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Ring structure of selected two-dimensional procrystalline lattices
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Recent work has introduced the term “procrystalline” to define systems which lack translational symmetry
but have an underlying high-symmetry lattice. The properties of five such two-dimensional (2D) lattices are
considered in terms of the topologies of rings which may be formed from three-coordinate sites only. Parent
lattices with full coordination numbers of four, five, and six are considered, with configurations generated using a
Monte Carlo algorithm. The different lattices are shown to generate configurations with varied ring distributions.
The different constraints imposed by the underlying lattices are discussed. Ring size distributions are obtained
analytically for two of the simpler lattices considered (the square and trihexagonal nets). In all cases, the ring size
distributions are compared to those obtained via a maximum entropy method. The configurations are analyzed
with respect to the near-universal Lemaître curve (which connects the fraction of six-membered rings with the
width of the ring size distribution) and three lattices are highlighted as rare examples of systems which generate
configurations which do not map onto this curve. The assortativities are considered, which contain information
on the degree of ordering of different sized rings within a given distribution. All of the systems studied show
systematically greater assortativities when compared to those generated using a standard bond-switching method.
Comparison is also made to two series of crystalline motifs which shown distinctive behavior in terms of both the
ring size distributions and the assortativities. Procrystalline lattices are therefore shown to have fundamentally
different behavior to traditional disordered and crystalline systems, indicative of the partial ordering of the
underlying lattices.
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I. INTRODUCTION

Disordered two-dimensional networks appear common in
nature (covering, for example, foams [1,2], biological cells
[3,4], and rock formations [5,6]). Significant progress has
been made in manipulating materials at low dimensionality
such as nanoparticular colloids [7,8] and ultrathin materials
(including, for example, amorphous graphene [9,10], and bi-
layers of silica [11,12], aluminosilicates [13], and germania
[14]). The ability to effectively manipulate these materials and
hence control key properties such as the pore sizes and their
spatial distribution [15] (which could prove useful for gas sep-
aration and water filtration) requires a detailed understanding
of the possible structures which may form in two dimensions
and the length scales on which order becomes suppressed.

The expansion in experimental imaging capabilities, mod-
eling methodologies, and computer power are starting to
challenge the idea that all these systems behave as continuous
random networks (CRNs). Recent work has defined a range
of systems as “procrystalline” in that they lack translational
symmetry and yet have structures which can be rationalized in
terms of an underlying high symmetry lattice [16]. For exam-
ple, Fig. 1 illustrates a typical procrystal based on the square
lattice. Procrystals consist of a regular array of lattice points
in real space but contain defects in dual space. Each node
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in real space has the same coordination number but different
orientations of the connections. Therefore, while procrystals
appear crystalline in their atomic radial distribution function
(RDFs) and structure factors, the difference between the atom
coordination number and the natural coordination of the un-
derlying lattice leads to disorder in the ring structure. As
such, they can be considered to sit somewhere in between
crystals and CRNs, which as we will show is detectable in
their network properties. Experimentally they occur in self-
assembled molecular monolayers [17], classical bond valence
solids [18], mixed-anion perovskites [19], and order-disorder
ferroelectrics [20].

Disordered networks of percolating rings may be generated
starting from a high symmetry lattice. In the context of atomic
networks, a ring is any closed path of sequentially linked
atoms, but the term is used here in reference only to the
primitive rings, i.e., those which cannot be subdivided into
two smaller rings [21]. If the resulting networks contain only
three-coordinate sites, then the mean ring size will be six,
originating in Euler’s formula for connected planar graphs:

V + F − E = χ, (1)

where V , F , and E are the numbers of vertices, faces, and
edges respectively and χ is a topology-specific integer termed
the Euler characteristic. If the system is 2D and periodic with
three-coordinate sites, χ = 0 and E = 3V/2 so that the result
3V/F = 6 readily follows [22]. For aperiodic systems, χ = 1
and the mean ring size of six is quickly approached as the total
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FIG. 1. Example of a procrystal based on the square lattice. The
regular array of nodes (black circles) each have exactly three links
forming the procrystalline network. The nodes of the dual lattice
(black squares) are also displayed and can be viewed as square lattice
with defects.

number of rings increases. In this paper, we will highlight
how disordered and diverse networks of percolating rings
may be generated from different underlying high-symmetry
lattices. Each lattice imposes different constraints on the ring
structure. In simpler cases, the structures adopted by relatively
small systems may be understood purely analytically. For
more complex and/or larger systems, a Monte Carlo method
can be employed to generate configurations.

Our paper is arranged as follows. We begin by detailing the
series of two-dimensional procrystalline lattices at the heart
of our study, including the methods we use to generate them
and to characterize their corresponding ring statistics. In our
results section, we report these ring statistics, calculated using
both analytical and numerical methods, taking into account
also the effect of system size. Our key results concern the
second moments of the ring distributions and the correspond-
ing assortativities, which we show differ fundamentally for
procrystals from those for crystals, on the one hand, and
CRNs, on the other. We conclude with a brief discussion of
the implications of our results in a more general context.

II. METHODS

Figures 2(a)–2(e) shows the five tilings considered here,
which can be divided in terms of the coordination number
of the original tilings (here four-, five-, and six-coordinate)
and occur across a variety of experimental and theoretical
studies. The four-coordinate tilings considered are the square
[23–25] and trihexagonal (also known as kagome) [26–28]
nets, the five-coordinate tilings are the elongated-triangular
[29] and snub-square nets [30–33], and the six-coordinate
tiling is a triangular net. Each n-coordinate tiling can generate
connected procrystals with m-coordinate nodes in the range
m = 3 → (n − 1). We will therefore adopt the nomenclature
n, m lattice when referring to specific procrystals, in order to
highlight their coordination properties and underlying lattice;
e.g., the configuration in Fig. 1 is a 4,3-square procrystalline
lattice. Interestingly, the allowable rings and ring statistics
seem to depend both on the underlying lattice and the coor-
dination number. In the present work, we focus purely on the

FIG. 2. The five crystalline lattices considered here: (a) square,
(b) trihexagonal, (c) elongated-triangular, (d) snub -square, and (e)
triangular tiling. Panel (f) shows the hexagonal net, which is the basis
for the bond-switching algorithm described in the text.

three-coordinate configurations, as these are most prevalent in
nature, and so making contact with previous work [22,34,35].

In the 4,3-square procrystalline lattice, in which atoms
located on a regular square lattice possess only three bonds,
the configurational space would be expected to grow expo-
nentially quickly: naively as 4N if each atom is a T shape
which can take anyone of four orientations. However, the
space is actually significantly contracted under the condition
the atoms all achieve full coordination (i.e., there are no dan-
gling bonds). A consequence of this statement is that it also
enforces periodicity. This is in analogy with classic problems
of arranging dimers on a lattice [36,37]. The number of con-
figurations still grows very rapidly, but the problem becomes
computationally tractable for a greater range of lattice sizes.

Mapping the configurational space can be achieved by two
approaches. The first is by using exact tiling to obtain all the
possible configurations for a given lattice size. The second
is Monte Carlo sampling, discussed below, which allows the
distribution of lattices of any size to be sampled. The former
is feasible only for relatively small systems but may provide
useful insight into the topologies of larger systems. In addition
it is interesting to compare these procrystalline lattices to more
“conventional” three-coordinate amorphous materials, which
are still required to have a fixed mean ring size but have fewer
geometric constraints.

A. Monte Carlo

A zero-temperature Monte Carlo optimization algorithm
was developed to sample the configurational space for the
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FIG. 3. Panels (a)–(d) show snapshots from the generation of a
configuration of a 4,3-square lattice via a Monte Carlo method. As
the algorithm progresses, dangling bonds (highlighted in red) are
removed until full coordination is achieved.

different procrystalline lattices. The algorithm proceeds as
follows:

(1) For the starting structure, take a periodic lattice from
Fig. 2 and randomly assign each node three bonds from
the possible orientations defined by the underlying lattice.
This will introduce a number of dangling bonds into the
configuration.

(2) Select a node at random and change the three bonds.
(3) If the number of dangling bonds is less than or equal

to the number in the previous configuration, update the con-
figuration; otherwise, revert to the previous structure.

(4) Repeat steps 2 and 3 until all dangling bonds have been
removed and all node coordinations are satisfied. The final
lattice is then in the procrystalline state.

This process is demonstrated for an 8 × 8 square lattice
in Fig. 3. As removing the dangling bonds often requires a
correlated motion, it becomes increasingly difficult to remove
defects as they reduce in number. Furthermore the structure
obtained with a small number of dangling bonds can be quite
different to the final procrystalline network as a consequence
of the required reorganization.

This method can be thought of as a simplified version
of a site adsorption model, where molecules adsorb to spe-
cific sites on an underlying lattice and interact with varying
directional potentials [38–40]. The difference is that here
the potential model is binary and the aim of the method
is to generate a fully coordinate, defect-free “ground state”
procrystalline lattice. One could in principle introduce a
Metropolis-type criterion into step 3 [41], where moves are
accepted according to max[1, exp (−�U/kBT )], with �U as
the change in number of dangling bonds and T as a temper-
ature parameter. This modification would allow a proportion
of “uphill” moves, where the number of dangling bonds in-

creases, in contrast to the T = 0 case when only “downhill”
moves, which maintain or reduce the number of dangling
bonds, are accepted. However, we found the zero-temperature
version to converge very well, as there is sufficient flexibility
through moves which merely conserve the number of dangling
bonds for a global minimum to be reached. In addition, the
temperature parameter was not found to appreciably affect the
overall properties of the resulting realisations.

In this work, we used this Monte Carlo method to generate
configurations for each of the five underlying lattice types,
with number of nodes in the lattice scaled to explore system
size effects. For each set of parameters, some 105 periodic
procrystalline lattices were generated.

B. Bond switching

As a complement to the work on procrystalline lattices,
we will compare results with amorphous three-coordinate
lattices. Computational configurations of two-dimensional
CRNs of this type can be generated using a bond-switching
algorithm. This algorithm is described in detail in Ref. [22]
and references therein, but can be summarized as follows.
The algorithm starts with a pristine hexagonal lattice, as in
Fig. 2(f). Connections between neighboring atoms are then
switched in such a way to introduce defects, while preserving
the overall atomic coordination number. As successive defects
overlap, the initial memory of the crystalline lattice is lost and
an amorphous structure results.

Previously, this algorithm has been employed in a man-
ner analogous to simulated annealing, where the random
amorphous structure is then cooled to generate physically
motivated realizations of network-forming materials, which
have significant enthalpic constraints [22,42,43]. To compare
to the procrystalline lattices, however, we are only interested
in the highest entropy solutions and so effectively run the
bond switching continually at infinite temperature, until the
required sampling is reached. This generates configurations
which are highly unphysical from a materials perspective but
provide a useful comparison point as a high entropy lattice
which is amorphous both in real and dual space.

An example of a highly disordered CRN produced from
bond switching is given in Fig. 4(f). The primary difference
when compared to the procrystalline configurations is that the
atomic positions are not constrained to a lattice and are free to
migrate. Atoms are therefore also able to form bonding con-
nections to other species outside the original nearest neighbors
defined by the starting hexagonal lattice. For a lattice of a
given size, 104 configurations were sampled, starting from
100 different starting seeds.

C. Ring statistics

Given it is the rings which are the source of disorder in
procrystalline lattices, we must quantify the level of disorder
through the ring structure. As previously mentioned, the mean
ring size is insufficient, as for three-coordinate atoms it is
constrained to six by Euler’s formula. The main measure of
disorder is therefore the ring size distribution itself, pk , and its
associated second moment, μ2 = 〈k2〉 − 〈k〉2 [44].
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FIG. 4. Example configurations generated using the Monte Carlo
procedure as described in the text. Six-membered rings are shown in
gray, while rings with size k < 6 are shown as light to dark blue for
decreasing k, and rings of size k > 6 are shown as light to dark red
for increasing k. The configurations are shown in the same order as
for Fig. 2.

As a reference, we can compare to the maximum entropy
ring distribution. This approach was used by Lemaître et al.
as part of the study of generic CRNs [45]. The entropy of a
given ring distribution is given by

S = −
∑

k

pk ln pk, (2)

to which the following constraints may then be applied:
∑

k

pk = 1, (3)

∑
k

kpk = 6, (4)

∑
k

pk/k = constant. (5)

The first constraint simply arises from the normalization con-
dition, the second reflects the constrained mean ring size,
while the third was argued on the basis of empirical observa-
tions of ring areas. The maximum entropy solution, which we
denote Pk , can be found subject to these constraints by using

TABLE I. Theoretical values of the proportion of hexagons and
variance for the maximum entropy ring size distributions in different
procrystalline lattices.

Procrystal P6 μ2

4,3-square 0.250 8.0
6,3-triangular 0.105 12.0
4,3-trihexagonal 0.021 4.75

Lagrange’s method to find

Pk = e−λ1k−λ2/k

∑
k e−λ1k−λ2/k

, (6)

which can be solved numerically by substitution into Eq. (4).
This forms the basis of Lemaître’s law, which will be dis-
cussed in Sec. III and has been shown to hold for a wide range
of CRNs [22,46,47].

For the procrystalline lattices discussed in this work, a sim-
ilar approach may be taken, except the process is somewhat
simpler because the constraint (5) does not apply. Remov-
ing this constraint, we find a modification of Eq. (6) where
λ2 = 0:

Pk = e−λk

∑
k e−λk

. (7)

An important additional constraint arises implicitly
through the k range in the summation. In the most general
case, the set of k values is {3, 4, 5 . . . }, as the smallest ring
is the triangle. Under these conditions, we find that the max-
imum entropy ring distribution, which we denote Pk , is given
by

Pk = (
1
4

)(
3
4

)k−3
, k ∈ {3, 4, 5 . . . }. (8)

However, this can easily be modified to suit the underly-
ing lattice conditions. For example, in the 4,3-square lattice,
only even rings are permissible such that the k values are
{4, 6, 8 . . . }, where the smallest ring is the now the square.
Under these conditions, we find the maximum entropy distri-
bution is

Pk = (
1
2

)k/2−1
, k ∈ {4, 6, 8 . . . }. (9)

The maximum entropy distribution solutions for three lattice
types are summarized in Table I.

D. Assortativity

While the ring distribution is highly informative, it is a
global measure and gives no insight into the ring adjacencies.
Therefore, an additional metric can be used to gain informa-
tion on nearest-neighbor correlations. One could use empirical
measures such as the Aboav-Weaire law [48], but in this
work we will use the assortativity, a well-defined metric from
network theory, which measures the tendency for large rings
to be adjacent to small rings. To calculate the assortativity
requires construction of the joint degree distribution, with
each element e jk giving the probability of a ring of size j being
adjacent to a ring of size k. The assortativity is then quantified
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FIG. 5. The ten possible ring configurations obtained for a small
unit (V = 12) of the trihexagonal lattice. The value at the center of
each panel is the configuration degeneracy.

through the Pearson correlation coefficient,

r = 〈k〉2 ∑
jk jke jk − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2
, (10)

where −1 � r � 1 [49]. A negative value of r indicates an
increased preference for large rings to be adjacent to small
rings, when compared to a purely random arrangement. Con-
versely, a positive value of r indicates an increased likelihood
for similar sized rings to be grouped.

III. RESULTS

The networks based on underlying four-coordinate lattices
may be considered in an analytic fashion, as in the first subsec-
tion below. However, the commensurate analysis for the five-
and six-coordinate lattices is much more complex and so must
be considered using the Monte Carlo procedure, as described
in the second subsection below.

A. Exact tilings

The 4,3-square and 4,3-trihexagonal lattices are both four-
coordinate and so the underlying constraints associated with
forming three-coordinate networks can be considered analyti-
cally. Taking first the 4,3-square lattice (which is perhaps the
simplest lattice considered here to rationalize). The lack of
“cross” bonds (acting between opposite corners of a square) in
the lattice means that only even-membered rings are possible.
Rings must be linear as any “L” shapes require stabilization of
a two-coordinate site.

For the 4,3-trihexagonal lattice, the constraints imposed
are perhaps more difficult to rationalize, with only ring sizes
in the set k = {3, 6, 7, 8, 9} allowed while maintaining three-
coordination. A lattice of V vertices will have 2V edges and
V faces, 2V

3 of which are triangles [from Euler’s formula
(1)]. Generating the procrystal requires removal of V

2 edges,
leaving V

2 faces. Each edge removed must necessarily remove
one triangle only, so that the final number of triangles is V

6 and
hence p3 = 1

3 .
In addition to the highly constrained set of allowed ring

sizes, the relative frequencies of these rings are not equal. In
order to rationalize this, we must consider the number of ways
of achieving each ring size. Figure 5 takes a small unit of the
kagome lattice, with 12 vertices, and shows the possible ways
of producing each ring, with the number of symmetry related
species indicated in the center of each cell. This analysis

predicts a ratio of 1 : 15 : 15 : 1 for p6 → p9. This now fully
constrains the problem, and we find

P3 = 1
3 , P6 = 1

48 , P7 = 5
16 , P8 = 5

16 , P9 = 1
48 .

(11)

Figure 5 also highlights further effects of the high symmetry
lattice. First, k = 9 is the largest ring which can be supported
as any larger ring would require the stabilization of two-
coordinate sites. Second, a k ring must be nearest neighbors
with k-6,3-membered rings, for k � 6.

In addition to determining the ring statistics, the assortativ-
ity for the maximum entropy solution of the 4,3-trihexagonal
lattice can be investigated. The joint degree distribution in this
case is given by

e = 1

96

3 6 7 8 9⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

0 0 5 101 3
0 0 1 1 0 6
5 114141 7

10114141 8
1 0 1 1 0 9

, (12)

which can be rationalized as follows. The sum of each row
is given by

∑
k e jk = kpk/6 such that the entire matrix is

normalized. In addition, as each neighboring ring adjacency is
reciprocated, e jk = ek j . The value of the specific elements can
be deduced by careful inspection of Fig. 5. For example, zeros
appear where the lattice constraints prevent the neighboring of
two ring sizes. Using this matrix in Eq. (10) gives a value of
r = −101/367 ≈ −0.275, i.e., the 4,3-trihexagonal lattice is
disassortative. We see this is consistent and intuitive with the
previous observation that larger rings are surrounded by an
increasing number of three-rings.

B. Monte Carlo

Figure 4 shows example configurations generated using
the MC procedure described above. The different ring sizes
are highlighted by different colors as indicated in the figure
caption. The constraints on the ring sizes imposed by the
underlying lattices are evident in a number of cases. For exam-
ple, the linear rings are evident in the configuration obtained
for the 4,3-square lattice [Fig. 4(a)] but are also clear in that
obtained for the 5,3-elongated-triangular tiling [Fig. 4(c)].
In addition, the limited ring size set permissible in the 4,3-
trihexagonal lattice is also clear. Figure 4(f) shows a typical
amorphous configuration obtained from bond switching. Note
that the use of an effective infinite temperature to generate
these configurations results in relatively unphysical (uncon-
strained) configurations which feature, for example, highly
nonconvex structures. In general, the effect of the underlying
lattices in generating novel ring structures is clear.

Figure 6 shows the ring distributions generated for the
three-coordinate networks starting from the five lattices shown
in Fig. 2 as well as from bond switching. These distri-
butions act to highlight how the different tilings impose
additional (different) constraints. As discussed above, for
the 4,3-square lattice only even-membered rings are allowed
(three-dimensional distributions with this constraint having
been generated previously [50]). The 4,3-square lattice cell
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FIG. 6. Ring size distributions for the five crystalline lat-
tices considered here. Key: (a) 4,3-square, (b) 4,3-trihexagonal,
(c) 5,3-elongated-triangular tiling, (d) 5,3-snub-square, and (e) 6,3-
triangular. Panel (f) shows the results of configurations obtained
from bond switching. In all panels, the points and dashed lines show
the respective maximum entropy (ME) solutions. Each panel also
highlights potential system size effects by showing the ring size
distributions for different numbers of nodes, V , as highlighted in the
legends.

for V = 16 is small enough to explicitly show the possi-
ble configurations (see Fig. S1 in the Supplemental Material
[51]). For the 4,3-trihexagonal lattice, only rings of size k =
{3, 6, 7, 8, 9} are allowed. Distributions of this general form
have been observed previously, for example, for a model using
a core-softened potential and long-range repulsions [52], and
for models of BN nanotubes encased in amorphous material
[53]. The figures also show the ME solutions. The constraints
discussed above for the square and 4,3-trihexagonal lattices
are clear. However, it is also clear that the snub and elon-
gated triangular lattices show the more subtle effects of the
underlying constraints. There are some similarities between
the different ring distributions. For example, the 5,3-snub-
square and 6,3-triangular lattices [Figs. 6(d) and 6(e)] both
show fewer four- and five-membered rings, and more six-
and seven-membered rings, when compared to the ME so-
lutions. In general, the distributions become more like the
ME solutions on moving from an underlying four- to five-

FIG. 7. The values of the (a) second moment, μ2, and (b) assor-
tativity, r, as a function of the fraction of six-membered rings, p6, for
configurations generated on the five lattices considered here as well
as those generated by bond switching. These are colored as indicated
in the captions, but if viewing in grayscale, note that the each lattice
can be identified by comparing to the p6 values given in Fig. 6.

to six-coordinate lattice, reflecting the decrease in constraints
along that pathway. Figure 6(f) shows the ring statistics
from the bond-switching algorithm (and hence corresponding
to a high-temperature CRN). It is clear that the config-
urations generated with the procrystalline constraints are
fundamentally different purely in terms of the underlying ring
statistics.

Figures 7(a) and 7(b) show the values of μ2 and r as a
function of p6 for the three-coordinate configurations gen-
erated from the five lattices. For completeness, details of
the observable system size effects can also be found in the
Supplementary Material [51]. These are presented alongside
data from bond switching, representing generic CRNs, and
with two series of crystalline motifs of the form 8-6i-52

and 8-6i-4 for 0 � i � 3 (the nomenclature indicating the
number of each ring size in the unit cell) [54]. For four
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procrystalline lattices (excepting the 4,3-trihexagonal case),
the width of the ring size distribution, as characterized by the
second moment, increases as p6 decreases. The four cases lie
toward the high-μ2 limit of the Lemaître curve which lies at
p6 = 0.105. The systems lie of the upper end of this curve
as the formation of arbitrarily large rings is not precluded
on enthaplic grounds. The configurations generated on the
4,3-trihexagonal lattice are unique here in lying at both a low
p6 and a relatively low μ2, although much more in keeping
with systems constrained so as to preclude the formation of
large rings (for example, the two-dimensional crystal con-
structed purely from four- and eight-membered rings). The
4,3-square lattice configurations show μ2 values systemati-
cally higher than those predicted from the Lemaître curve. For
the five-coordinate lattices, the 5,3-snub-square lattice lies at
μ2 values significantly higher than those associated with the
Lemaître curve (although less removed than those associated
with the square lattice), while the 5,3-elongated-triangular
lattice lies at high μ2, again above the Lemaître curve. The
second moments generated from the 6,3-triangular lattice
lie near the low-p6 ME limit of p6 ≈ 0.105, occupied by
the CRNs.

The deviation of the second moments from the Lemaître
curve is therefore correlated with the strength of the con-
straints imposed by the underlying crystalline lattice (which
decrease from four- to five- to six-coordinate). To reiter-
ate, while crystalline lattices are free to locate around the
Lemaître curve (their formation usually driven by the ener-
getic landscape) and disorded CRNs constrained to lie upon it,
procrystals occupy a region in between these extremes, with
the degree of deviation related to the difference in the coordi-
nation number of the procrystal and the underlying lattice. In
previous work, it was demonstrated how a very wide range of
systems (including atomistic networks, nanoparticular pack-
ings, geopolitical maps, etc.) generated {μ2, p6} data sets
which did fit on the Lemaître curve [22]. The configurations
generated here are relatively rare examples of systems which
do not.

For the assortativities shown in Fig. 7(b), again four of
the lattices show similar mean values (〈r〉 ≈ −0.19) cor-
responding to favoring disassortative configurations. Again,
the 4,3-trihexagonal lattice is unique in displaying a highly
disassortative 〈r〉 ≈ −0.275 as previously rationalized. The
bond-switching configurations show a less negative assorta-
tivity of 〈r〉 ≈ −0.13, whil3 the crystals take up a variety
of strongly negative values. The effect of the constraints
are, therefore, to impose greater short-range ordering on the
ring topology. This observation is consistent with the rela-
tively high values of μ2 [Fig. 7(a)]. The constrained systems
promote the formation of large rings (high μ2) which are
then preferentially linked to neighboring small rings (more
negative 〈r〉).

It is clear, therefore, that the procrystalline lattices gen-
erate configurations which are fundamentally different from
those generated from algorithms based on a continuous ran-
dom networks and crystalline materials. Previous work has
highlighted deviations from generic behavior, for example,
in violating the Aboav-Weaire law. Aboav [55] and Boots
[56] recognized that a number of regular lattices (of which
the crystals highlighted above would be an example) would

violate this law. These regular lattices also do not sit on the
Lemaître curve. In addition, the presence of extreme ring sizes
and/or edge length distributions have been shown to preclude
the linear fit required to satisfy the Aboav-Weaire [57,58].
However, these systems would still sit firmly on the Lemaître
curve. The procrystalline configurations described here are
the first examples of disordered systems which systematically
violate the Lemaître law.

IV. CONCLUSIONS

In this paper, we have considered the ring structures gen-
erated from five underlying high symmetry lattices, building
configurations which are purely three-coordinate. The effect
of the high symmetry lattice is to constrain the ring distri-
butions. The extent of this constraint can be quantified by
reference to the maximum entropy solutions and is found to
be strongest for the four-coordinate lattices, that is, when only
a single connection has to be removed, and weakest for the
six-coordinate lattice, for which three connections must be
removed. Understandably, therefore, the constraints imposed
on the ring size distributions are correlated with the available
degrees of freedom when removing connections to form the
three-coordinate lattices. The additional effect of the imposed
constraints is that several of these networks are examples
of systems which do not fit on the Lemaître curve (which
links the number of six-membered rings to the width of the
ring size distribution). The connectivity of the rings has been
explored using the assortativity, with the networks consid-
ered showing significantly greater assortativity (ring ordering)
than more random networks. The two four-coordinate lattices
considered, the 4,3-square and 4,3-trihexagonal, are simple
enough to consider analytically for small systems, which
provides insight into the configurations favored for larger
systems. Furthermore, we have investigated potential system
size effects and highlighted how the more constrained sys-
tems show ordering which requires larger systems to be fully
converged.

If our results are mirrored by equally anomalous ring
statistics in three-dimensional procrystalline networks, we
might expect a variety of physical properties that depend
on correlation to be affected in otherwise unexpected ways.
For example, the disordered pore networks of Prussian blue
analogs possess topological characteristics that differ mean-
ingfully from those of random or ordered porous media, in
turn influencing their transport properties [59]. On a differ-
ent length scale, photonic procrystals should exhibit photonic
band structures different from those of both ordered and amor-
phous phases [60,61].
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