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Evoked response activity eigenmode analysis in a convoluted cortex via neural field theory
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Neural field theory of the corticothalamic system is used to explore evoked response potentials (ERPs) caused
by spatially localized impulse stimuli on the convoluted cortex and on a spherical cortex. Eigenfunctions are
calculated analytically on the spherical cortex and numerically on the convoluted cortex via eigenfunction
expansions. Eigenmodes on a convoluted cortex are similar to those of the spherical cortex, and a few such
modes are found to be sufficient to reproduce the main ERP features. It is found that the ERP peak is stronger
in spherical cortex than convoluted cortex, but in both cases the peak decreases monotonically with increasing
distance from the stimulus point. In the convoluted case, cortical folding causes ERPs to differ between locations
at the same distance from the stimulus point and spherical symmetries are only approximately preserved.
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I. INTRODUCTION

Evoked response potentials (ERPs) occur due to impulse
stimuli and these responses are obtained by averaging over
many stimuli to improve their signal to noise ratio relative
to background electroencephalographic (EEG) activity [1,2].
Neural field theory (NFT) modeling of ERP generation [3,4]
has enabled the underlying physiological parameters that cor-
respond to various states to be deduced, and the parameters
underlying ERPs to be inferred, from recording from the scalp
or within the brain [2–11].

Physiology-based NFT has been successfully used to ana-
lyze brain activity from small scales to the whole brain and
to examine brain activity in terms of eigenmodes [12,13]. Our
prior work [12,14] examined modal effects on white-noise-
driven spectra in a planar system. This work found that the
modal spectrum is dominated by the contributions from the
spatially uniform global mode, which is symmetric between
brain hemispheres and approximately uniform across each
[15,16]. Our recent work examined cortical modal effects on
EEG spectra, correlations, coherence, and evoked response
potentials [14,17]. We found that relatively few eigenmodes
are needed for an accurate representation of macroscopic
brain activity. In these analyses, we used the approximation of
spherical geometry to analyze activity in terms of eigenmodes
via a corticothalamic model of a single brain hemisphere,
using spherical harmonics. Indeed, other recent works showed
that the low-order eigenmodes of a single brain hemisphere
are close analogs of spherical harmonics [13,18].

Each hemisphere of the brain has a spherical topology and
is convoluted rather than being planar or uniformly curved.
In this work, we numerically analyze ERPs in the convo-
luted cortex in which each brain hemisphere is a highly
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distorted sphere that exhibits numerous sulci (grooves) and
gyri (ridges). Much work has been done on brain activity
via eigenmode analysis using a spherical model of the skull
[16,19], but this work did not consider individual brain hemi-
spheres or the thalamus, as needed for more realistic and
general brain models [13,14]. Our recent work showed that
just a very few modes could explain experimentally evoked
responses to random visual input stimuli [20] and there has
been very recent interest in spherical harmonic expansions
from other authors [21,22]. Key issues that we explore here
are the use of brain activity eigenmodes on a convoluted
cortex to represent realistic ERPs and how much difference
cortical folding makes.

The structure of this paper is as follows: After briefly
reviewing the neural field model of the corticothalamic system
and analytical methods for eigenmode activity in the spherical
cortex in Sec. II, we discuss numerical methods for eigenmode
analysis in the convoluted cortex. In Sec. III, we discuss the
ERP time series, modal effects, and numerical analysis for the
convoluted cortex. Finally, Sec. IV presents the conclusions.

II. NEURAL FIELD THEORY OF THE
CORTICOTHALAMIC SYSTEM

In this section, we start with a brief review of the neural
field corticothalamic model that we employ [23–25] and a
brief review of the relevant results from our recent work
on evoked response potentials on a spherical cortex [17], in
which we derived analytical formulas using our corticothala-
mic neural field model. After that, we numerically calculate
evoked response potentials on the convoluted cortex, and the
transfer function for neural activity for a single brain hemi-
sphere [14,17,23–25].

A. Neural field theory

The corticothalamic system is chiefly responsible for the
generation of observed ERP signals [1,2,26], so we use a
recent physiology-based neural field model of activity in this
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FIG. 1. Schematic diagram of a corticothalamic neural field
model of the system. The neural populations shown are cortical
excitatory e, cortical inhibitory i, thalamic reticular r, and thalamic
relay s. Each parameter νab from Eq. (1) quantifies the connection
to population a from population b. Excitatory connections are shown
with pointed arrowheads and inhibitory connections are shown with
round arrowheads.

system to predict and analyze ERPs; such models have been
developed and used over several decades [16,24,27–29]. The
model used here has been widely employed in previous work
[23,24] and incorporates the populations and connections
shown in Fig. 1: excitatory (e) and inhibitory (i) cortical neu-
rons, thalamic relay neurons (s), thalamic reticular neurons
(r), and sensory inputs (n) [23,30]. The predictions of this
model have been verified against many types of EEG phe-
nomena as well as independent physiological measurements
[25,31].

The activity in a given population of neurons is determined
by the activity of all populations that synapse onto that pop-
ulation, including activity from self-connections. Hence, the
net effect Pa on the activity of neurons of population a by all
populations of neurons b is given by

Pa(r, t ) =
∑

b

νabφb(r, t − τab), (1)

with [23,24] νab = sabNab, where Nab is the mean number of
synapses to neurons of type a from type b, sab is the mean
time-integrated strength of soma response per incoming spike,
φb is the activity (expressed as the mean rate of action poten-
tials) arising from neurons of type b, τab embodies the discrete
time delay for signals to propagate to population a from b
when these are in different structures, and the sum is over all
populations of neurons that have connections to neurons of
population a [25,30,32].

The effect of synaptic activity on the mean postsynaptic
population’s membrane potential involves the kinetics of the
neurotransmitter and the electrical properties of dendrites, its
receptor, and soma capacitance, all of whose dynamics atten-
uate high frequency components of the signal. This dynamics
can be approximated by the convolution kernel

L(t ) = αβ

β − α
(e−αt − e−βt ), (2)

for t � 0, with L = 0 for t < 0, where 1/β and 1/α are the
rise time and decay time constants, respectively [2,24]. The
membrane potential Va (relative to resting) for a population of
neurons is then approximated by a convolution of net activity
Pa and this kernel, with

Va(r, t ) =
∫ t

−∞
L(t − t ′)Pa(r, t ′)dt ′. (3)

The activity of a population of neurons exhibits a sig-
moid response to increasing mean membrane depolarization
because its cells have a distribution of the difference between
individual soma voltage and threshold potential due to varia-
tions in environment and membrane properties. This response
is approximated by [2,24,28]

Qa(r, t ) = Qmax

1 + exp{−C(Va − θa)/σa} , (4)

where Qa is the mean firing rates, Qmax is the maximum firing
rate, θa is the mean neural firing threshold, σa is the standard
deviation of the difference between individual neuron’s soma
voltages and threshold, and C = π/

√
3.

Treating the EEG signal as being the result of small pertur-
bations about a steady state, the response function becomes
[2,33]

Qa(r, t ) ≈ Q(0)
a + ρa

[
Va(r, t ) − V (0)

a

]
, (5)

where

ρa ≡ dQa

dVa
= CQa

σa

(
1 − Qa

Qmax
a

)
, (6)

evaluated at the steady state. It is not necessary to determine
the steady state firing rate Q(0)

a because only perturbations to
this value are used in the model. Henceforth, to avoid unduly
cumbersome notation, the quantities Qa, φa, and Va denote
perturbations from their fixed points.

To relate the neuronal activity φa to the average membrane
potential Qa, we use a damped wave equation to approximate
the propagation of neuronal activity in the cortex [12,23,24].
Hence,

Dαφa(r, t ) = Qa(r, t ), (7)

Dα = 1

γ 2
a

[
∂2

∂t2
+ 2γa

∂

∂t
+ γ 2

a − v2
a∇2

]
, (8)

where γa = vara is the temporal damping rate, va is the axonal
propagation velocity, and ra is the characteristic range of ax-
ons for neurons of population a [24]. Since cortical inhibitory
neurons have short (∼10−4 m) axons, we assume ri ≈ 0, and
hence Di ≈ 1 [24]; the same approximation can be made for
intrathalamic connections, so Ds ≈ Dr ≈ 1 [2].
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To obtain the transfer function, we first Fourier transform
Eqs. (2)–(6). We define the Fourier transform of a function
g(t ) via the convention

g(ω) =
∫ ∞

−∞
g(t )eiωt dt . (9)

Assuming that a signal traveling from the thalamus to cortex,
or vice versa, takes a time t0/2, so τes = τse = τre = t0/2, and
all other τab are zero, we find that Eq. (2) becomes

Pe(k, ω) = νeeφe + νeiφi + νese
iωt0/2φs, (10)

Pi(k, ω) = νiiφi + νieφe + νise
iωt0/2φs, (11)

Ps(k, ω) = νseφeeiωt0/2 + νsrφr + νsnφn, (12)

Pr (k, ω) = νreφeeiωt0/2 + νrsφs, (13)

where k is the wave number and ω is the frequency. Equations
(3)–(5), and (7) then become

L(ω) =
(

1 − iω

β

)−1(
1 − iω

α

)−1

, (14)

Va(k, ω) = L(ω)Pa(k, ω), (15)

Qa(k, ω) = ρaVa(k, ω), (16)

Da(k, ω)φa(k, ω) = Qa(k, ω), (17)

De(k, ω) = k2r2
e + (1 − iω/γe)2, (18)

Di = Ds = Dr = 1. (19)

B. Transfer function

The scalp potential measured using EEG techniques is di-
rectly related to φe [2,15,16] and the stimulus is written as φn.
To determine the evoked activity from a stimulus φn requires
the transfer function φe/φn, which is the cortical excitatory
response per unit of external stimulus, including the relative
phase [23], and is found by eliminating the Pa, Va, and Qa

from Eqs. (10)–(19). Assuming the observed random cortical
connectivity [34], we make the approximation that Gab = Gcb

for all a, c = e, i and all b = e, i, s [2]. The transfer function
for an impulse traveling directly from the thalamus to the
cortex is then given by [2,33]

Ten(k, ω) = φe(k, ω)

φn(k, ω)
(20)

= I
Mc − Mt

, (21)

with

I = eiωt0/2L2Gesn

1 − L2Gsrs
, (22)

and where the modulation of this signal by cortical feed-
back is

Mc = De(1 − LGei ) − LGee, (23)

and the modulation by corticothalamic loops is

Mt = eiωt0 (L2Gese + L3Gesre)

1 − L2Gsrs
, (24)

where Gab is the net gain of two or more populations,

Gab = ∂Qa

∂Qb
= ρaNabsb = ρaνab, (25)

with the derivative evaluated at the fixed point. The net gain
of more than two populations of neurons connected serially
is simply the product of the separate gains, and we write
such compound gains as GabGbc = Gabc, for example. In the
reduced model, the five relevant linear gains that result are
Gee, Gei, Gese, Gesre, and Gsrs. Each of these is the ratio of the
change in the activity of neurons of population a in response
to a unit change in the incoming activity from neurons of
population b.

C. Analytic calculation of ERPs

In our recent work, we derived analytical formulas for
ERPs in a spherical brain geometry. Here we outline the
derivation of the transfer function for an impulse stimuli. In
our prior work [14,17] using our corticothalamic neural field
theory, we calculate transfer functions as a ratio of the cortical
excitatory response φe to external stimuli φn. We can write the
transfer function as [14,17]

T (k, ω) = A(ω)

k2r2
e + q2r2

e

, (26)

where

A(ω) = eiωt0/2L2Gesn

(1 − L2Gsrs)(1 − GeiL)
, (27)

with

q2r2
e =

(
1 − iω

γe

)2

− 1

1 − GeiL

×
{

LGee + [L2Gese + L3Gerse]eiωt0

1 − L2Gsrs

}
. (28)

By solving the Helmholtz equation on a cortical hemisphere,
one can obtain NFT eigenvalues (k2

η) and eigenmodes η

[13,14,17,18,20]. Then for an eigenvalue k2
η , we can write the

corresponding contribution to the transfer function as

T
(
k2
η, ω

) = A(ω)

k2
ηr2

e + q2r2
e

. (29)

If one approximates a brain hemisphere as a sphere of
radius Rs, the eigenmodes are

y�m(ϑ, ϕ) = Y�m(ϑ, ϕ), (30)

where η has been replaced by �m, the Y�m are the real spherical
harmonics [14,17], and

k2
�mr2

e = r2
e

R2
s

�(� + 1). (31)

In this case, the eigenvalues depend only on the angular mo-
mentum mode number � = 0, 1, . . . and are independent of
the azimuthal mode number m = −�, . . . , �.
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In our recent work [17], we derived the form of the ERPs
by considering an impulselike stimulus φn(ϑ, ϕ, t ) to be ap-
proximately Gaussian in both space and time, with the form

φn(ϑ, ϕ, t ) = D
ts
√

2π
exp

{
−1

2

(
t − tos

ts

)2}
exp

(
cosϑ

θs

)
, (32)

with D = [4πθ2
s sinh(θ−2

s )]−1 normalizing the stimulus to
have unit integral. Here, ts is the characteristic duration of the
stimulus, tos is the stimulus onset time, and θs is the angular
width of the stimulus. When modeling impulsive stimuli, ts
and θs are small, in which case cos(ϑ/θs) ≈ 1 − ϑ2/2θ2

s , from
whence the profile in Eq. (12) is approximately Gaussian at
small ϑ .

After spherical harmonic transformation and a Fourier
transformation with respect to time t , Eq. (32) yields [17]

φn(�, m, ω) = 1

2
√

2θssinh
(
θ−2

s

)exp

(
−1

2
ω2t2

s

)
exp(iωtos)

× √
2� + 1I�+1/2

(
1

θ2
s

)
. (33)

Finally, to calculate the response φe evoked by a change in
the input stimulus φn, we inverse Fourier transform to the time
domain, giving

R(ϑ, ϕ, t ) = 1

2πR2
s

∞∑
�=0

�∑
m=−�

∫
T (�, m, ω)φn(�, m, ω)

× Y�m(ϑ, ϕ)e−iωt dω. (34)

D. Numerical calculation of ERPs

To provide the background to our numerical methods, we
first outline how activity can be decomposed into eigenmodes
and eigenfunctions [35,36]. The linear response in φ(r, t ) is
to be calculated after an impulse stimulus φn(r, t ), where r
and t are the spatial and temporal coordinates on the cortex.
After Fourier transform vs t , we express φn(r, ω) in terms of
eigenfunction decomposition, with

φn(kη, ω) =
∫

φn(r, ω)y(kη )dS, (35)

where dS denotes a surface element of the cortical hemi-
sphere; this is parallel to Eq. (34) in [17]. In this paper, we
compute the activity φe evoked by a stimulus that is a δ

function at a position r0 and Gaussian in time. Such a stimulus
has the normalized form [2]

φn(r, t ) = δ(r − r0)
1

ts
√

2π
exp

[
−1

2

(
t − tos

ts

)2
]
, (36)

and after Fourier transforming vs t , we obtain

φn(r, ω) = δ(r − r0)eiωtos e− 1
2 ω2t2

s . (37)

For numerical analysis, we discretize the cortical surface
using the FREESURFER cortical surface with Np = 163 892
points [37]. To parametrize the surface, we map every point on
a convoluted cortical hemisphere to a point on a sphere using
the one-to-one mapping defined in the FREESURFER software.
This is shown in Fig. 2, where we see that each point r(ϑ, ϕ)

FIG. 2. Equivalence of coordinates on inflated sphere and orig-
inal cortex. The pole (ϑ = 0) is denoted by a red dot, the equator
(ϑ = π/2) by a red line, the black line corresponds to ϕ = π/2 and
the blue line to ϕ = π/2, or ϕ = 3π/2.

of the original cortex on the hemisphere is mapped to ϑ and
ϕ on the sphere, and vice versa. We set the areas of the con-
voluted cortex and spherical cortex to be equal by setting Rs

so that 4πR2
s = Atot, where Atot = 0.0616 m2 is the total area

of the cortical hemisphere computed from the FREESURFER

discretized grid; this yields Rs = 0.07 m.
The total transfer function summed over spatial modes

is the system response to an impulse stimulus. The eigen-
functions are calculated numerically using the Helmholtz
equation, as discussed in [14], but the sum over eigenmodes
is the same as in the analytical case above. We compute
the surface structure, eigenmodes, and eigenvalues using the
FREESURFER surface file [37] via finite element methods
(FEM) as in [20]. The transfer function T (kη, ω) is then
computed from Eq. (29) for eigenvalues kη and frequencies
ωη using the physiological parameters shown in Table I and
Eqs. (34)–(38). The transfer function T is computed using the
physiological parameters shown in Table I. So to calculate
the response φe(r, t ), we must inverse Fourier transform the
product of Eqs. (29) and (35). So after multiplying Eq. (35)

TABLE I. Nominal corticothalamic model parameter values
from recent work [17], where the first column shows the symbol
for the quantity in the second column. The third and fourth columns
show the values of the quantity and its units, respectively.

Symbol Quantity Value Unit

α Synaptodendritic decay rate 45 s−1

β Synaptodendritic rise rate 185 s−1

t0 Corticothalamic loop delay 0.085 s
γe Cortical damping rate 116 s−1

re Excitatory axon range 0.086 m
Gee Excitatory cortical gain 15
Gii Inhibitory cortical gain −17.5
Gese Excitatory cortical gain 12.3
Gesre Excitatory inhibitory gain −13.0
Gsrs Intrathalamic gain −0.7
Rs Radius of sphere 0.07 m
θs Width of the stimulus 0.3◦

tos Stimulus onset 0.5 s
ts Stimulus duration 0.019 s
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FIG. 3. NFT eigenmodes of the single brain hemisphere on a
convoluted cortex for the mode numbers λμ shown to the left of the
first column. Red indicates positive eigenmode regions and blue in-
dicates negative eigenmode regions. Nodal lines are shown in white.
The first and second columns show lateral and medial views on the
convoluted cortical hemisphere. The third and fourth columns show
the same views, but with the hemisphere projected onto a sphere. The
fifth column shows a flattened projection of the modes so the whole
surface is visible in a single view.

by T (kη, ω), we obtain

φe(r, ω) =
∑

η

yη(r)φe(kη, ω), (38)

which is the convoluted cortex equivalent of Eqs. (36),
(43), and (65) in [17] for infinite planar geometry, finite
two-dimensional (2D) cortex, and spherical geometry, respec-
tively.

Finally, we compute the evoked response activity φe for
stimuli φn(k, ω) at a given position in the cortex via the
inverse Fourier transform of Eq. (38),

φe(r, t ) =
∑

η

yη(r)
∫

e−iωtφe(kη, ω)dω (39)

=
∑

η

yη(r)
∫

e−iωt T (kη, ω)φn(kη, ω)dω, (40)

FIG. 4. NFT eigenmodes of the spherical brain hemisphere for
the mode numbers �m labeled at the left of the first column. Red
indicates positive eigenmode regions and blue indicates negative
eigenmode regions. Nodal lines are shown in white. The first and sec-
ond columns show lateral and medial views of modes on the spherical
brain hemisphere. The third column shows a flattened projection of
the modes so the whole surface is visible in a single view.

where the mode label η can be replaced by the paired indexes
λμ which correspond to the pair �m in the spherical case and
φn(kη, ω) = yη(r0)eiωtos e− 1

2 ω2t2
s .

We note a slight difference between the stimuli used
in the analytical (on the sphere, as in [17]) and numeri-
cal methods. In the analytical methods, we use a narrow
Gaussian in both space and time, but in the numerical meth-
ods, the stimulus is a δ function in position and Gaussian
in time [17]. When discretized for numerical calculations,
the former corresponds to a narrow rectangular profile that
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FIG. 5. ERP time series for the parameters in Table I. (a) Spherical cortex obtained from Eqs. (34) and (40) in the parietal lobe, where the
solid line is computed analytically and the dashed line is computed numerically for a point where �ϑ ≈ 45◦. (b) Convoluted cortex (solid line)
and spherical cortex (dashed line) obtained from Eq. (40), both computed numerically for a point where �ϑ ≈ 45◦.

covers one element of the discretized surface. In the nu-
merics, we thus set the width of the analytic stimulus to
θs = 0.3◦ according to the approximation πθ2

s R2
s = Atot/Np,

which makes the total impulse the same. Close to the stim-
ulus point, the difference in profiles is expected to cause a
slight difference in the ERP, but these should diminish rapidly
with ϑ .

Because of the difference between the stimulus profile in
the analytical and numerical methods, we adjust the normal-
ization of the latter to best match the analytic one in the
spherical case and retain that normalization in all other ex-
amples. Both sets of results are also multiplied by a constant
factor such that outcomes match typical experimental ERP
amplitudes (e.g., in μV) [2], as was done in [17].

III. RESULTS

Our recent work [17] explored and analyzed the modal
form of ERPs in a spherical geometry using neural field theory
for the parameters in Table I. In this section, we analyze and
explore the modal form of ERPs in a single convoluted brain
hemisphere. In this section, we compare ERP time series to
determine how folding affects the results.

A. Eigenmodes of a single brain hemisphere

Previous work [13] derived NFT eigenmodes on the con-
voluted cortex and analyzed the activity eigenmodes on the
brain hemisphere, which we reproduce in this section as a test
of our code. For a sphere, the eigenvalues for a given � are
independent of m, but on the convoluted cortex, we expect
this degeneracy to be lifted for individual μ at the same λ due
to folding-induced splitting [13,18].

In Fig. 3, we show the spatial structure of the nine NFT
eigenmodes on the convoluted cortex, where each eigenmode
is labeled by λ and μ at the left. The λ = 0 eigenmode is
uniform and there is no nodal line. For λ = 1, three eigen-
modes exist that have enhanced activity in half of the brain

hemisphere, while in the other half the activity is decreased,
which is similar to the � = 1 spherical harmonics and repro-
duces them in the spherical limit. For the λ = 2 eigenmodes,
the nodal lines intersect on the sphere and near intersections
occur when the cortex is close to spherical, with very similar
structure seen. Note that as time progresses, the positive and
negative regions of all modes alternate in time, according to
Eq. (40).

Figure 4 shows the first nine NFT eigenmodes on a spher-
ical cortex. According to our prior work [13,18], each λμ

eigenmode is mainly a linear combination of the Y�m with
� = λ. Accordingly, for the � = 0 eigenmode, we see the
uniform Y00 mode with no nodal line. The � = 1 modes Y�m

have one nodal line, with enhanced activity in one half of the
surface and reduced activity in the other half, as for λ = 1. The
� = 2 eigenmodes are also close to the λ = 2 eigenmodes,
with more complex modal structure in which each mode yλμ is
predominantly a superposition of the Y�m with � = λ (see [13]
for a detailed analysis). Thus our results are consistent with
these eigenmodes being dominated by spherical harmonic
components with � = λ, despite the folding of the convoluted
cortex [13].

B. ERPs in spherical and convoluted cortex

In this section, we compare analytic and numerical ERPs
in a spherical and convoluted cortex to verify their consistency
for the parameters listed in Table I and set the correct normal-
ization of the numerical result, given its somewhat different
stimulus profile.

Figure 5(a) shows an example of an ERP time series
on a spherical cortex obtained from Eqs. (34) and (40) for
�ϑ = 45◦. In Fig. 5(a), the solid line shows the analytic result
and the dashed line is for the numerically computed result.
The analytic time series shows a sharp negative peak and the
response onset is delayed with respect to the stimulus because
of the ∼40 ms time taken to travel from thalamus to cortex
[17]. The initial negative peak amplitude of around −27 μV
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FIG. 6. ERP time series vs �ϑ , as indicated in the legend, for the parameters in Table I. (a) Convoluted cortex. (b) Spherical cortex.

rapidly decays with a decay time of ∼0.07 s. We observe a
secondary peak at t 
 0.70 s with a negative amplitude of
around −14 μV. After 0.70 s, we see that the ERP amplitude
decays rapidly, and after 1.5 s, it is negligible. The numerical
ERP time series from Eq. (40) also shows a sharp negative
peak with initial amplitude −29 μV and decay time ∼0.07 s,
a secondary peak at ≈0.70 s with negative amplitude of
around −15 μV, followed by rapid decay. All features match
to within a few μV, despite the slightly different stimulus
profiles. Overall, the numerically computed ERP is slightly
sharper than the analytical one, as expected because of the
spatially smoother stimulus in the latter case.

In Fig. 5(b), we compare the ERP time series computed
numerically in a convoluted cortex and spherical cortex for
�ϑ = 45◦ to show the difference that can be caused by
folding of the cortex, where �ϑ is the distance between the
stimulus point and the measurement point. Figure 5(b) shows
examples of the ERP time series for the convoluted cortex and
spherical cortex obtained from Eq. (40) for the parameters
listed in Table I. We see a sharp negative peak for the con-
voluted cortex ERP, shown by the solid line, but smaller than
for the spherical cortex. We observe an initial negative peak
amplitude of around −27 μV, which rapidly decays with an
initial decay time of 0.07 s with smaller amplitude than in the
spherical cortex.

We see a shoulder on the peak at time 0.68 s with negative
amplitude around −14.5 μV, which is also very similar to the
spherical case [17]. After t = 0.70 s, the amplitude decays
rapidly, in excellent agreement with spherical cortex, and after
t = 1.5 s it is negligible.

C. Dependence on �ϑ

In this section, we explore the effect of �ϑ (the coordinate
difference between the stimulus point and measuring point
on the cortex) on the ERP time series shown in Fig. 6 for
the convoluted cortex and spherical cortex, respectively. From

Fig. 6(a), we see that as �ϑ varies from 13◦ to 114◦, the
maximum negative peak decreases significantly from around
−39 to −22 μV and is delayed slightly from 0.57 to 0.59 s.
In contrast, the secondary peak only decreases slightly in
amplitude and has a nearly unchanged delay. Similarly, from
Fig. 6(b) for a spherical cortex, we also observe that the
negative peak decreases in size with increasing �ϑ ; indeed, it
decreases from around −38.6 to −24 μV, but is increasingly
delayed, as in the convoluted cortex, as �ϑ increases from
13◦ to 114◦. The secondary peak only decreases in amplitude
very slightly with ϑ and is delayed from −0.66 to −0.68 s.

Overall, we observe that with increasing �ϑ , the negative
amplitude decreases monotonically and the ERP decreases
with distance due to damping and spreading, which is in
accord with our recent work [17]. A linear fit of the peak time
vs �ϑ yields phase velocities for the first and second peaks of
5 and 6 m s−1, respectively, when translated to linear velocity
on an equal area sphere via vp = Rs�ϑ/�t .

In the convoluted case, different measuring points with the
same �ϑ can have very different folding intervening between
them and the stimulus point, as seen in Fig. 7, which shows
the stimulus and measurement points at fixed �ϑ on the

FIG. 7. Locus of constant �ϑ in convoluted and spherical
geometries. (a) Spherical cortex showing �ϑ . (b) Freesurfer con-
voluted cortical hemisphere showing stimulus point with different
measuring points M1–M4 at constant distance �ϑ . (c) Lateral sur-
face of the convoluted cortical hemisphere with measuring points M5
and M6, also at constant distance �ϑ .
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FIG. 8. ERP time series for uniform �ϑ ≈ 55◦, for the param-
eters in Table I with different measurement points on the cortex,
as indicated in the legend, where M1–M6 indicate the different
measuring points from Fig. 7.

convoluted cortex and spherical cortex. In Fig. 8, we illustrate
the effects of folding by examining ERPs at different locations
M1–M6 with the same �ϑ . We observe that peak ERPs vary
by roughly ±25% depending on the location of the mea-
surement points, but all ERP amplitudes become increasingly
similar at later times, a point we return to in Sec. III B, where
we show that it is due to the dominance of the spatially uni-
form 00 mode. We see that in this case, activity at M1 and M5
or M6 is most dissimilar in terms of negative peak amplitude
and has a slight difference in the peak time of 0.02 s. On the
lateral surface of the cortex, we observe more visible sulci and
gyrus.

D. Modal dynamics

Our recent work [17,20] showed that a handful of modes
dominate ERPs. For this reason, next we explore the eigen-
mode structure of the ERP time series on a convoluted cortex
and compare the results with our recent work [17], which
analyzed the eigenmode structure of the ERP time series on
a spherical cortex.

Figure 9 shows ERP activity at various times. At t − ts =
4 ms, the response is small and localized near r0 so no large-
scale disturbance is seen. After that, we see that at t − ts =
44 ms, the response is intense around r0 and has started to
spread over the hemisphere. The spreading at an approximate
phase velocity of 2 m s−1 continues to t − ts ≈ 74 ms, after
which the activity decays and becomes steadily more uni-
form due to the dominance of the global mode and consistent
with the convergence of all time series to a common form at
large t seen in Figs. 6 and 8. By t − ts = 356 ms, there is
negligible activity over the brain hemisphere. To show the
relative contributions of the first few eigenmodes to the ERP,
Fig. 10(a) first plots the ERP time series using Eq. (40) with
λ = 0, μ = 0. We observe that this component of the ERP
is independent of �ϑ , due to y00(ϑ, ϕ) being constant. The
maximum negative peak occurs at time ∼0.6 s,which is simi-
lar to Fig. 5(b) but smaller in amplitude. We also observe from

FIG. 9. Snapshots of ERP due to a stimulus at the red dot in a
single brain hemisphere, showing spatial activity medial and lateral
views as indicated by the color bars. Times are shown at left.

Fig. 10 that the λ = 1 modes peak near the main ERP peak
and contribute to the maximum response. From Fig. 10(b)
with λ = 1 and μ = −1, we observe that the eigenmode has a
smaller negative amplitude than the λ = 0, μ = 0 mode, but
is significant near the ERP peak. This mode also has more
temporal oscillations and decays faster than the λ = 0, μ = 0
mode. Figure 10(c) with λ = 1, μ = 0 shows a smaller peak
amplitude than Fig. 10(b) did for λ = 1, μ = −1 and we
observe that the peak amplitude is more damped than λ =
0, μ = 0. Figure 10(d) is plotted for λ = 1, μ = 1, where
we observe a similar oscillating structure and rapid fall-off
with time. Overall, Fig. 10 shows that the 00 mode dominates
at long times, the other modes are most significant near the
ERP peak, and the symmetry property of spherical eigen-
modes Y�m(ϑ, ϕ) = (−1)�Y�m(180◦ − ϑ, ϕ) and the resulting
responses are approximately preserved for λ = 0, 1 on the
convoluted cortex. To explore how ERP activity is domi-
nated by low order modes, we next plot the contributions of
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FIG. 10. Modal contributions to the numerically computed ERP
time series on a convoluted cortex, plotted for different �ϑ , as indi-
cated in the legend for the parameters in Table I and using Eq. (40).
(a) λ = 0, μ = 0 (all curves coincide due to this mode being uni-
form); (b) λ = 1, μ = −1; (c) λ = 1, μ = 0; (d) λ = 1, μ = 1.

individual eigenmodes versus time in Fig. 11 at �ϑ = 45◦
using

φe(r, t ) =
∞∑

λ=0

φλ
e (r, t ), (41)

with

φλ
e (r, t ) =

λ∑
μ=−λ

yλμ(r)aλμe−iωλμt . (42)
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FIG. 11. Numerically computed contributions of various λ to the
total ERP time series for the parameters in Table I from Eq. (40) for
a convoluted cortex with �ϑ = 45◦. Here the total ERP and the time
series of the ERP voltages V λ

e that correspond to the φλ
e from Eq. (42)

are shown, as indicated in the legend.
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FIG. 12. Cumulative sums of numerically computed ERP con-
tributions V λ

e for a convoluted cortex and the parameters in Table I
using Eq. (40) with �ϑ = 45◦. Here, the time series are plotted for
sums over μ and λ � �, as in Eq. (43), with � indicated in the
legend.

We observe that the series converges rapidly, with λ > 0
modes contributing chiefly near the primary ERP peak, then
damping rapidly as time progresses, with the λ = 0 mode
dominating at longer times. Further interpretation of this point
is shown in Fig. 12, which shows total contributions to the
ERP for λ � � vs �, using the definition

φ�
e (r, t ) =

�∑
λ=0

φλ
e (r, t ). (43)

We observe that multiple modes are only significant near
the ERP peak and retention of modes up to � ≈ 2 (i.e., nine
modes) is sufficient to represent the ERP activity to within
2–3 μV at all times in the example shown.

IV. SUMMARY AND CONCLUSION

We have used physiology-based neural field theory (NFT)
on a convoluted cortex to explore modal effects on ERPs due
to impulse stimuli. We numerically computed eigenmodes of
the brain activity on a convoluted cortex and compared ERPs
on a convoluted cortex, numerically and analytically, with
cases on a corresponding spherical cortex.

NFT is used to calculate ERPs in the convoluted cortex
and spherical cortex using Eqs. (34) and (40) via the NFT
transfer function, with eigenmodes calculated numerically via
the Helmholtz equation in the convoluted case. The key results
are the following:

(i) The ERP time series are computed via analytic and nu-
merical methods in a spherical brain cortex and a convoluted
one. The two cases are very similar, but the peak is slightly
sharper in the numerical case due to the difference in the
detailed stimulus profile.

(ii) With increasing angle �ϑ between the stimulus point
and measuring point, the ERP peak falls off due to damping
and spreading over the cortex. The velocity of the first peak
is 5 m s−1 and that of the second peak is 6 m s−1, which
are consistent with typical experimental values. At fixed �ϑ ,
ERPs differ by up to ±25% between different measuring
points at the same �ϑ in the convoluted cortex due to folding.
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(iii) The ERP activity is strongest near the stimulus loca-
tion r0 and with time passing spreading through the whole
cortex. With increasing time, activity decays until the 00 mode
dominates, giving a uniform response across the whole cortex.

(iv) Just a few modes with λ � � dominate the ERP ac-
tivity. Indeed, the upper bound � = 2 is sufficient for the
representation of the ERPs activity at �ϑ = 45◦, while � = 0
suffices except near the peak, and even there is semiquanti-
tatively correct. Similarly, in recent numerical work [20], we
found that just two modes sufficed to explain the main features
of experimental ERPs driven by visual stimuli and the present
analysis confirms that just a few modes are responsible for the
main features of ERPs in a convoluted cortex.

Overall, there are strong similarities of ERPs to those seen
in the spherical case; however, cortical folding has significant
effects on eigenmodes and activity. In the future, this analysis
on the convoluted cortex will be useful for more detailed and
accurate comparison with experimental data than the spherical
approximation.
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