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Random walks in time-varying networks with memory
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Random walks process on networks plays a fundamental role in understanding the importance of nodes and the
similarity of them, which has been widely applied in PageRank, information retrieval, and community detection,
etc. An individual’s memory has been proved to be crucial to affect network evolution and dynamical processes
unfolding on the network. In this work, we study the random-walk process on an extended activity-driven
network model by taking account of an individual’s memory. We analyze how an individual’s memory affects
random-walk process unfolding on the network when the timescales of the processes of the random walk and the
network evolution are comparable. Under the constraints of long-time evolution, we derive analytical solutions
for the distribution of walkers at the stationary state and the mean first-passage time of the random-walk process.
We find that, compared with the memoryless activity-driven model, an individual’s memory enhances the activity
fluctuation and leads to the formation of small clusters of mutual contacts with high activity nodes, which reduces
a node’s capability of gathering walkers, especially for the nodes with large activity, and memory also delays the
mean first-passage time. The results on real networks also support the theoretical analysis and numerical results
with artificial networks.
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I. INTRODUCTION

Random walks on networks describes a diffusion process,
which has broadly been applied in ranking systems [1], com-
munity detection [2], and decision-making [3]. According to
different rules, random walks in static networks can be divided
into classical random walks [4], self-avoiding walks [5], bi-
ased random walks [6], and quantum walks [7]. Among them,
the classical random walks, where walkers move to one of
its neighboring nodes with equal probability has been widely
studied.

In the early stage of network research, due to the limita-
tions of data collection and storage equipment, a large amount
of research work focused on static time-aggregated networks,
in which edges between nodes do not change over time [8,9].
However, most complex systems in nature, society, and tech-
nology show temporal characteristics, where the pattern of
connections between individuals evolves in time [10]. The
increasingly accurate marking of temporal data facilitates the
description of network structure [11,12].

Thus, more attention to random walks in time-varying
networks has been paid with the help of the activity-driven
network model [13]. In the activity-driven model, each node
in the network is activated according to the preassigned ac-
tivity which describes the propensity of the node to form
connections. Although the model is simple, it describes the
characteristics of temporality and degree distribution of real
systems. Unlike annealed and quenched networks, random-
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walk diffusion process is affected by the temporal connectivity
patterns between nodes [14–18], which means that walkers
can get trapped at temporarily isolated nodes. It shows that
nodes with large activity have strong ability to collect walk-
ers and reduce the mean first-passage time (MFPT) [14]. By
taking account of an individual’s attractiveness, it shows that
heterogenous attractiveness limits nodes’ ability to collect
walkers, especially when attraction and activity are positively
correlated [16]. When links are established by the combi-
nation of node’s fitness and activity, a nontrivial effect has
been found on the properties of random-walk process [17].
The activity-driven model is further extended by considering
burstiness [18–20], modularity [21], coupled structures [22],
and multitype intetactions [23]. Interaction of nodes in groups
of arbitrary numerosity is recently studied [24,25], which is
modelled by simplex complexes [26,27] or hypergraphs [28].

In real networks, however, edges between nodes are not
randomly connected as described in the activity-driven model
but are affected by the non-Markovian effect due to an in-
dividual’s memory [12,29,30]. Individuals tend to interact
with people they already know, establishing strong or weak
links with them, which can restrain rumor spreading [31].
A reinforcement process encoded with a measurable pa-
rameter of memory has been studied in recent work [32].
Limited by the long evolution of the network, memory re-
duces the threshold of the susceptible-infected-susceptible
model and promotes epidemic spreading, which is same for
susceptible-infected-recovered dynamics [33]. In addition, the
model of second-order and even higher-order memory net-
work is proposed by defining edge path, which may speed
up or reduce the diffusion process and affect the community
detection [34,35].
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In this paper, we investigate the random-walk process on an
extended temporal network based on the activity-driven model
with an individual’s memory [32]. This feature of memory
accounts for the fact that social interactions are not randomly
established but concentrated toward already contacted nodes.
We study the random-walk process unfolding in activity-
driven time-varying networks with a parameter β tuning the
memory strength [33]. In the long-time limit, we find analyti-
cal solutions for Wa which describes the number of walkers in
given node of activity a in the stationary state of random-walk
process and the MFPT, respectively. When the random-walk
process starts after a period of network evolution, the numer-
ical simulation results agree well with theoretical analysis.
Compared with the memoryless case, since an individual’s
memory enhances the activity fluctuation, making the average
degree grow slower than the memoryless case, it reduces
nodes’ abilities of gathering walkers and delays the MFPT.
We then study how memory affects the random-walk pro-
cess in real systems. By comparing the random-walk process
on the null model with real data set, we find that an in-
dividual’s memory reduces a node’s capability of gathering
walkers, which is consistent with what is observed in synthetic
networks.

The manuscript is organized as follows. In Sec. II, we
introduce the time-varying network model with memory and
describe the random-walk process. In Sec. III, we analytically
derive the expressions for the distribution of walkers at the
stationary state and the MFPT of the random-walk diffusing
on the extended temporal network model with memory. In
Secs. IV and V, we give simulation results on synthetic net-
works and real systems, respectively. Finally, in Sec. VI, we
summarize our work.

II. MODEL

In the activity-driven framework, each node is character-
ized by a quenched, fixed activity a to establish contacts per
unit time. To account for the observation that human behaviors
are characterized by broad activity distributions, we consider a
power-law distribution of activity F (a) ∝ a−γ with ε�a�1,
where ε is a cutoff value that is chosen to avoid possible
divergence of F (a) close to the origin [13].

As shown in Fig. 1, at each time t , with probability ai�t ,
node i is activated. With probability Pnew,i(t ), it generates
a new link to a new node that has never had a link to it,
or with complementary probability Pold,i(t ) = 1 − Pnew,i(t ), it
connects to an old one that has ever had a link to it until
time t .

Empircial observations indicate that the probability for an
individual that had interacted with ki(t ) different individuals
at time t to initiate a connection with a new individual is a
function of ki(t ). More precisely, the analysis of several data
sets [32] has identified the relation

Pnew,i(t ) = [1 + ki(t )/c]−β, (1)

where ki(t ) represents the number of distinct neighbors con-
nected to node i until time t and the parameter β > 0 tunes
the memory strength. The larger β is, the stronger the tie (the
larger link-weight) between already-connected nodes will be.
When β ≈ 0, the probability Pnew,i(t ) ≈ 1 weakly depends on
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FIG. 1. Random walk in time-varying networks with memory.
Panel (a) shows that with probability Pnew,i(t ), an active node i es-
tablishes a link with another node (at step 1) and walkers move along
the link (at step 2). Panel (b) shows that with probability Pold,i(t ), an
active node i connects with an old neighbor (at step 1) and walkers
move along the link (at step 2). Active and nonactive nodes are shown
as red and gray nodes, respectively. Walkers are presented as fully
green nodes. The edges between nodes already connected before are
shown as gray dotted lines, and current contacts are shown as solid
line. The green arcs with arrows represent the paths that walkers
move.

the growing degree ki(t ). The constant c sets an intrinsic value
for the number of connections that node i is able to engage in
before memory effects become relevant [32]. The probability
Pnew,i(t ) for node i to connect to a new node decreases as the
degree ki(t ) increases.

The generation process of the time-varying network with
memory is demonstrated according to the following rules (see
Fig. 1).

(i) At each discrete time step t , the network Gt starts with
N disconnected nodes;

(ii) With probability ai�t , node i generates m links;
(iii) With probability Pold,i(t ), nodes i connects with one

of the ki(t ) previously connected nodes, or with probability
Pnew,i(t ), it connects to a new node j. Nonactive nodes can
still receive connections from other active nodes.

(iv) At time t + �t , the memory of each node is updated
and the process starts over again to generate the network
Gt+�t .

Multiple edges and self-loops are not allowed. All the
interactions have a constant duration �t . Without loss of
generality, in the following, we set �t = 1.

The asymptotic form of the degree distribution in the time-
varying network with memory can be derived analytically. In
particular, in the regime 1 � ki(t ) � N , the average degree
k̄(a, t ) of the nodes with activity a is narrowly distributed
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around the average value [32]

k̄(a, t ) = C(a)t1/(1+β ). (2)

The prefactor C(a) is a function depending on the activity a
and memory strength β that can be evaluated numerically by
the condition

C(a)

1 + β
= a

Cβ (a)
+

∫
da

F (a)a

Cβ (a)
. (3)

Hereafter, we denote g(a)= a
Cβ (a) , and 〈g〉=∫

daF (a)g(a)
as the average of a function of g(a) over the network. Hence,
Eq. (3) can be written as:

C(a)

1 + β
= g(a) + 〈g〉. (4)

Specifically, for β = 0, we have C(a) = a + 〈a〉 (the detailed
derivation can be found in Ref. [32]).

III. ANALYTICAL RESULTS

We consider a Markovian and homogeneous random
walk [14] unfolding on networks generated with the model as
described above. We focus on the case where walkers move at
the same time scale as the network evolution, i.e., at each time
t , each walker moves from one node to another when a link
presents beween them, as shown in Fig. 1. In the following,
we derive the distribution of walkers Wa and the mean first-
passage time MFPT at nodes with activity a, respectively.

A. The distribution of walkers Wa

The probability that the walker stays at node i at time t ,
Pi(t ), obeys the master equation, given by

Pi(t + �t ) = Pi(t )

[
1 −

∑
j �=i

��t
i→ j

]
+

∑
j �=i

Pj (t )��t
j→i, (5)

where ��t
j→i is the probability that the walker moves from

node j to node i during time interval �t . The first term on
the right-hand side represents the probability that the walker
at node i at time t does not jump to other nodes at time t + �t .
The second term represents the probability that the walker at
one of the node i’s neighbors, j, at time t , moves to i at time
t + �t .

Let us define ��t
i→ j as the probability that node i becomes

active and connects to node j, given as follows:

��t
i→ j = aim�t

{
[1 − Pnew,i(t )]Ai j (t )

ki(t )
+ Pnew,i(t )

N − ki(t ) − 1

}
.

(6)

The first term represents that node i activates and selects
acquaintance nodes to establish connections. The second term
is due to that node i activates and creates a new connection.
Ai j (t ) is the actual adjacency matrix of the network until time
t , i.e., it is equal to 1 if node i and node j have been in contact
at least once in the past and 0 otherwise. In this case, the
instantaneous degree of node i is ki = m + ∑

j �
�t
j→i. Indeed,

node i will generate m links and may potentially receive links
from other active nodes.

Since both Ai j (t ) and ki(t ) depend on the evolution time
t , Wa, and MFPT will be affected by the starting time of
the random-walk diffusion. The probability that node j is
active and connects with node i is instead given by ��t

j→i =
a jm�t{ [1−Pnew, j (t )]Ai j (t )

k j (t ) + Pnew, j (t )
N−k j (t )−1 }. In this case, the instan-

taneous degree of node i is ki = 1 + ∑
l �= j �

�t
l→i. Here we

assume that when node j is activated, a connection is estab-
lished to node i. The former represents that node j becomes
active and connects to node i, while the latter is that the
activated nodes except node j establish links with node i.

Noting that the events described by ��t
i→ j and ��t

j→i cannot
happen at the same time. Moreover, according to the rules of
random walk, a walker staying at node i randomly jumps to
one of its ki neighboring nodes. Putting them all together, in
the limit �t → 0, the probability that a random walker moves
from node i to one of its neighbors, j, ��t

i→ j , can be written as

��t
i→ j = ��t

i→ j

1

m + ∑
j �

�t
j→i

+ ��t
j→i

1

1 + ∑
l �= j �

�t
l→i

	 ai�t

{
[1 − Pnew,i(t )]Ai j (t )

ki(t )
+ Pnew,i(t )

N − ki(t ) − 1

}

+ ajm�t

{
[1 − Pnew, j (t )]Ai j (t )

k j (t )
+ Pnew, j (t )

N − k j (t ) − 1

}
,

(7)

where we have neglected terms of order higher than �t . The
first (second) term in the first line (r-hand side) represents the
probability that a walker moves from node i to j when the link
is established by the active node i( j).

Then, we can write the equation describing the evolution of
Pi(t ) by substituting the expression ��t

i→ j and ��t
j→i in Eq. (5):

∂Pi(t )

∂t
= − Pi(t )

∑
j �=i

(
ai

{
[1 − Pnew,i(t )]Ai j (t )

ki(t )
+ Pnew,i(t )

N − ki(t ) − 1

}
+ a jm

{
[1 − Pnew, j (t )]Ai j (t )

k j (t )
+ Pnew, j (t )

N − k j (t ) − 1

})

+
∑
j �=i

Pj (t )

(
a j

{
[1 − Pnew, j (t )]Ai j (t )

k j (t )
+ Pnew, j (t )

N − k j (t ) − 1

}
+ aim

{
[1 − Pnew,i(t )]Ai j (t )

ki(t )
+ Pnew,i(t )

N − ki(t ) − 1

})
. (8)

If the network evolves for a long time, the degree of node i follows 1 � ki(t ) � N , i.e., each node has already had a large
number of contacts, thus the probability that node i connects with new nodes can be ignored, while the network is still a sparse
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graph. In this limit case, we replace N − ki(t ) − 1 with N . By considering the leading terms, Eq. (8) can be rewritten as

∂Pi(t )

∂t
= − Pi(t )

∑
j �=i

Ai j (t )

[
ai

ki(t )
+ maj

k j (t )

]
+

∑
j �=i

Pj (t )Ai j (t )

[
a j

k j (t )
+ mai

ki(t )

]
. (9)

Furthermore, we perform equivalent analysis of the heterogeneous mean-field approximation for static networks, that is,
we replace the time-integrated adjacency matrix Ai j (t ) with its annealed form, i.e., Qi j (t ) = (1 + β )t1/(1+β )[g(ai ) + g(a j )]/N ,
which describes the probability that node i and node j have been in contact in the past [33]. We further replace ki(t ) with
k̄(ai, t ) = (1 + β )(g(ai ) + 〈g〉)t1/(1+β ), and Eq. (9) can be written as

∂Pi(t )

∂t
= −Pi(t )

∑
j �=i

1

N

{
ai[g(ai ) + g(a j )]

g(ai ) + 〈g〉 + maj[g(ai ) + g(a j )]

g(a j ) + 〈g〉
}

+
∑
j �=i

Pj (t )
1

N

{
a j[g(ai ) + g(a j )]

g(a j ) + 〈g〉 + mai[g(ai ) + g(a j )]

g(ai ) + 〈g〉
}
.

(10)

We obtain a system-level description of the process by grouping nodes in the same activity a, assuming that they are
statistically equivalent (mean-field assumption) [14]. Then, we define the number of walkers at a given node with activity a
at time t as Wa(t ) = [NF (a)]−1W

∑
i∈a Pi(t ), where W is the total number of walkers in the system. By replacing the sums over

nodes with integrals over the activities 1/N
∑

j U (a j ) → ∫
U (a′)da′F (a′) and considering the continuous limit a, Eq. (10) can

be rewritten as:

∂Wa(t )

∂t
= −Wa(t )

[
a + mg(a)

∫
a′F (a′)

g(a′) + 〈g〉da′ + m
∫

a′g(a′)F (a′)
g(a′) + 〈g〉 da′

]
+ g(a)

∫
a′F (a′)Wa′ (t )

g(a′) + 〈g〉 da′

+
∫

a′g(a′)F (a′)Wa′ (t )

g(a′) + 〈g〉 da′ + amg(a)

g(a) + 〈g〉
∫

F (a′)Wa′ (t )da′ + am

g(a) + 〈g〉
∫

F (a′)Wa′ (t )g(a′)da′

= −Wa(t ){a + [mg(a)φ1 + mφ2]} + g(a)φ3 + φ4 + amg(a)ω

g(a) + 〈g〉 + am

g(a) + 〈g〉φ5, (11)

where ω ≡ W
N is the average density of walkers per node,

φ1 = ∫ a′F (a′ )
g(a′ )+〈g〉da′ and φ2 = ∫ a′g(a′ )F (a′ )

g(a′ )+〈g〉 da′ are the coeffi-

cient of Wa, φ3 = ∫ a′F (a′ )Wa′ (t )
g(a′ )+〈g〉 da′, φ4 = ∫ a′g(a′ )F (a′ )Wa′ (t )

g(a′ )+〈g〉 da′

is the number of walkers that move to nodes with ac-
tivity a due to the activation of other nodes, and φ5 =∫

F (a′)Wa′ (t )g(a′)da′ is the number of walkers that move to
nodes with activity a as a consequence of the activation. The
stationary state of the process is defined by the infinite time
limit limt→∞ ∂Wa(t )/∂t = 0. Using this condition in Eq. (11),
we find the stationary solution

Wa =
amω

g(a)
g(a)+〈g〉 + g(a)φ3 + φ4 + am

g(a)+〈g〉φ5

a + mg(a)φ1 + mφ2
. (12)

Hence, we can see that the quantity Wa depends not only
on the details of a node’s activity but also on an individual’s
memory, controlled by g(a). It is important to notice that at the
stationary state φ1, φ2, φ3, φ4, and φ5 are constants and they
can be computed self-consistently by solving the following
system of integral equations:

W = N
∫

F (a)
amωg(a)
g(a)+〈g〉 + g(a)φ3 + φ4 + am

g(a)+〈g〉φ5

a + mg(a)φ1 + mφ2
da,

φ4 =
∫

ag(a)F (a)

g(a) + 〈g〉
amωg(a)
g(a)+〈g〉 + g(a)φ3 + φ4 + am

g(a)+〈g〉φ5

a + mg(a)φ1 + mφ2
da,

φ5 =
∫

g(a)F (a)
amωg(a)
g(a)+〈g〉 + g(a)φ3 + φ4 + am

g(a)+〈g〉φ5

a + mg(a)φ1 + mφ2
da.

(13)

In the memoryless activity-driven (AD) networks, since
edges between nodes are randomly selected, the Wa is given
by [14]:

Wa = amω + φ

a + m〈a〉 , (14)

where φ = ∫
aF (a)Wada. We see that Wa only depends on the

nodes’ activity.

B. The MFPT

We now focus on another paramount property of random-
walk process, i.e., the MFPT, defined as the average time steps
needed for a walker to visit node i starting from an arbitrary
node in the system [36].

Let us consider p(i, n) as the probability that the walker
reaches the target node i at time t = n�t for the first time.
Then, p(i, n) is simply given by

p(i, n) = ξi(1 − ξi )
n−1, (15)

where ξi is the probability that the walker jumps to node i
during time interval �t . The probability that a walker at node
j jumps to node i during time �t is given by ��t

j→i. Thus, we
can write ξi as follows:

ξi =
∑
j �=i

Wj

W
��t

j→i, (16)

where we replaced the probability that a single walker at node
j at time t by its steady-state value with Wj/W .
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The MFPT of node i can thus be estimated as follows:

MFPTi =
∞∑

n=0

�tnp(i, n) = �t

ξi
= �t∑

j �=i
Wj

W

∏�t
j→i

= W
1
N

∑
j Wj

{
a j

g(ai )+g(a j )
g(a j )+〈g〉 + aim

[g(ai )+g(a j )]
g(ai )+〈g〉

}
= W

g(ai )φ3 + φ4 + aimg(ai )
g(ai )+〈g〉ω + mai

g(ai )+〈g〉φ5

, (17)

where φ3, φ4, and φ5 are the three constants that can be
calculated by Eq. (13). In numerical simulations, nodes are
grouped in the same activity a, we have

MFPTa =
∑
i∈a

MFPTi = W

g(a)φ3 + φ4 + m ag(a)ω+aφ5

g(a)+〈g〉
. (18)

The MFPTa in the memoryless AD networks is given
by [14]:

MFPTa = W

maω + φ
, (19)

where φ = ∫
aF (a)Wada. We see that the MFPT obtained

in the AD network model is merely determined by node’s
activity.

It is worthing noting that, obviously, neither Eq. (14) nor
Eq. (19) can be directly obtained from Eq. (12) or Eq. (17)
by setting β = 0, since Pnew,i(t ) = [1 + ki(t )/c]β = 1, i.e., the
activated node will definitely connect to a new node that has
never had a link to, instead of randomly connecting to a node
in the AD model.

IV. RESULTS ON SYNTHETIC NETWORKS

To support the results of the theoretical analysis, we have
performed extensive Monte Carlo simulations of the random-
walk process on the AD networks with memory. We consider
a power-law distribution of activity, i.e., F (a) ∼ a−γ , with
a ∈ [10−3, 1] and γ = 2.1. In each simulation, the temporal
network evolves to time t0 with the network average degree
〈k〉0, which affects the time that the memory takes affects, then
we start the random-walk process on it.

A. The distribution of walkers Wa

To verify the distribution of walkers Wa, networks are gen-
erated with size N = 104, m = 6, and the density of walkers
is set as ω = 102.

Since both the time of network evolution t0, measured
by 〈k〉0, and the parameter β coaffect the memory strength,
we first investigate how 〈k〉0 affects Wa, as shown in Fig. 2.
We also testify the effect of both weak memory [β = 0.6,
Fig. 2(a)] and strong memory [β = 3, Fig. 2(b)] for different
choices of 〈k〉0, respectively. The results for the AD networks
(red curve) are represented as the basin result. It shows that
for all the cases with memory or without memory, the number

(a)

(b)

FIG. 2. The distribution of walkers Wa at nodes with activity a
in networks with different memory strengths β and starting time t0,
measured by 〈k〉0. The red curve and black curve represent theo-
retical predictions without [Eq. (14)] and with memory [Eq. (12)],
respectively. Simulation results are shown as triangles. (a) Weak
memory with β = 0.6; (b) strong memory with β = 3. Averages are
performed over 500 independent simulations.

of walkers at nodes with activity a, Wa, increases with activity
a monotonically. In other words, more walkers concentrate on
highly active nodes. This result is expected, since more active
nodes can build more links and receive more walkers from
less active nodes, and vice versa. Therefore, the ability of a
node to collect walkers strictly depends on its activity or its
degree. As we know, due to the memory effect, nodes’ degree
grows slower than that without memory. As shown in Eq. (2),
for the memory case, the average degree of the nodes with
activity a grows as k̄(a, t ) = C(a)t1/(1+β ), while it grows as
k̄(a, t ) ∝ (a + 〈a〉)t for the memoryless case. Therefore, for
β > 0, the number of walkers at nodes with activity a, Wa, is
less than that with the memoryless case, especially for nodes
with large activity, as shown in Figs. 2(a) and 2(b).

Next, we explore the impact of the average degree 〈k〉0

on the distribution of walkers Wa. We find that the network
evolution carried out in advance, determined by 〈k〉0, has no
obvious impact on Wa as shown in Figs. 2(a) and 2(b). In fact,
for large 〈k〉0, even if nodes obtained historical connections
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FIG. 3. The distribution of walkers Wa at nodes with activity a
in networks for different choices of β with the same starting time t0,
measured by 〈k〉0 = 20. The analytical results (continuous curves)
and the numerical results (triangles) for the average number of walk-
ers per node of class a are shown for β = 0, 0.01, 0.4, 0.6, 1.4. The
red curve represents the theoretical prediction of Wa with Eq. (14),
other curves are predicted with Eq. (12). All the results are the
average over 500 independent simulations.

before the start of random-walk process, it takes long time
for random-walk diffusion to reach a steady state, and the
creation of new links takes effects on the random walks, thus
eliminating the influence of 〈k〉0 on Wa.

To further understand the memory effect in details, we
explore the distribution of walkers Wa for diverse memory
strength β as shown in Fig. 3. It shows that for an obvi-
ous memory strength (with β > 0.4), Wa increases with β

for both simulation results (triangles) and theoretical results
(solid curves). This phenomena demonstrates that with the
strengthen of memory impact, i.e., with the increase of β,
nodes with larger activity are more frequently connected with
other nodes, and thus they can get more walkers from the
process. In addition, we have to note that the gap between
theoretical results and simulation results decreeases with β.
The larger β is, the more consistent between theoretical and
simulation results. This is due to the fact that when deriving
Wa, we assume that 1 � ki(t ) � N for i = 1, . . . , N , where
we ignored the creation of new links. However, for the special
case of β → 0 with β = 0.01, this assumption of ignoring
new links connected by nodes is not true and it results in
a great gap between analytical results (black solid curve in
Fig. 3) and the simulation results (triangles).

B. The MFPT

We now turn our attention to the MFPT of random-walk
process on the activity-driven networks with memory. We
have performed Monte Carlo simulations to verify the theoret-
ical results of the MFPT by setting the parameters as follows:
N = 3000, m = 6, W = 1, γ = 2.1, where W is the number
of walkers. Also in this case we start the random-walk process
at t0, where the average degree of the network is measured
by 〈k〉0.

(a)

(b)

FIG. 4. The MFPT versus activity a for different 〈k〉0. (a)
〈k〉0 = 0, 20, 70; (b) 〈k〉0 = 0, 20, 30. The red curve and black
curve represent theoretical predictions without [Eq. (19)] and with
memory [Eq. (17)], respectively. Simulation results are shown as
symbols (dots, squares, and triangles). The network size is N =
3000 and W = 1. Each point is the average over 100 independent
simulations.

First, we testify the coeffect of the memory strength β and
〈k〉0 on the MFPT in Fig. 4. The memory strength is measured
by weak memory [β = 0.6, Fig. 4(a)] and strong memory
[β = 3, Fig. 4(b)] for different choices of 〈k〉0, respectively. It
shows that the MFPT decreases as activity a increases for all
the memory strength we testified. Actually, nodes with large
activity indeed have more connections, allowing walkers to
reach them quickly.

Different from Wa, the MFPT depends on the average de-
gree 〈k〉0. As expected, the simulations of the MFPT approach
toward to theoretical results as 〈k〉0 increases, and this effect
becomes more obvious with stronger memory strength with
β = 2.2. In fact, compared to smaller 〈k〉0, with larger 〈k〉0,
network evloves for longer time, where nodes got more histor-
ical links with the nodes that they have interacted, leading to
the formation of large clusters. The larger clusters promote the
reachability of walkers from one node to another, shortening
the MFPT (Fig. 4, black curve).
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(a)

(b)

FIG. 5. The MFPT versus activity a for different β and 〈k〉0.
(a) 〈k〉0 = 0; (b) 〈k〉0 = 20. Solid curve represents analytically
results without [Eq. (19) and with Eq. (17)] memory. Symbols rep-
resent simulations for different values of β with β = 0.4, 1.0, 2.2.
The parameters are set as N = 3000 and W = 1. Each point is the
average results over 100 realizations.

The distinction of theoretical solution between the MFPT
with memory (black curve) and without memory (red curve)
is not very obvious, even for large β with β = 2.2. For small
β, the degree of nodes with activity a should be larger than
that for large β, unfortunately, due to the omission of the
new edges, node’s degree are less than the actual situation.
Therefore, theoretically, it is hard to accurately distinguish the
degree value between different β, leading to the unobservable
difference for the MFPT between the memory and memory-
less cases.

Next we explore how the memory strength β affects the
MFPT under different conditions of 〈k〉0, i.e., extremely small
〈k〉0 with 〈k〉0 = 0 [Fig. 5(a)] and large 〈k〉0 with 〈k〉0 = 20
[Fig. 5(b)]. Independent of the average degree 〈k〉0, the MFPT
increases with β in Fig. 5. In other words, strong memory
will delay the reachability of walkers. It can be understood
as that for larger β, the reinforcement mechanism of edges
generated by strong memory effect leads to the formation

of clusterlike structure in the network, consequently, walkers
are easier to get trapped at the traversed nodes and hardly to
jump to new nodes. Thus, the presence of clusters of mutually
interconnected nodes increases the MFPT, especially for the
nodes with large activity a. The time of network evolution t0,
represented by the average degree 〈k〉0, affects the derivation
between simulation results and theoretical results. Larger 〈k〉0

will shorten the gap between them. Thus, we expect that for
sufficiently large 〈k〉0, for any β > 0, the simulation for the
MFPT will recover the theoretical results.

V. RANDOM-WALKS PROCESS IN REAL NETWORKS

We further investigate how an individual’s memory af-
fects the random-walk process in real networks. We collect
the interactions containing time-stamped information between
30 398 Digg users in August 2008 via the 87627 reply net-
work [37]. The Digg-Reply data are time varying, where each
node describes a user and each time-resolved link denotes
that a user replied to another user. Since many users tend to
interact with the users in same group for multiple times, the
social network is obviously driven by non-Markovian human
dynamics.

In order to characterize an individual’s memory in the
network, we measure the activity ai, defined as the fraction
of interactions of node i per unit of time, which describes
the propensity of node i to be involved in social interactions,
is computed as ai = si,out

∑
j s j,out, where si,out is the out-

strength of node i integrated across the entire time span [16].
In Fig. 6(a), we performed a power-law distribution with
exponential cutoff [38] on the Digg-Reply data set. Except
for some data of the head, the activity distribution in the real
data can be well fitted by the truncated power law distribution,
indicating that the node’s activity distribution in Digg-Reply
data set is less heterogeneous.

We adopt a binning method to divide the nodes in total
number, Nb = ∑Nact

agr=1 Ndeg(agr), of activity-degree classes ac-
cording to their activity a and the final degree k [32]. Nb

represents the total number of groups. Nact represents the
number of groups by activity. Ndeg(agr) represents the number
of groups divided by degree for activity group “agr.” In detail,
we first divide the nodes into Nact groups according to their
activity. Since nodes with the same activity may feature dif-
ferent memory behavior in each activity group “agr,” we group
nodes by the final degree k into a total of Ndeg(agr) groups.

Next, we define the probability for a node with degree k to
get a new connection, fb(k), as:

fb(k) = nb(k)

eb(k)
, (20)

where eb(k) denotes the total number of events engaged by the
nodes of the bth class with degree k, and nb(k) represents the
total number of events that nodes in bth group for degree k
performed toward a new node. As shown Fig. 6(b), for curves
with small activity category (bottom curves), the probability
to attach to a new node quickly drops to 0, resulting in a small
degree with k � 10. Nevertheless, for large activity category
(top curves), even with very large degree (k ∼ 102), the prob-
ability is nontrivial with p(k) � 0.1.
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(a)

(b)

(c)

FIG. 6. Statistical properties in Digg-Reply data set. (a) The
experimental activity distribution F (a) in the Digg-Reply data set.
The blue filled circles represent the real data. The red solid line
represents the fitting result of the power-law distribution with ex-
ponential cutoff, ca−γ e−λa, where c = 9.984×10−2, γ = 1.117, and
λ = 2476. The cofficients with 95% confidence bounds, the nodes
with activity a > amin are chosen because it can obtain a smaller
error, amin = 3.42×10−5. (b) The probability that nodes establish a
new connection as a function of their degree. Each data sequence
(different colors and markers) corresponds to selected nodes of
the system, with the average activity of the nodes increasing from the
bottom curves to the upper curves. (c) We rescale the attachment rate
curves of all the nodes by setting k → xb = k/cb and plot fb(x) →
pb(x) = fb(x)1/β versus xb, where β is same for each colored curve.
The memory strength is fitted as β = 0.43.

(a)

(b)

FIG. 7. Random-walk process in Digg-Reply data set. (a) The
fraction of active nodes for different choices of time slice �T .
(b) The distribution of Wa in the Digg data set (black) and in the null
model (red) for different window size �T = 10 000, 20 000, 30 000
with W

N = 200. Each point is the average over 2000 independent
simulations.

Then we use function pb(k, β ) = [1 + k
c(b) ]

−β to fit fb(k)
by assuming that an individual’s memory strength in the
network obeys a power-law distribution. We measure the rein-
forcement process in the Digg-Reply network by minimizing
the function χ2(β ) [32]:

χ2(β ) =
Nb∑

b=1

χ2
b (β ) =

Nb∑
b=1

kb∑
k=1

[ fb(k) − pb(k, β )]2

σb(k)2
, (21)

where σb(k) =
√

fb(k)[1− fb(k)]
eb(k) is the STD of fb(k). We can

obtain the optimal β in the Digg-Reply data set, i.e., β = 0.43.
By scaling k → xb = k/cb and fb(x) → pb(x) = fb(x)1/β , we
obtain Fig. 6(c). We see that when the number of an individ-
ual’s acquaintances is large, the probability of connecting with
a new node is small. Thus, we see that pb(x) decreases with
degree x.

In order to compare the effect of memory, we need to
randomize the network to remove the memory effect and take
it as the null network. Randomization is performed by recom-
bining the interactions at each timestamp in order to remove
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the memory effect, while retaining the order of activation time
for each node, the integration degree distribution for the final
time, and the degree distribution at each time step [39].

To explore the effect of the number of active nodes on
random walks, we divide the original data according to the
time interval �T = 10 000, 20 000, 30 000, respectively. As
can be seen from Fig. 7(a), with the increase of time interval
�T , the number of active nodes in the time accumulated
network increases accordingly. In Fig. 7(b), we compare the
distributions of walkers Wa versus activity a on the data net-
work with the null network for different time interval �T . In
the null model, since the randomization process eleminates
the effect of memory, Wa is hardly affected by �T . Compared
with the null model, strong ties established by memory in the
real data lower Wa for all the time slices �T we tested, which
are consistent with our results on artificial networks. Due
to the lower heterogeneity of node’s activity in Digg-Reply
network, the number of walkers fluctuates less with node’s
activity, thus, we see a flat increase in Wa.

VI. DISCUSSION AND CONCLUSION

In this work, we investigated the random-walk process on
temporal networks with memory and explore how an individ-
ual’s memory and the starting time of the diffusion coaffect
the random-walk process unfolding on the network. Under the
assumption of network evolution for long time, we derived
analytical expressions of the distribution of walkers and the
MFPT at the stationary state.

Monte Carlo simulation results show that, compared with
the memoryless case, with the introduction of memory, it
enhances the activity fluctuation and leads to the formation of
small clusters of mutual contacts within high activity nodes,
resulting in a slower increase of the average degree. Thus,
nodes’ abilities of collecting walkers are weaker than that in
the memoryless case. One the other hand, the reinforcement

mechanism between link formation leads to the delay of the
MFPT due to the fact that the walker is easier to get trapped at
traversed nodes. Stronger memory further strengthens the ef-
fect. The time for network evolution before the random-walk
process, measured by the average degree 〈k〉0, plays a trivial
role in the distribution of walkers, Wa, while it greatly affects
the MFPT. Numerical results show that the MFPT converges
toward the analytical prediction as 〈k〉0 becomes large. We
performed similar analysis on real networks, which is con-
sistent with the results of the artificial networks. The effect
of the heterogeneity of the activity distribution on random-
walk process has been verified in Ref. [14]. It shows that the
difference of collecting walkers between nodes with small ac-
tivity and nodes with large activity is reduced in homogeneous
networks. We also find similar results in real network data.

In conclusion, our work provides a comprehensive view
for the random-walk process in temporal networks with mem-
ory, compared to that in memoryless case. In the presence
of memory, the number of walkers decreases at steady state
and the MFPT gets larger than that of the memoryless case.
Moreover, the effect of an individual’s memory on the random
walks in real data verifies the results on the artificial networks.
As a possible future work, memory can be incoroperated
with diverse individual behavior, such as higher interaction,
in time-varying networks.
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