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Spacing ratio characterization of the spectra of directed random networks
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Previous literature on random matrix and network science has traditionally employed measures derived from
nearest-neighbor level spacing distributions to characterize the eigenvalue statistics of random matrices. This
approach, however, depends crucially on eigenvalue unfolding procedures, which in many situations represent a
major hindrance due to constraints in the calculation, especially in the case of complex spectra. Here we study the
spectra of directed networks using the recently introduced ratios between nearest and next-to-nearest eigenvalue
spacing, thus circumventing the shortcomings imposed by spectral unfolding. Specifically, we characterize
the eigenvalue statistics of directed Erdős-Rényi (ER) random networks by means of two adjacency matrix rep-
resentations, namely, (1) weighted non-Hermitian random matrices and (2) a transformation on non-Hermitian
adjacency matrices which produces weighted Hermitian matrices. For both representations, we find that the
distribution of spacing ratios becomes universal for a fixed average degree, in accordance with undirected random
networks. Furthermore, by calculating the average spacing ratio as a function of the average degree, we show that
the spectral statistics of directed ER random networks undergoes a transition from Poisson to Ginibre statistics
for model 1 and from Poisson to Gaussian unitary ensemble statistics for model 2. Eigenvector delocalization
effects of directed networks are also discussed.
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I. INTRODUCTION

Networks have become crucial tools for the modeling of
different types of complex systems composed of discrete
units. Prominent examples include technological systems, as
in the case of the World Wide Web (WWW) [1], Internet [1],
and power grids [2,3]; social networks, both off- and on-line
[1]; biological systems, like food webs [1,4] and mutualis-
tic relationships between species [5]; and many others [1].
A substantial part of these networks is said to be directed,
in the sense that interactions between its components occur
asymmetrically; that is, using the WWW as example, there
may be links from one page to others, but not necessarily links
pointing back.

The advances in the characterization of the structure of
networks have also improved our understanding about the
functioning of the systems they represent. In particular, the
performance of several dynamical processes (such as epi-
demic spreading, synchronization, and percolation) can, in
general, be quantified in terms of spectral properties of ad-
jacency matrices, which in turn encode the network topology
[6]. Progress in this area, however, has been mainly concen-
trated on the dynamics of random undirected networks, i.e.,
networks that are characterized by sparse Hermitian random
matrices and to which several results obtained in random
matrix theory (RMT) are applicable [7].

Despite the importance of complex systems whose interac-
tions are asymmetric, spectral properties of directed networks

have been much less explored than their undirected coun-
terparts. The reason for this might reside in the difficulty
of adapting analytical techniques developed for Hermitian
matrices to the analysis of the complex spectra of sparse
non-Hermitian ones. Indeed, only very recently rigorous cal-
culations have started to be obtained for the spectral density
of sparse non-Hermitian matrices (see, e.g., Refs. [8–12]).
Furthermore, results concerning the universality of spectral
features of such matrices are even scarcer when compared to
the corresponding literature on random matrices derived from
undirected random graphs [12].

Besides being interesting in its own right, the identification
of universality classes in spectral properties can also be rele-
vant to the study of dynamical processes running on directed
networks: by detecting the spectral observables that remain
independent from details of the random matrix realization,
one is able to infer what global network properties control
dynamical transitions in the complex system under study;
examples of the application of universal spectral properties
are found in the stability criteria of large ecosystems [13,14]
and other processes on directed networks [12]. Motivated by
these facts, in this paper, we carry out an extensive analysis of
the spectral properties of sparse Hermitian and non-Hermitian
matrices, both representing directed random networks.

Certainly, the most popular tool used to characterize the
spectral properties of random matrix ensembles has been the
nearest-neighbor energy-level spacing distribution P(s) [7].
It was originally defined for real spectra [7] and later also
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extended to complex spectra [15,16]. However, the compu-
tation of P(s) from complex spectra remains a subject to be
further developed. We believe that this may be due to the
problem of spectrum unfolding that, even for real spectra, may
become a cumbersome task (see, e.g., Refs. [17–19]). Spec-
trum unfolding, in RMT, is the process of locally normalizing
a spectrum such that the mean level spacing 〈s〉 equals unity.
Fortunately, recently, the problem of spectrum unfolding has
already been circumvented, for real spectra, by the introduc-
tion of the distribution of the ratio between consecutive level
spacings P(r) [20,21]. Moreover, very recently, the version of
P(r) for complex spectra was proposed in Ref. [22].

In this paper, we employ real and complex spacing ratios
in order to characterize the spectral properties of directed
networks. We address this task by considering two adjacency
matrix representations of Erdős-Rényi (ER) random networks,
namely, weighted non-Hermitian adjacency matrices and a
recently introduced operator [23,24] which yields complex
Hermitian adjacency matrices (see Sec. II for definitions).
Therefore, since here we are dealing with real and complex
spectra (i.e., Hermitian and non-Hermitian matrices), we com-
pute both real and complex versions of P(r). More precisely,
we concentrate on the average ratio 〈r〉 as a complexity indica-
tor to characterize the localization-to-delocalization transition
of the random matrix models we use as representations of
directed random networks. It is relevant to stress that, due
to the need for spectral unfolding, the use of 〈s〉 as a com-
plexity indicator is not feasible due to the constraint of having
〈s〉 = const = 1 after unfolding; for this reason, we rely our
analysis on the characterization of 〈r〉 as a function of the
global network parameters, such as number of nodes and
average degree.

II. MODELS AND QUANTITIES

A. Models

We consider directed random networks G from the stan-
dard ER model G(n, p); i.e., G has n vertices and each directed
edge appears independently with probability p ∈ (0, 1). Given
a directed network G(n, p) we analyze the spectral properties
of two different matrix representations.

1. The randomly weighted non-Hermitian adjacency matrix AdRGE

The matrix AdRGE is constructed as follows. A random
directed ER graph is constructed and its adjacency matrix is
extracted; then the adjacency matrix is weighted with random
variables (including self-loops). Thus we get the matrix

[AdRGE]uv =
⎧⎨
⎩

εuu if u = v

εuv if u → v

0 otherwise,
(1)

where u → v denotes that there exists a directed edge from
node u to v. Here, we choose εuv as statistically independent
random variables drawn from a normal distribution with zero
mean and variance one, εuv ∼ N (0, 1). Evidently, since G
is directed, εuv �= εvu; thus, matrix AdRGE is non-Hermitian.
We use the subscript “dRGE” because we identify the matrix
AdRGE as a diluted version of the real Ginibre ensemble (RGE)
[25]; i.e., for a complete network, when p = 1, AdRGE is

a member of the RGE (the RGE consists of random n × n
matrices formed from independent and identically distributed
standard Gaussian entries). Some spectral properties of the
RGE were reported in Ref. [26]. Also note that when p = 0,
for a completely disconnected network, AdRGE reproduces the
Poisson ensemble (PE) [7]; that is, AdRGE becomes a diagonal
random matrix. Thus, a transition from the PE to the RGE is
expected when increasing p from zero to one.

2. The randomly weighted Hermitian adjacency matrix AM

Recently, a Hermitian adjacency operator for unweighted
directed graphs was defined in Refs. [23,24]. Interestingly,
it turns out that the adjacency operator of Refs. [23,24] is
a special case of a more generic one originated from the
magnetic Laplacian formalism [27–30] (see the Appendix for
more details). Given that equivalence, we call the Hermitian
adjacency matrix associated with a directed network just the
magnetic adjacency matrix. Owing to the numerous recent ap-
plications of the magnetic Laplacian formalism, we choose to
study the properties of a random ensemble associated with it.
The magnetic random ensemble is created with the following
steps: a random directed ER graph is created; the magnetic ad-
jacency matrix is thereby extracted from the graph and is then
weighted with random variables. By denoting by AER the bi-
nary adjacency matrix extracted from a directed ER graph, this
procedure, therefore, gives us the following random matrix:

[AM]uv =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εuu if u = v,

εuv[AER]uv if u ↔ v,

iεuv[AER]uv if u → v,

−iεuv[AER]vu if v → u,

0 otherwise.

(2)

Again, we choose εuv as statistically independent random
variables drawn from a normal distribution with zero mean
and variance one. Indeed, [AM]vu = [AM]∗uv by construction.
In this case, for increasing p, the ensemble defined by AM

transits from the PE, when p = 0, to real symmetric full
random matrices, when p = 1. The later ensemble is very
similar to the Gaussian orthogonal ensemble (GOE) [7] of
RMT, but not exactly equal; in the GOE the diagonal matrix
elements have twice the variance as the off-diagonal ones.

B. Quantities

Below we follow a recently introduced approach under
which the adjacency matrices of random graphs are studied
statistically. See the application of this approach on undirected
ER graphs [31–35], random regular and random rectangular
graphs [36], β-skeleton graphs [37], multiplex and multilayer
networks [38], and bipartite graphs [39].

In the next section we characterize the real spectra of AM

and the complex spectra of AdRGE by computing, respec-
tively, the average values of the ratio between consecutive
level spacings rR and the ratio between nearest- and next-to-
nearest-neighbor spacings rC , which are defined as follows.
On the one hand, given the real ordered spectrum λ1 > λ2 >

· · · > λn−1 > λn, the kth ratio rk
R reads [20,21]

rk
R = min(λk+1 − λk, λk − λk−1)

max(λk+1 − λk, λk − λk−1)
. (3)
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FIG. 1. (a–c) Ensemble average of the ratio rC for the adja-
cency matrices represented by the diluted real Ginibre ensemble,
〈rC (AdRGE)〉, as a function of the probability p for several net-
work sizes n. The horizontal dashed line in panel (c) indicates
〈rC (AdRGE)〉 = 0.6188. (b) 〈rC (AdRGE)〉 as a function of n for p = 1
and p = 0. The horizontal dashed lines at 〈rC (AdRGE)〉 = 0.7370
and 0.5006 indicate the values of 〈rC (AdRGE)〉 for p = 1 and p = 0,
respectively, at n = 1000. (d) Same curves of panel (c) but as a
function of the average degree 〈k〉. Vertical dashed lines mark the
values of 〈k〉 (0.5, 1.5, 2, 3, and 10) chosen to report the probability
density functions (PDFs) of rC , P(rC ), in Fig. 2. Inset: p∗ as a
function of n. The dashed line is the fitting of Eq. (5) to the data
with fitting parameters C = 2.1949 and δ = −1.0235. Each symbol
was computed from the ratios of 106/n directed random networks
G(n, p).

Here, rR ∈ [0, 1]. On the other hand, given the complex spec-
trum {λk} the kth ratio rk

C reads as [22]

rk
C =

∣∣λNN
k − λk

∣∣∣∣λNNN
k − λk

∣∣ , (4)

where λNN
k and λNNN

k are, respectively, the nearest and the
next-to-nearest neighbors of λk in C. Note that, as well as rR,
rC ∈ [0, 1]. Moreover, note that rC can also be computed for
real spectra.

III. RESULTS

Now we use exact numerical diagonalization to obtain the
eigenvalues λk (k = 1, . . . , n) of large ensembles of matrices
given by Eqs. (1) and (2) (characterized by n and p) and
compute the average values of the ratios rC and rR.

A. Diluted real Ginibre ensemble

In Figs. 1(a)–1(c) we present the average of the ratio rC for
the adjacency matrices represented by the diluted real Ginibre
ensemble, 〈rC (AdRGE)〉, as a function of the probability p
for several network sizes n. All averages here and below are
computed from the ratios of 106/n directed random networks
G(n, p). We observe that the curves of 〈rC (AdRGE)〉, for n �
50, have a very similar shape as a function of p: 〈rC (AdRGE)〉
shows a smooth transition (in logarithmic scale) from ≈0.5

to ≈0.737 when p increases from zero (isolated vertices) to
one (complete networks) [see Fig. 1(c)]. For smaller network
sizes, n < 50, clear small-size effects appear, as can be seen
in Fig. 1(a). Indeed, in Fig. 1(b) we show the small-size
dependence of 〈rC (AdRGE)〉 for the two limiting values of p:
zero and one.

From Fig. 1(c) we can clearly see that the main effect of
increasing n is the displacement of the curves 〈rC (AdRGE)〉
vs p to the left on the p axis. Moreover, the fact that these
curves, plotted in semilogarithmic scale, are shifted the same
amount on the p axis when doubling n makes us anticipate the
existence of a scaling parameter that depends on n. In order to
search for that scaling parameter we first establish a measure
to characterize the position of the curves 〈rC (AdRGE)〉 on the p
axis: We choose the value of p, that we label as p∗, for which
〈rC (AdRGE)〉 approaches half of the full transition [see the
horizontal dashed line in Fig. 1(c) at 〈rC (AdRGE)〉 = 0.6188].
Notice that p∗ characterizes the transition from isolated ver-
tices to complete networks of size n.

Then, in the inset of Fig. 1(d) we plot p∗ versus n. The
linear trend of the data (in log-log scale) suggests the power-
law behavior

p∗ = Cnδ. (5)

In fact, Eq. (5) provides an excellent fitting to the data
with δ ≈ −1. Therefore, by plotting again the curves of
〈rC (AdRGE)〉 now as a function of the probability p divided
by p∗,

p

p∗ ∝ p

nδ
≈ p

n−1
= np ≡ 〈k〉, (6)

we observe that curves for different graph sizes n collapse on
top of a single universal curve [see Fig. 1(d)]. This means
that once the average degree 〈k〉 is fixed, the average ratio
rC (AdRGE) of the diluted RGE is also fixed. This statement
is in accordance with the results reported in Refs. [31,35,40],
where topological, spectral, and transport properties of undi-
rected ER graphs were shown to be universal for the product
np (see also Refs. [32–34]).

Notice that Fig. 1(d) provides a way to identify the statis-
tical regimes of 〈rC (AdRGE)〉 once the average degree 〈k〉 is
known: When 〈k〉 < 1, 〈rC (AdRGE)〉 = 〈rC (PE)〉 ≈ 0.5, i.e.,
the value of 〈rC〉 corresponding to the PE. For 〈k〉 > 7,
〈rC (AdRGE)〉 = 〈rC (RGE)〉 ≈ 0.737, that is, the value of 〈rC〉
corresponding to the RGE. The transition region is defined
for 1 < 〈k〉 < 7: In this interval, the networks are in a hybrid
regime of PE and RGE statistics, where the limiting cases are
approached continuously by tuning 〈k〉. Thus, 〈k〉 = 1 and 7
mark the onset of the delocalization transition and the onset
of the RGE limit, respectively.

Now in Fig. 2 we show PDFs of the ratio rC , P(rC ), for
selected values of 〈k〉 [marked as vertical dashed lines in
Fig. 1(d)]. Each panel of Fig. 2 contains histograms of four
different network sizes n that fall one on top of the other,
except for small-size effects visible mainly in the transition re-
gion, 1 < 〈k〉 < 7. With this, we validate that the invariance of
the average of rC (AdRGE) for fixed 〈k〉, as shown in Fig. 1(d),
extends to the corresponding PDFs.
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FIG. 2. Probability density function of the ratio rC , P(rC ), for the adjacency matrix represented by the diluted real Ginibre ensemble.
Each panel, corresponding to different values of the average degree 〈k〉, contains histograms of four different network sizes n. The values of
〈k〉 = 0.5, 1.5, 2, 3, and 10 are marked as vertical dashed lines in Fig. 1(d). Each histogram was constructed from the ratios of 106/n directed
random networks G(n, p).

In addition, in Fig. 2, (i) we verify that, for 〈k〉 < 1, P(rC )
coincides with the PDF expected for the PE,

PPE(rC ) = const = 1 (7)

(see the left panel in Fig. 2, and also Ref. [22]); (ii) we
observe, for any 〈k〉 > 1, that P(rC ) shows a huge peak at
rC ≈ 1; and (iii) we confirm, for 〈k〉 > 7, that P(rC ) = 0 at
rC = 0, as expected for full RMT models due to eigenvalue
repulsion (see right panel in Fig. 2).

B. Magnetic adjacency matrix

Now we explore the spectral properties of the magnetic
adjacency matrices AM. Since AM has real spectra we first use
rR to characterize it; later we also use rC .

In Fig. 3 we show the statistics of rR on AM. This figure
is equivalent to Fig. 1 and, in fact, it shows a very similar
scenario as that reported for 〈rC (AdRGE)〉. Indeed, in Fig. 3
we can observe small-size effects mainly for n < 50 [see
Figs. 3(a) and 3(b)], and the scaling of 〈rR(AM)〉 with 〈k〉 [see
Fig. 3(d) and Eq. (5)].

Moreover, we found two important differences in the be-
havior of 〈rR(AM)〉 as compared to 〈rC (AdRGE)〉. On the one
hand, as expected, the curves of 〈rR(AM)〉 show a smooth
transition (in logarithmic scale) from ≈0.3867 to ≈0.6 when
p increases from zero to a large p value, p ≈ 0.8 in our case.
However, 〈rR(AM)〉 does not remain constant when further
increasing p; instead it decreases [see the inset of Fig. 3(a)],
until approaching the value of ≈0.53 at p = 1, for large n.
Notice that the values of 〈rR(AM)〉 reported above (0.3867,
0.6, and 0.53; also shown in Table I) correspond to those re-
ported in Ref. [21] for 〈rR(PE)〉, 〈rR(GUE)〉, and 〈rR(GOE)〉,
respectively. Here, GUE stands for a RMT ensemble known
as the Gaussian unitary ensemble which is formed by Her-
mitian random n × n matrices where the real and imaginary
parts of their complex entries are independent and identically
distributed Gaussian variables. Therefore, we observe that
the spectral statistics of AM transits first from PE to GUE
statistics and later from GUE to GOE statistics. This triple
transition (PE to GUE to GOE) can be understood from the
definition of AM itself [see Eq. (2)]: Clearly, when p → 0,
AM becomes an almost-diagonal real random matrix, so its
spectral statistics is expected to be close to the PE statistics.
Then, for intermediate values of p most of the off-diagonal
entries are imaginary, so we observe clear GUE-like statistics
even though the matrix AM is far from being a member of
the GUE. We numerically found that the GUE characteristics

appear in the parameter range from 〈k〉 ≈ 4 to p ≈ 0.8 (for
large n). At p = 1 the number of imaginary entries of AM

becomes zero, so its spectral statistics is expected to be close
to the GOE statistics, even when AM is not strictly a member
of the GOE. It is important to stress that in the GUE-to-GOE
transition regime, the curves of 〈rR(AM)〉 do not scale with
〈k〉, so we are avoiding this regime in Figs. 3(c) and 3(d).

On the other hand, the PE-to-GUE transition regime of
〈rR(AM)〉, starting at 〈k〉 ≈ 0.7, is slightly narrower than the
PE-to-RGE transition regime of 〈rC (AdRGE)〉. Here, the tran-
sition regime is observed for 0.7 < 〈k〉 < 4. Similarly to the

FIG. 3. (a–c) Ensemble average of the ratio rR for the mag-
netic adjacency matrices of Eq. (2), 〈rR(AM)〉, as a function of the
probability p for several network sizes n. The inset in panel (a) is
an enlargement in the interval p ∈ [0.8, 1). The horizontal dashed
line in panel (c) indicates 〈rR(AM)〉 = 0.4932. (b) 〈rR(AM)〉 as a
function of n for p = 0, 0.8, and 1. The horizontal dashed lines
at 〈rR(AM)〉 = 0.5995, 0.5307, and 0.3867 indicate the values of
〈rR(AM)〉 for p = 0.8, 1, and 0, respectively, at n = 1000. (d) Same
curves of panel (c) but as a function of the average degree 〈k〉.
Vertical dashed lines mark the values of 〈k〉 (0.5, 1.2, 1.5, 2, and
10) chosen to report the PDFs of rR, P(rR), in Fig. 5. Inset: p∗ as
a function of n. The dashed line is the fitting of Eq. (5) to the data
with fitting parameters C = 1.9563 and δ = −1.0584. Each symbol
was computed from the ratios of 106/n directed random networks
G(n, p).
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TABLE I. Reference average values of the ratios rR and rC for
the random adjacency matrices used in this work. To compute the
averages, the spectra of 103 adjacency matrices of size n = 1000
were used; i.e., approximately 106 ratios were used to compute the
averages. PE, Poisson ensemble.

PE AdRGE(p = 1) AM(〈k〉 = 10) AM(p = 1)

〈rC〉 0.5006 0.7370 0.6175 0.5688
〈rR〉 0.3867 0.5995 0.5307

PE-to-RGE transition in the previous model, the conversion
from PE to GUE also occurs continuously as 〈k〉 is increased.

In addition, to complete the characterization of the spectra
of AM, in Fig. 4 we present the statistics of rC , that can
also be computed for real spectra. It is remarkable to note
that 〈rC (AM)〉 provides equivalent information as 〈rR(AM)〉,
as can be seen by comparing Figs. 3 and 4. In particular,
in Fig. 4 we observe small-size effects mainly for n < 50
[see Figs. 4(a) and 4(b)], the scaling of 〈rC (AM)〉 with 〈k〉
[see Fig. 4(d)], the triple transition PE to GUE to GOE [see
Fig. 4(a)], and the PE-to-GUE transition regime in the interval
0.7 < 〈k〉 < 4 [see Fig. 4(d)]. In Table I we report the asymp-
totic values 〈rC (PE)〉, 〈rC (GUE)〉, and 〈rC (GOE)〉.

Finally, in Fig. 5 we show the PDFs for the ratios rR and
rC , P(rR) and P(rC ), respectively, for the magnetic adja-

FIG. 4. (a–c) Ensemble average of the ratio rC for the mag-
netic adjacency matrices of Eq. (2), 〈rC (AM)〉, as a function of the
probability p for several network sizes n. The inset in panel (a) is
an enlargement in the interval p ∈ [0.8, 1). The horizontal dashed
line in panel (c) indicates 〈rC (AM)〉 = 0.559. (b) 〈rC (AM)〉 as a
function of n for p = 0, 0.8, and 1. The horizontal dashed lines
at 〈rR(AM)〉 = 0.6175, 0.5688, and 0.5006 indicate the values of
〈rR(AM)〉 for p = 0.8, 1, and 0, respectively, at n = 1000. (d) Same
curves of panel (c) but as a function of the average degree 〈k〉.
Vertical dashed lines mark the values of 〈k〉 (0.5, 1.2, 1.5, 2, and
10) chosen to report the PDFs of rC , P(rC ), in Fig. 5. Inset: p∗ as
a function of n. The dashed line is the fitting of Eq. (5) to the data
with fitting parameters C = 1.9721 and δ = −1.0581. Each symbol
was computed from the ratios of 106/n directed random networks
G(n, p).

cency matrix AM at representative values of 〈k〉. Indeed, with
this figure we verify the invariance of P(rR) and P(rC ) for
fixed 〈k〉, with clear small-size effects for intermediate values
of 〈k〉. Moreover, we also validate the PE-to-GUE-to-GOE
transition observed for 〈rR(AM)〉 in Fig. 3. Note that, when
〈k〉 < 1, P(rR) is well reproduced by the prediction for the
PE (see the cyan curve in the upper left panel), which is given
by [21]

PPE(rR) = 2

(1 + rR)2
. (8)

In the parameter range from 〈k〉 ≈ 7 to p ≈ 0.8 (for large n),
the P(rR) coincides with the prediction for the GUE [21],

PGUE(rR) = 81
√

3

2π

(
rR + r2

R

)2

(
1 + rR + r2

R

)4 (9)

(see the orange curve in the upper-right panel), while for p =
1, P(rR) corresponds to the prediction for the GOE [21],

PGOE(rR) = 27

4

rR + r2
R(

1 + rR + r2
R

)5/2 (10)

(see the cyan curve in the upper right panel).
In the case of rC , we can only compare its PDF with

PPE(rC ) [see Eq. (7)], which indeed reproduces well the P(rC )
of AM when 〈k〉 < 1 (see the lower left panel of Fig. 5). We
note that (as far as we know) exact expressions for PGUE(rC )
and PGOE(rC ) are not known. We also confirm, for 〈k〉 > 7,
that both P(rR) = 0 at rR = 0 and P(rC ) = 0 at rC = 0, as
usual in full RMT models (see the right panels of Fig. 5).

IV. DELOCALIZATION TRANSITION

In the previous section we characterized the PE-to-RGE
transition of AdRGE and the PE-to-GUE transition of AM

by means of their spectral properties. These transitions, in-
deed, imply a localization-to-delocalization transition (simply
known as a delocalization transition) of the corresponding
eigenvectors; i.e., the eigenvectors should go from localized
(in the PE regime) to extended (in the RGE or GUE regimes).
Thus, in the following we verify this statement.

To measure quantitatively the spreading of eigenvectors
in a given basis, i.e., their localization properties, the in-
formation or Shannon entropy S is commonly used [41].
Moreover, it has been widely used to characterize the eigen-
vectors of the adjacency matrices of random network models.
For the eigenvector �k , associated with the eigenvalue λk , S is
given as

Sk = −
n∑

l=1

∣∣�k
l

∣∣2
ln

∣∣�k
l

∣∣2
. (11)

This measure provides the number of main components of the
eigenvector �k .

We average over all eigenvectors of ensembles of adja-
cency matrices AdRGE and AM to compute 〈S〉, such that
for each combination (n, p) we use 106 eigenvectors. With
definition (11), when p → 0, since the eigenvectors of AdRGE

and AM have only one main component with magnitude close
to one, 〈S〉 ≈ 0. On the other hand, for p → 1, the fully
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FIG. 5. Probability density function of the ratios rR (upper panels) and rC (lower panels), P(rR) and P(rC ), for the magnetic adjacency
matrix of Eq. (2). Each panel, corresponding to different values of the average degree 〈k〉, contains histograms of four different network sizes
n. The values of 〈k〉 = 0.5, 1.2, 1.5, 2, and 10 are marked as vertical dashed lines in Figs. 3(d) and 4(d). In the rightmost panels the case p = 1
is also reported. Cyan lines in the upper left and upper right panels are PPE(rR) and PGOE(rR), from Eqs. (8) and (10), respectively. The orange
line in the upper right panel is PGUE(rR) from Eq. (9). Each histogram was constructed from the ratios of 106/n directed random networks
G(n, p).

chaotic eigenvectors extend over the n available vertices of the
directed network, so [41] 〈S〉 ≈ ln(n) − C, for large n, where
C is a constant (independent of n) specified by the symmetries
of a given random matrix ensemble.

For any network size n, 〈S〉 displays a similar func-
tional form as a function of p: The curves of 〈S〉 show a
smooth transition from approximately zero to SMAX when p
increases from p ∼ 0 (mostly isolated vertices) to one (com-
plete graphs). Recall that when 〈S〉 ≈ 0 the corresponding
eigenvectors are localized (i.e., 〈S〉 ≈ 0 defines the localized
regime). In contrast, when 〈S〉 ≈ SMAX, the corresponding
eigenvectors are delocalized. Thus, the curves of 〈S〉 versus
p indicate the delocalization transition of the eigenvectors of
our random network model. In the case of AdRGE, SMAX =
SRGE; that is, SMAX corresponds to the Shannon entropy of
the eigenvectors of the RGE. Moreover, since we do not have
an explicit expression for SRGE we computed it numerically
for the network sizes used in this work [see the inset of
Fig. 6(a)] and found that SRGE ≈ ln(n/1.56). For AM, SMAX =
SGUE ≈ ln(n/1.53) [41]. Therefore, in Fig. 6 we present the
normalized average Shannon entropy 〈S〉/SMAX already as
a function of the average degree 〈k〉 (i.e., after the scaling
analysis of the previous section) for directed random networks
represented by the matrices AdRGE and AM. From this figure
we clearly see that the curves of 〈S〉/SMAX (i) demonstrate
the delocalization transition of the eigenvectors of both AdRGE

and AM, as anticipated, and (ii) scale with 〈k〉, as expected.
In Fig. 6 we also observe entropy values slightly greater than
zero before the first critical point (marked by the left dashed
line). This indicates that there are some eigenmodes extended
over a few nodes at relatively low connectivity values; then
by increasing 〈k〉, the relative balance between localized and
delocalized modes shifts towards the latter, and the average
entropy is maximized.

Finally, we note that very recently Metz and Neri [42] have
put forward calculations on the delocalization-localization
transition of random directed networks. The authors showed
analytically that the eigenvectors related to the largest eigen-
value and the eigenvalue at the boundary of the spectral bulk

FIG. 6. Normalized average Shannon entropy 〈S〉 as a function
of the average degree 〈k〉 for the adjacency matrices (a) AdRGE and
(b) AM, corresponding to directed networks of size n. In (a) [(b)] we
are normalizing 〈S(AdRGE)〉 [〈S(AM)〉] to SRGE [SGUE]. The inset in
(a) shows the numerically computed SRGE as a function of n. The
dashed line is a fitting to the data that provides SRGE ≈ ln(n/1.56).
Vertical dashed lines indicate the transition regime as deduced from
〈rC〉: (a) 1 < 〈k〉 < 7 and (b) 0.7 < 〈k〉 < 4. Each symbol was com-
puted by averaging over 106 eigenvectors.
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go from a localized to a delocalized regime as the connectivity
is increased, which is in agreement with Fig. 6.

V. SUMMARY AND CONCLUSIONS

In this work we have used real and complex spacing ra-
tio measures to characterize the spectra of directed random
networks. The great advantage of the spacing ratio approach
over the traditional characterization via level-spacing distribu-
tions, P(s), is that the former does not require any unfolding
procedure—a task that, by contrast, usually depends on a
prior knowledge of the spectral density, and whose calculation
in some situations is numerically unfeasible. However, it is
fair to mention that spectral properties of directed networks
have been successfully studied by the use of P(s) (see, e.g.,
Ref. [43]).

We have investigated two adjacency matrix representations
of Erdős-Rényi (ER) random networks: a diluted version of
the real Ginibre ensemble (dRGE), i.e., sparse non-Hermitian
random matrices, and an operator defined in Refs. [23,24]
leading to sparse Hermitian random matrices. For the first
ensemble, which yields complex spectra, we computed the
complex spacing ratio rC , introduced recently in Ref. [22],
which is defined as the ratio between the distance of the
nearest-neighbor eigenvalue over the distance to the next-
to-nearest-neighbor one. We have shown that the average
measure, 〈rC〉, undergoes a smooth transition from Poisson
to Ginibre statistics as a function of the network connectivity;
this transition was verified to occur at lower probabilities upon
the increase of the network size, thus suggesting the existence
of a scaling parameter relating networks with different pa-
rameter combinations. In effect, by scaling 〈rC〉 in terms of
the average degree 〈k〉, we found that the curves 〈rC〉 vs 〈k〉
corresponding to networks of different sizes collapse onto a
universal curve, in consonance with the universal properties
of undirected ER networks [32–34]. From the universal transi-
tion curve we have identified three distinct statistical regimes:
For 〈k〉 < 1, i.e., below the percolation threshold, 〈rC〉 ≈ 0.5,
which coincides with the value of 〈rC〉 for the Poisson en-
semble (PE) of RMT. For denser networks, with 〈k〉 > 7, one
obtains the corresponding value of the real Ginibre ensemble
(RGE), that is, 〈rC〉 ≈ 0.737. The range 1 < 〈k〉 < 7 defines
then the intermediate region, which is characterized by a
crossover regime between PE and RGE statistics.

Although complex spacing ratios have been conceived for
the analysis of complex spectra, they can also be applied
to the characterization of real spectra. We exemplified this
when studying, in Sec. III B, the magnetic Hermitian matri-
ces obtained from Eq. (2). In fact, we have shown that 〈rC〉
provides equivalent information as the average real ratio 〈rR〉
(see Figs. 3 and 4); that is, both measures display a smooth
delocalization transition as a function of the connection prob-
ability p, which becomes universal under the scaling with 〈k〉.
Comparing the dRGE studied in Sec. III A with the magnetic
matrices of Sec. III B, we have seen that both ensembles
exhibit qualitatively a similar evolution of 〈rC〉 with respect to
the network connectivity, except for values of p close to 1: As
this limit is approached, both 〈rC〉 and 〈rR〉, on the magnetic
matrices, decay smoothly. The reason for this effect resides
in the very definition of the magnetic matrices in Eq. (2): For

p = 1, the imaginary entries vanish and the magnetic ensem-
ble becomes equivalent to the Gaussian orthogonal ensemble
(GOE). Therefore, as the average connectivity is increased,
the spectrum of the magnetic matrices defined in Eq. (2)
transits from PE to GUE statistics, and subsequently to GOE
statistics.

Prior studies on real and complex spacing ratios aris-
ing from Hermitian and non-Hermitian systems, respectively,
have shown that such measures are able to distinguish between
integrable and chaotic spectra (see, e.g., Refs. [22,44–46]).
Here we showed that the same quantities can also differen-
tiate the disconnected phase (〈k〉 < 1), in which the directed
network is divided into several small components, and the
connected phase (〈k〉 > 1), where a giant component connect-
ing the majority of the nodes emerges. In this context, average
spacing ratios could serve as universal indicators to define
sparse and dense connectivity regimes for undirected and
directed networks. For instance, it is known that mean-field
calculations for dynamical processes on networks perform
well for “sufficiently dense” structures [47]; however, precise
bounds for the accuracy of such approximations have not
yet been established. Thus, it would be interesting to relate
delocalization transitions, as quantified by spacing ratios, with
transitions associated to dynamical processes (such as epi-
demic spreading and synchronization) in order to quantify
accurately the limits of mean-field approximations in terms of
spectral measurements. It would also be pertinent to extend
the analysis performed here to systems with more hetero-
geneous degree distributions, such as scale-free networks,
paying special attention to the relation between localization
properties and centrality measures [48–50]. We leave these
open issues for future works.
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APPENDIX: RELATION BETWEEN THE MAGNETIC
OPERATOR AND THE HERMITIAN ADJACENCY

OPERATOR OF REFS. [23,24]

Here we show that the Hermitian adjacency matrix recently
introduced and studied in Refs. [23,24] is, in fact, a special
case of the magnetic operator defined in Refs. [27–29].

Let G(V, E ) be an unweighted directed graph, where V
is the set of vertices and E = {(u, v)|u, v ∈ V } is the set of
edges. The adjacency operator of Refs. [23,24] can be defined
for an unweighted directed graph as H : V × V → C whose

062305-7



THOMAS PERON et al. PHYSICAL REVIEW E 102, 062305 (2020)

adjacency matrix is given by

H(u, v) =

⎧⎪⎨
⎪⎩

1 if (u, v) ∈ E and (v, u) ∈ E
i if (u, v) ∈ E and (v, u) /∈ E
−i if (u, v) /∈ E and (v, u) ∈ E
0 otherwise.

(A1)

Let a weight function W : V × V → {0, 1} such that

W (u, v) =
{

1 if (u, v) ∈ E
0 otherwise. (A2)

The magnetic adjacency operator is given by

M(u, v) = W (u, v) + W (v, u)

2
eiφA(u,v), (A3)

where A(u, v) = W (v, u) − W (u, v). For φ = −π
2 we have

M(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

1 if (u, v) ∈ E and (v, u) ∈ E
i
2 if (u, v) ∈ E and (v, u) /∈ E
−i
2 if (u, v) /∈ E and (v, u) ∈ E

0 otherwise,

(A4)

which is very close to H(u, v). Moreover, we can recover the
operator H(u, v), exactly (without the factor 1/2), by the use

of the weight function

W (u, v) =
⎧⎨
⎩

1 if (u, v), (v, u) ∈ E
2 if (u, v) ∈ E and (v, u) /∈ E
0 otherwise

(A5)

and setting φ = −π
4 .

The magnetic adjacency operator and, consequently, the
magnetic Laplacian operator were proposed by Lieb and Loss
[27] when studying the problem of a quantum particle in
a discrete space. Recently, this magnetic operator emerged
as an important tool in the study of mathematical proper-
ties of graphs [28] and in the development of algorithms for
directed networks such as community detection [29], signal
processing [51], and network characterization [30]. Indeed,
the operator M can be applied to more general graphs than
the Hermitian adjacency matrix H(u, v). Interestingly, the
equivalence between H(u, v) and the magnetic Laplacian op-
erators has remained, to our knowledge, unnoticed in previous
works.
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