transition between
ordered and disordered phases. When the aging is introduced,
the transition becomes a well-defined second order transition
observed in the thermodynamic limit. Moreover, recently Per-
alta et al. in Ref. [81] proved that the non-Markovian noisy
voter model can be approximately reduced to a nonlinear
noisy voter model which is Markovian.

In the present work, we reveal the role of non-Markovian
dynamics in the MV model providing results that enrich the
scenario depicted by the works above summarized. In the MV
model each agent tends to agree with the majority state of

his neighbors, and disagreement only occurs with probability
f . Here, f can be interpreted as the internal noise due to
imperfect information exchange or uncertainty on the states of
neighbors. As f increases, the MV model shows a continuous
order-disorder transition belonging to the universality class of
the equilibrium Ising model [24]. In particular, for f = 0 the
MV model is equivalent to the zero-temperature Ising model
with Glauber dynamics [82].

It is interesting to discuss the difference between the MV
model and the voter model and its variations. The main differ-
ence of the MV model with respect to the voter model is that
at each time in the MV model each agent changes opinion
depending on the majority of its neighbors while in the voter
model each agent changes opinion depending on the state of a
single randomly selected neighbor. Moreover in the standard
voter model the system reaches consensus while this is not the
case in the MV model. The noisy voter model is closer to MV
model as in both models we can reach a stationary state with
a majority opinion but without consensus. However due to the
different dynamical rules the nature of the phase transition
observed in the two models is different as demonstrated by
the different universality class of the ordering dynamics of the
voter model [83,84].

Here, we propose the non-Markovian majority-vote
(NMMV) model by incorporating non-Markovian dynamics
in the majority-vote model. In the NMMV model, the tran-
sition probability between states not only depends on the
majority state of the agents neighbors and noise intensity f ,
but also depends on the agent’s age. Specifically, the NMMV
model includes two regimes: the aging regime in which the
probability of a state switch decreases with the agent’s age
and an antiaging regime in which the probability of a state
switch increases with the agent’s age. We indicate with β

the rate of change of the transition probability with age. The
NMMV model also displays a continuous phase transition
as a function of f : for f < f NMMV

c the NMMV model is in
the ordered phase, i.e., the network displays a clear major-
ity state, for f � f NMMV

c the NMMV is in the disordered
phase where no global majority state exist. We show that
the non-Markovian dynamics strongly affects the value of the
critical noise f NMMV

c . In particular, in the aging regime the
non-Markovian dynamics retards the transition with respect
to the standard majority-vote model (SMV) and the critical
noise f NMMV

c in the NMMV model is larger or equal to the
critical noise f SMV

c in the SMV model, i.e., f NMMV
c � f SMV

c .
In the antiaging regime, instead, the relation between the
critical noise in the NMMV model and in the SMV model
are reversed, i.e., f NMMV

c � f SMV
c . Interestingly, by solving

the model in the framework of an heterogeneous mean-field
approach, we can derive analytically the nonmonotonic de-
pendence of the critical noise f NMMV

c on the rate β. In the
aging regime, the critical noise displays a maximum at a
nonzero but finite value of β. In the antiaging regime, a min-
imum of the critical noise as a function of β is found. This
means that the non-Markovian dynamics can be used to retard
or anticipate the transition.

The theoretical mean-field predictions are in good agree-
ment with extensive simulations of the model.

The paper is structured as follows. In Sec. II we define the
NMMV model. In Sec. III we present the analytic solution
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of the model obtained in the framework of the heterogeneous
mean-field approach. In Sec. IV we characterize the critical
properties of the model including the analytical expression of
the critical noise, and its dependence on the rate β. In Sec. V
we compare the analytic predictions to the simulation results.
Finally in Sec. VI we provide the conclusions.

II. MAJORITY-VOTE MODEL WITH NON-MARKOVIAN
SWITCHING OF STATES

In this section we introduce the non-Markovian majority-
vote model which differs from the standard majority-vote
model [24] by introducing a non-Markovian mechanism for
the switching of states. Therefore in the NMMV model the
agents have a probability of switching states that depends on
their age, i.e., for how long they have been in their current
state.

We consider a population of N agents defined on a static
network topology. Each agent i with i = 1, . . . , N is located
on a node i of the network. Each agent is assigned two dynam-
ical variables: a binary variable σi = ±1 (his state) describing
the agent’s opinion/vote and a variable ai (his age) indicating
for how long the agent has not changed his state. Initially
the states {σi} are randomly assigned to the agents and the
variables {ai} are initialized by setting ai = 0 for every agent
i of the network. At each time step, an agent i is chosen at
random and his state is switched with probability wi which
implements the non-Markovian majority vote process. Thus
with probability wi, the agent i switches state and the age of
agent i is reset to zero, i.e.,

σi → −σi,

ai → 0. (1)

Otherwise, nothing happens except for the age increased by
one, i.e.,

ai → ai + 1. (2)

In both cases the time is updated according to

t → t + �t (3)

with �t = 1/N . The richness of the model resides on the
definition of the switching probability wi given by

wi = νiw
SMV
i , (4)

where 0 � νi � 1, called the activation probability, is a func-
tion of the age ai of agent i and where wSMV

i is the switching
probability in the SMV model, i.e., it is independent of the
age variable. The contribution wSMV

i to the switching prob-
ability wi of the agent i depends on the majority state of i′s
neighborhood and on a parameter f called the noise intensity.
If the state σi of the agent is opposite to the majority state of
his neighbors, wSMV

i contributes to the switching probability
to the majority state by a term 1 − f . If the state σi of the
agent is the same as the majority state of his neighbors, wSMV

i
contributes to the switching probability to the majority state
by a term f . If there is no clear majority of the agent i’s
neighbors, i.e., half of the neighbors have state σ j = +1 and
half of the neighbors have state σ j = −1, then wSMV

i = 1/2.

Therefore, wSMV
i can be expressed as

wSMV
i =1

2

⎡
⎣1−(1 − 2 f )σiS

⎛
⎝∑

j∈Ni

σ j

⎞
⎠

⎤
⎦, (5)

where Ni denotes the set of neighbors of agent i, and S(x),
defined as S(x) = sgn(x) if x �= 0 and S(0) = 0, indicates the
majority state of his neighborhood.

The NMMV model reduces to the SMV model in the case
in which we consider a trivial choice of νi, i.e., νi = 1 for all
agent i. In this case, as f increases, the model undergoes a
continuous order-disorder phase transition at a critical value
of noise intensity f = f SMV

c [37].
However, in a number of real scenarios for social and hu-

man dynamics it has been shown that non-Markovian effects
are relevant [55]. Indeed a large number of human activity
including written correspondence, emails [56], mobile phone
communication [62] is not memoryless, on the contrary it is
characterized by important non-Markovian effects typically
leading to intermittent and bursty dynamics.

Different models for explaining the emergence of bursty
dynamics have been proposed (see for a review Ref. [55]).
Interestingly, a model [62–64] explaining the occurrence of
bursty human dynamics of social interactions assumes that
a number of feedback mechanisms affect human behavior,
which introduce memory effects in the rate at which an agent
to change his state. In particular in this framework it is as-
sumed that each agent does not change his state at a constant
rate in time, rather the rate at which he changes his state
depends on the time elapsed since he adopted his current state.
This framework, originally proposed to model the duration
of social interactions is a very general framework that can
be also applied to opinion dynamics. In opinion dynamics
this framework will give rise to a simple yet very general
phenomenological model to describe the inertia of the agents
in retaining their own opinion. By following these considera-
tions, here we capture the effect of the non-Markovian opinion
dynamics in the MV model by assuming that the probability
νi at which an agent i changes opinion depends on how long
the agent has retained its current opinion, i.e.,

νi = ν(ai ), (6)

where ai indicates the age of agent i. In the following we will
consider several different functional forms for the function
ν(a) including exponential, linear, rational, and power-law de-
pendence with the the age a. To start with a concrete example
let us now consider the exponential form for ν(a), given by

ν(a) = (ν0 − ν∞)e−βa + ν∞, (7)

where ν0 = ν(0) and ν∞ = lima→∞ ν(a).
The probability ν(a) capture the non-Markovian nature of

the dynamics and is parametrized by the parameter β > 0.
Note that β characterizes the rate of exponential change of
ν as a function of a. Obviously, in the limits of β → 0 and
β → ∞, all the agents have the same fixed value of activity,
ν ≡ ν0 and ν ≡ ν∞, and the dynamics is thus equivalent to
the SMV model with the time scaled by a factor ν−1

0 and ν−1
∞ ,

respectively.
We distinguish two different regimes of the dynamics:
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(i) Aging regime. For ν0 > ν∞, ν(a) decays exponentially
with a, implying that the longer an agent is in a given state,
the more difficult is for him to change state.

(ii) Antiaging regime. For ν0 < ν∞, ν(a) increases ex-
ponentially with a. Such an case can be interpreted as
“rejuvenating” dynamics where agents become more prone to
change state as they are longer on a given state.

Without loss of generality, set equal to one the maxi-
mum between ν0 and ν∞, i.e., we put max {ν0, ν∞} = 1.
Moreover, to avoid trivial frozen states of the dynamics, the
minimum between ν0 and ν∞ is set to be larger than zero, i.e.,
min {ν0, ν∞} > 0.

III. HETEROGENEOUS MEAN-FIELD SOLUTION OF THE
MODEL

In order to capture the phase diagram of the NMMV model
on a random network with given degree distribution P(k), we
solve the model using the heterogeneous mean-field approach
[8]. Therefore we assume that the probability that an agent i
is in a given state depends exclusively on his degree k and his
age a and we denote by x±

k,a the probability that an agent of
degree k has age a and is in the state ±1. It follows that the
probability x±

k of an agent of degree k in the state ±1, is given
by

x±
k =

∑∞
a=0

x±
k,a. (8)

In order to solve the dynamical equations of the NMMV
model in the heterogeneous mean-field approximation we also
need to evaluate the switching probability w±

k,a of an agent of
degree k and age a. Let us define x̃± the probability that by
following a link we reach a node in state ±1, given by

x̃± =
∑

k

kP(k)

〈k〉 x±
k =

∑
k

kP(k)

〈k〉
∞∑

a=0

x±
k,a. (9)

For a node of degree k, the probability that the majority state
among his neighborhoods is ±1 is given by the binomial
distribution

ψk (x̃±) =
k∑

n=
k/2�

(
1 − 1

2
δn,k/2

)
Cn

k (x̃±)n(1 − x̃±)k−n
, (10)

where 
·� is the ceiling function, δr,s is the Kronecker sym-
bol, and Cn

k = k!/[n!(k − n)!] are the binomial coefficients.
According to Eq. (4), we can write down the switching prob-
ability w±

k,a of an agent of state ±1 with degree k and age a
as

w±
k,a = ν(a + 1)�k (x̃±), (11)

where ν(a + 1) is given by Eq. (7), and �k (x̃±) is the flipping
probability of an agent of state ±1 without the aging effect
[37], i.e.,

�k (x̃±) = (1 − f )[1 − ψk (x̃±)] + f ψk (x̃±). (12)

The dynamical equations that determine the time evolution
of the probabilities x±

k,a are a function of the switching prob-
abilities w±

k,a. These equations can be deduced by observing
that at each time step one of the following four possible events
occurs:

(i) An agent in state +1 having degree k and age a is
chosen and his state is flipped. The rate at which x+

k,a decreases
and x−

k,0 increases due to this process is x+
k,aw

+
k,a.

(ii) An agent in state +1 having degree k and age a is cho-
sen but his state is not flipped. The rate at which x+

k,a decreases
and x+

k,a+1 increases due to this process is x+
k,a(1 − w+

k,a).
(iii) An agent in state −1 having degree k and age a is

chosen and the state is flipped. The rate at which x−
k,a decreases

and x+
k,0 increases due to this process is x−

k,aw
−
k,a.

(iv) An agent in state −1 having degree k and age a is cho-
sen but the state is not flipped. The rate at which x−

k,a decreases
and x−

k,a+1 increases due to this process is x−
k,a(1 − w−

k,a).
Accordingly, the rate equations for x±

k,a read

dx+
k,0

dt
=

∞∑
a=0

x−
k,aw

−
k,a − x+

k,0, (13)

dx+
k,a

dt
= x+

k,a−1(1 − w+
k,a−1) − x+

k,a, a � 1, (14)

dx−
k,0

dt
=

∞∑
a=0

x+
k,aw

+
k,a − x−

k,0, (15)

dx−
k,a

dt
= x−

k,a−1(1 − w−
k,a−1) − x−

k,a, a � 1. (16)

In stationary state, by setting the time derivative of x±
k,a

equal to zero, we obtain that the probabilities x±
k,a obey

x+
k,0 =

∞∑
a=0

x−
k,aw

−
k,a, (17)

x+
k,a = x+

k,a−1(1 − w+
k,a−1), a � 1, (18)

x−
k,0 =

∞∑
a=0

x+
k,aw

+
k,a, (19)

x−
k,a = x−

k,a−1(1 − w−
k,a−1), a � 1. (20)

Using Eqs. (18) and (19), and summing x+
k,a over the values of

a greater or equal to one we get

x+
k,0 = x−

k,0. (21)

This condition is a necessary condition for stationarity. In
fact, at stationarity the probability that a node is in a given
state does not change with time, or equivalently the expected
number of agents in state +1 that change their state (and reset
their age to a = 0) should be equal to the number of agent in
state −1 that change their state (and reset their age to a = 0)
[79].

In terms of Eqs. (18) and (20), x±
k,a for a � 1 can be com-

puted in a recursive way, and then are expressed by x±
k,0,

x±
k,a = x±

k,0Fk,a(x̃±), a � 1, (22)

where for convenience we have introduced the function Fk,a,
given by

Fk,a(x̃±) =
a−1∏
j=0

[1 − w±
k, j (x̃

±)]. (23)
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FIG. 1. The absolute value of m, |m|, is plotted as a function
of the noise f for several values of β. (a) shows |m| versus f for
ν0 > ν∞, i.e., for a dynamics in the aging regime; (b) shows |m|
versus f for ν0 < ν∞, i.e., for a dynamics in the antiaging regime.
The simulations (symbols) performed on a regular random network
(RR) with N = 104 nodes and with degree of the nodes given by
〈k〉 = 20 are compared with theoretical predictions (solid lines). All
results are obtained for max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05.

Substituting Eq. (22) into the definition x±
k = ∑∞

a=0 x±
k,a,

we have

x±
k = x±

k,0Fk (x̃±) (24)

with

Fk (x̃±)= 1+
∞∑

a=0

Fk,a(x̃±). (25)

In order to find x+
k we note that by using Eq. (21), we can

express the ratio x+
k /x−

k as

x+
k

x−
k

= x+
k,0

x−
k,0

Fk (x̃+)

Fk (x̃−)
= Fk (x̃+)

Fk (x̃−)
. (26)

Substituting x̃− with 1 − x̃+ in Eq. (26), we then obtain

x+
k = Fk (x̃+)

Fk (x̃+) + Fk (1 − x̃+)
. (27)

Finally by using Eq. (27) in the left-hand side of Eq. (9), we
find the self-consistent equation of x̃+,

x̃+ =
∑

k

kP(k)

〈k〉
Fk (x̃+)

Fk (x̃+) + Fk (1 − x̃+)
. (28)

This equation can be solved numerically by finding x̃+ by
iterating Eq. (28) starting from an initial value of x̃+ �= 1/2.
Once x̃+ is found, we can calculate x+

k by using Eq. (27). This
allows us to find the average magnetization per node by

m =
∑

k
P(k)(x+

k − x−
k ) =

∑
k

P(k)(2x+
k − 1). (29)

This theoretical treatment of the model provides predic-
tions that can be compared to simulation results revealing
the critical properties of the NMMV model. In particular,
the main features of the steady state configurations can be
described by plotting m as a function of f for different values
of β.

In Fig. 1(a), we report such results for ν0 > ν∞, when the
non-Markovian dynamics is in the aging regime. Here we
have used regular random networks (RR) whose degree distri-
bution follows a δ function, P(k) = δ(k − 〈k〉) with 〈k〉 = 20

and network size N = 104. Direct simulation results are com-
pared to theoretical predictions finding excellent agreement
(see Fig. 1). The order parameter |m| shows a continuous
second-order phase transition as noise intensity f varies, sim-
ilar to the SMV model. The transition point, i.e., the critical
value of noise intensity f NMMV

c , depends on the value of
β. In the aging regime, as β increases, f NMMV

c displays a
maximum at β = β

aging
m . In the antiaging regime (ν0 < ν∞),

f NMMV
c shows again a nonmonotonous behavior but instead

of displaying a maximum as a function of β (like in presence
of the aging dynamics) it displays a minimum at β = β

antiaging
m

[see Fig. 1(b)].

IV. THE PHASE DIAGRAM

A. The critical noise

In this paragraph we will use the heterogeneous mean-field
approach to derive the expression for the critical noise f NMMV

c
in the NMMV model. First of all, we notice that x̃+ = 1/2,
is always a solution of Eq. (28). This state corresponds to
the disordered phase where the state of each agent is totally
random. Such a trivial solution loses its stability when the
noise intensity is less than a critical value, i.e., f < f NMMV

c .
According to linear stability analysis, the critical noise f NMMV

c
can be found by imposing that the derivative of the right-hand
side of Eq. (28) with respect to x̃+ calculated for x̃+ = 1/2 is
equal to one, i.e., f NMMV

c satisfies

∑
k

kP(k)

〈k〉
F ′

k

(
1
2

)
2Fk

(
1
2

) = 1. (30)

At x̃+ = 1/2, ψk and also �k are independent of k. In partic-
ular we have �k ( 1

2 ) = 1
2 for all value of k. Therefore using

Eq. (25), this implies that also Fk ( 1
2 ) is independent of k and

is given by

F

(
1

2

)
= 1 +

∞∑
a=1

Fa

(
1

2

)
(31)

with

Fa

(
1

2

)
=

a∏
j=1

(
1 − 1

2
ν( j)

)
(32)

[note that here we have omitted the subscript k in the expres-
sion of Fk ( 1

2 ) and Fk,a( 1
2 ) as they do not depend on k]. After

some simple algebra, we can express F ′
k ( 1

2 ) as

F ′
k

(
1

2

)
= −� ′

k

(
1

2

) ∞∑
a=1

Fa

(
1

2

) a∑
j=1

ν( j)

1 − 1
2ν( j)

(33)

with

� ′
k

(
1

2

)
= (2 f − 1)ψ ′

k

(
1

2

)
(34)

and

ψ ′
k

(
1

2

)
= 21−kkC
(k−1)/2�

k−1 . (35)
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Substituting Eqs. (31)–(35) into Eq. (30), we obtain the criti-
cal noise f NMMV

c in the NMMV model,

f NMMV
c = 1

2
− G(β; ν0, ν∞)

〈k〉∑
k k2P(k)21−kC
(k−1)/2�

k−1

, (36)

where

G(β; ν0, ν∞) = F
(

1
2

)
∞∑

a=1
Fa

(
1
2

) ∞∑
j=1

ν( j)
1− 1

2 ν( j)

. (37)

Using Stirling’s approximation for large k, C
(k−1)/2�
k−1 ≈

2k−1/
√

kπ/2, Eq. (36) can be simplified to

f NMMV
c = 1

2
− G(β; ν0, ν∞)

√
π

2

〈k〉
〈k3/2〉 , (38)

where 〈· · · 〉 denotes the average over the degree distribu-
tion P(k). The critical noise f NMMV

c dependence on the
non-Markovian dynamics is fully captured by the function
G(β; ν0, ν∞), which can be considered as a function of β for
any given value of the parameters ν0 and ν∞. We distinguish
two main regimes:

(i) For ν0 > ν∞, G(β; ν0, ν∞) captures the dependence of
f NMMV
c on β in the aging regime;

(ii) For ν0 < ν∞, G(β; ν0, ν∞) captures the dependence of
f NMMV
c on β in the antiaging regime.

When the aging effects are not taken into account, ν(a) ≡
ν, G(β; ν0, ν∞) = 1

2 , and Eq. (38) thus reduces to the expres-
sion of the critical noise in the SMV model [37],

f SMV
c = 1

2
− 1

2

√
π

2

〈k〉
〈k3/2〉 . (39)

B. The function G(β; ν0, ν∞)

As noted before, the function G(β; ν0, ν∞) captures all the
dependence of the critical noise f NMMV

c on the non-Markovian
dynamics. In particular, from Eqs. (38) and (39) we deduce
that the function G(β; ν0, ν∞) characterizes the relation be-
tween the critical noise in NMMV model and in the SMV
model. In fact, we have

2G(β; ν0, ν∞) = 1/2 − f NMMV
c

1/2 − f SMV
c

. (40)

The numerical solution of Eq. (37) reveals that the function
G(β; ν0, ν∞) displays a nonmonotonous behavior as a func-
tion of β when ν0 and ν∞ are fixed to a constant value. In
particular, the function G(β; ν0, ν∞) displays a minimum as
a function of β in the aging regime and a maximum in the
antiaging regime (see Fig. 2). In the limit β → 0 or β → ∞,
we obtain G(β; ν0, ν∞) → 1/2 indicating the marginal role of
the non-Markovian dynamics, i.e., using Eq. (40) f NMMV

c →
f SMV
c . Since the critical noise f NMMV

c depends on β only
through the function G(β; ν0, ν∞) in the aging regime, the
minimum of G(β; ν0, ν∞) is achieved for β = β

aging
m , cor-

responding to the maximum of f NMMV
c ; conversely in the

antiaging regime the maximum of G(β; ν0, ν∞) is achieved
for β = β

antiaging
m corresponding to the minimum of f NMMV

c .
Let us indicate with �Gm the maximal deviation of the func-
tion G from its asymptotic value 1/2 achieved in the limit

FIG. 2. The function G(β; ν0, ν∞) defined in Eq. (37) is plot-
ted as a function of β in the aging regime (for ν0 > ν∞) and in
the antiaging regime (for ν0 < ν∞). All curves are obtained for
max {ν0, ν∞} = 1.

β → 0 and β → ∞, i.e.,

�Gm =
∣∣∣∣1

2
− G(βm; ν0, ν∞)

∣∣∣∣. (41)

Specifically let us indicate with �Gaging
m the values obtained

in the aging regime and with �Gantiaging
m the values obtained in

the antiaging regime.
Therefore, the values of �Gaging

m and �Gantiaging
m charac-

terize the maximal difference between f NMMV
c and f SMV

c for
the aging regime and antiaging regime, respectively. We note
that since G is independent of the topology of the underly-
ing network, β

aging
m (βantiaging

m ) at which f NMMV
c is maximized

(minimized), is not affected by the network topology.
While the definition of G given by Eq.(37) is valid for

arbitrary functions ν(a), the investigation performed in this
paragraph is obtained starting from the expression for ν(a)
given by Eq. (7). However, here we conjecture that these
results do not qualitatively change for other choices of the
function ν(a) as long as the derivative of function is mono-
tonic. This is strictly speaking the case in which we can
properly use the terms aging and antiaging for dynamical
evolution as an inflection point in ν(a) (corresponding to a
maximum or minimum in the derivative dν/da) will introduce
a characteristic scale a = a
 on the dynamics.

In order to check this conjecture we have considered sev-
eral functions ν(a) with a monotonic first derivative.

In particular, we have considered the linear function

ν(a) =
{
β(ν∞ − ν0)a + ν0, a < 1/β,

ν∞, a � 1/β,
(42)

the rational function

ν(a) = ν∞a + ν0/β

a + 1/β
, (43)

and the expression

ν(a) = (ν0 − ν∞)(1 + a)−β + ν∞, (44)
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FIG. 3. In the left panels, the values of βaging
m and βantiaging

m

are plotted versus min {ν0, ν∞}. In the right panels, the values of
�Gaging

m and �Gantiaging
m are plotted as a function of min {ν0, ν∞}.

From the top to bottom, we consider four functional forms for
ν(a) are considered: exponential [Eq. (7)], linear [Eq. (42)], rational
[Eq. (43)], and power-law [Eq. (44)] kernels. All curves are obtained
for max {ν0, ν∞} = 1.

including a power-law dependence on the age a. Interestingly,
the functional dependences given by Eqs. (43) and (44) repro-
duce non-Markovian dynamics observed in interevent times
and duration of social contact (see for a review Ref. [55]). We
have studied the function G(β; ν0, ν∞) for all these kernels,
and we have found that qualitatively the results are unchanged
with respect to the results obtained for the exponential kernel.

In Fig. 3 we show the dependence of β
aging
m , βantiaging

m and of
�Gaging

m and �Gantiaging
m as a function of min {ν0, ν∞} for the

four types of kernel with a fixed value of max {ν0, ν∞} = 1.
We observe that while �Gaging

m , �Gantiaging
m , and β

antiaging
m show

the same monotonic trend for all the kernels, β
aging
m displays

a different trend depending on the considered kernels. In-
deed while for the linear and exponential kernels both β

aging
m ,

increase with min {ν0, ν∞}, for the rational and power-law
kernels it decreases with min {ν0, ν∞}.

V. COMPARISON WITH NUMERICAL RESULTS

In this section we compare the results obtained analytically
using the heterogeneous mean-field approximation with ex-
tensive numerical results on different network topologies.

We have considered three different random networks gen-
erated using the configuration model [85]:

(a) regular random networks (RR) with degree distribution
P(k) = δ(k − 〈k〉);

(b) Erdös-Rényi networks (ER) with degree distribution
P(k) = e−〈k〉〈k〉k/k!;

(c) scale-free networks (SF) with degree distribution
P(k) ∼ k−γ .

In order to numerically determine the critical noise f NMMV
c ,

we calculated the Binder’s fourth-order cumulant U [86],
defined as

U = 1 − 1

3

[m4]

[m2]2
, (45)

where m = ∑N
i σi/N is the average magnetization per node, ·

denotes the time averages taken in the stationary regime, and
[·] indicates the averages over different network configura-
tions. The critical noise f NMMV

c is obtained by detecting the
point f = f NMMV

c where the curves U = U ( f ) obtained for
different network sizes N , intercept each other. In Fig. 4, we
show f NMMV

c as a function of β for the aging and antiaging
regime for the three considered network models and for the
four types of considered kernels without characteristic scale,
finding very good agreement with the mean-field theoretical
predictions despite these latter neglect the correlations present
in the NMMV.

As predicted by the mean-field theory, for all the con-
sidered choices of ν(a) without inflection point, the critical
noise f NMMV

c shows a nonmonotonic dependence on β in
both regimes. In the aging regime, there exists an optimal
value of β in which f NMMV

c is maximized, in the antiaging
regime instead f NMMV

c displays a minimum as a function of
β. The optimal β for the two regimes are independent of the
network degree distribution as predicted by the heterogeneous
mean-field solution.

However, this scenario can change if the function ν(a)
describes a dynamics with a characteristic scale. This is not
typically the scenario considered in physical works investi-
gating the slow down of the dynamics due to aging, but it is
actually a very valuable choice in the present context of social
opinion dynamics. To investigate this case here we focus on
the class of logistic functions ν(a) given by

ν(a) = ν0 − ν∞
1 + eβ(a−a
 )

+ ν∞ (46)

with both a
 and β being non-negative. This logistic function
is a monotonic function of a and for large values of β ap-
proaches a step function at a = a
. Most notably this choice
of functional for ν(a) introduces a characteristic scale a = a


for age at which the change of opinion occurs.
We have simulated the NMMV model with this logistic

kernel and compared the theory with the analytical mean-field
prediction finding satisfactory agreement between the two
(see Fig. 5).

Interestingly in this case we observe that only for a
 = 0
(where there is no effective typical scale in the system) we re-
cover the same qualitative behavior of f NMMV observed in the
previous kernels (see Fig. 4). We therefore make the important
observation that the introduction of a typical scale a = a
 can
significantly alter the phenomenology of the process.

Finally, we investigated the NMMV model also on two-
dimensional and three-dimensional regular lattices, which are
network topologies for which the heterogeneous mean-field
approximation is not valid. For these lattices we have exclu-
sively considered the exponential kernel given by Eq. (7).
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FIG. 4. The critical noise f NMMV
c is plotted as a function of β in the aging and antiaging regimes for three different networks [from left

to right: the regular-random networks (RR) with degree of each node 〈k〉 = 20, the Erdös-Rényi (ER) random networks with average degree
〈k〉 = 20, and scale-free networks with degree distribution exponent γ = 3 and minimal degree kmin = 10] and four types of ν(a) [from top to
bottom: exponential [Eq. (7)], linear [Eq. (42)], rational [Eq. (43)], and power-law [Eq. (44)] kernels. Symbols and lines show the simulation
and theoretical results, respectively. All curves are obtained by setting max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05. We have also performed
simulations with some other values of min {ν0, ν∞}, and found that the nonmonotonic behavior of f NMMV

c is qualitatively the same.

The results are shown in Fig. 6. For two-dimensional lat-
tices, the critical noise shows a maximum f NMMV

c ≈ 0.3 at
β

aging
m ≈ 0.2 in the aging regime and a minimum f NMMV

c ≈
0.008 at β

antiaging
m ≈ 0.01 in the antiaging regime. For three-

dimensional lattices, the critical noise shows a maximum
f NMMV
c ≈ 0.36 at β

aging
m ≈ 0.2 in the regime regime and a

minimum f NMMV
c ≈ 0.05 at β

antiaging
m ≈ 0.01 in the antiaging

regime. In the limits of β → 0 and β → ∞, the critical noise
tend respectively to 0.075 and 0.18 in two-dimensional (2D)
and three-dimensional (3D) lattices, consistent with the results
valid for the SMV model [87]. This result shows evidently
that also in situations in which we are far from the conditions
necessary for the application of the heterogeneous approxi-
mation we observe a nonmonotonic dependence of the critical
noise f NMMV

c of the NMMV model on β revealing that the
observed phenomenology is universal, i.e., it is independent
of the network topology.

VI. CONCLUSION

In this work we have introduced the non-Markovian
majority-vote (NMMV) model that differs from the standard
majority-vote (SMV) model as it includes memory effects.
In fact in the NMMV model the probability that an agent
switches state (activation probability) is not only dependent
on the majority state of its neighbours as for the SMV model,
but it is also age-dependent, i.e., depends on how long a agent
has been in the same state (his age a) captured by the function
ν(a).

We distinguish two regime of the NMMV model: the aging
regime in which the activation probability is a decreasing
function of the agent’s age, and the antiaging regime in which
the activation probability is an increasing function of the
agent’s age. We call β the rate determining the change of the
activation probability with the age of the agent. The NMMV
model displays a phase transition as a function of the noise
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FIG. 5. The critical noise f NMMV
c is plotted as a function of β in

the aging and antiaging regime for four different values of a
 when
ν(a) takes the logistic form given by Eq. (46). From (a)–(d), a
 = 0,
1, 5, and 10, respectively. We have used the regular random networks
with degree of each node given by k = 20. Symbols and lines show
the simulation and theoretical results, respectively. All results are
obtained by setting max {ν0, ν∞} = 1 and min {ν0, ν∞} = 0.05.

f determining the probability that an agent switches to the
minority state of its neighbors. For f < f NMMV

c the NMMV
model is in an ordered phase and displays an overall majority
state, for f � f NMMV

c the model is in a disordered phase in
which half of the agents are in one state and the other half of
the agents are in the other state.

By analytically solving the model using the heterogeneous
mean-field approach and by performing extensive numerical
simulations, we reveal how the non-Markovian dynamics af-
fects the critical noise f NMMV

c .

These results indicate that in the aging regime the
non-Markovian dynamics retards the transition, and in the
antiaging dynamics it anticipates the transition. Interestingly
the most significant effect of the non-Markovian dynamics is
achieved at a finite and non-zero value of the rate β, indicating

FIG. 6. The critical noise f NMMV
c is plotted as a function of β in

the aging and antiaging regime for a 2D square lattices (a) and in
3D cubic lattices (b) where we have take the exponential kernel ν(a)
given by Eq. (7). All results are obtained setting max {ν0, ν∞} = 1
and min {ν0, ν∞} = 0.05.

that the aging/antiaging dynamics needs to have a character-
istic time-scale that is neither too fast or too slow.

Interestingly, as long as the non-Markovian kernel ν(a)
does not have a characteristic scale, the critical noise f NMMV

c
in the NMMV model exhibits a non-monotonic dependence
on the rate β at which the activation probability changes with
age. In particular we found two opposite behaviors in the
aging and in the antiaging regimes. In the aging regime, the
critical noise f NMMV

c displays a maximum as a function of β

in the antiaging regime instead f NMMV
c displays a minimum

as a function of β.
Finally, this work highlights the importance of non-

Markovian dynamics in determining the phase diagram of
the NMMV model and we hope that it will stimulate in-
terest in further investigations of the effect of memory and
non-Markovian dynamics in critical phenomena defined on
networks.
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