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Structural changes in a network representation of a system, due to different experimental conditions, different
connectivity across layers, or to its time evolution, can provide insight on its organization, function, and on
how it responds to external perturbations. The deeper understanding of how gene networks cope with diseases
and treatments is maybe the most incisive demonstration of the gains obtained through this differential network
analysis point of view, which led to an explosion of new numeric techniques in the last decade. However, where to
focus one’s attention, or how to navigate through the differential structures in the context of large networks, can
be overwhelming even for a few experimental conditions. In this paper, we propose a theory and a methodological
implementation for the characterization of shared “structural roles” of nodes simultaneously within and between
networks. Inspired by recent methodological advances in chaotic phase synchronization analysis, we show how
the information about the shared structures of a set of networks can be split and organized in an automatic fashion,
in scenarios with very different (i) community sizes, (ii) total number of communities, and (iii) even for a large
number of 100 networks compared using numerical benchmarks generated by a stochastic block model. Then,
we investigate how the network size, number of networks, and mean size of communities influence the method
performance in a series of Monte Carlo experiments. To illustrate its potential use in a more challenging scenario
with real-world data, we show evidence that the method can still split and organize the structural information of
a set of four gene coexpression networks obtained from two cell types × two treatments (interferon-β stimulated
or control). Aside from its potential use as for automatic feature extraction and preprocessing tool, we discuss
that another strength of the method is its “story-telling”-like characterization of the information encoded in a set
of networks, which can be used to pinpoint unexpected shared structure, leading to further investigations and
providing new insights. Finally, the method is flexible to address different research-field-specific questions, by
not restricting what scientific-meaningful characteristic (or relevant feature) of a node shall be used.
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I. INTRODUCTION

Modeling a complex system through a network represen-
tation has been consolidated as a powerful abstraction and
data-driven paradigm for the science of complexity [1]. A
recent step further is the comparative analysis of structures
within a set of network representations, for example, exam-
ining the community structures that change (or on the other
hand, remain coherent) along with different experimental con-
ditions [2], layers [3], or time points [4], which can bring
relevant information about the structure and function of the
system’s interacting parts.

Maybe the most known and prolific aspect of that line
of inquiry is differential network analysis, which has been
mainly developed by the bioinformatics community in the
context of gene expression analysis (see [5] for a review). That
approach has contributed to several discoveries related to how
genes communicate to support the emergence of physiological
responses of an organism in different disease states [6–9].
However, aside from the existence of several numeric tech-
niques to accomplish the task, where to focus ones attention
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on, or how to navigate through, the differential structures
in the context of large networks, can be overwhelming even
along with few experimental conditions (i.e., a small set with
few networks).

In this paper, we provide a method to automatically unfold
that information, not only by identifying similar structures,
but by splitting that outcome in a highly organized way even
for large sets of networks. Hence, allowing one to pinpoint
how and what communities’ structures change (or remain the
same) along with different networks.

Our approach is inspired by recent advances in the field
of chaotic phase synchronization (PS) and through regarding
its characterization and detection via multivariate singular
spectrum analysis (M-SSA). It has been shown that orthogo-
nal rotations of the eigenvectors, obtained from concatenated
trajectory matrices, provide clear and almost automatic iden-
tification of oscillatory modes that are being shared by the
coupled chaotic oscillators [10–13]. Specifically, the final out-
come in that version of M-SSA is a set of rotated eigenvectors
that clearly encode the shared oscillatory components of those
oscillators in a highly organized and informative way, which
can be used for further detection of PS and characterization of
phase synchronized clusters.
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Here, we make a parallel between shared oscillatory modes
in PS analysis and the shared “structural role” of nodes to
analyze the “synchronized” structures in a set of networks. In
short, our method takes advantage of (i) a varimax rotation
to simplify the structure of the eigenvectors obtained from
(ii) the eigendecomposition of (iii) a concatenated adjacency
matrix that represents the network in different conditions.
For the sake of discussion, we will call it the concatenate-
decompose-rotate (CDR) approach. In the new context of
network analysis, we show that the outcome is a highly inter-
pretable map of the nuances of the network in those different
conditions.

It is worth noting that some combination of those three
steps (concatenate, decompose, rotate) has already been
applied in other works and by different scientific communi-
ties [14,15]. However, both their main goals and outcomes are
different from the CDR as articulated here. Indeed, we expect
that the fundamental underlying ideas of the CDR could be
applied over and above the other methods that have been
developed within different scientific communities, or even be
used as a bridge between them to nurture a deeper theoreti-
cal understanding, for example, as the recently demonstrated
equivalence of modularity maximization and the method of
maximum likelihood [16]).

Nevertheless, there has been some criticism regarding the
methodological aspects of community detection in network
science [17]. In particular, we share the pertinent view that a
“method based on a mere hunch that something might work
is inherently less trustworthy than one based on a provable
result or fundamental mathematical insight” [18]. The CDR
approach can be described in a very simple and direct way, just
by showing that a varimax rotation of eigenvectors obtained
from a “generic” spectral algorithm works in some specific
scenarios. However, we start this paper, and devote a large part
of it, to providing a simple theory for how and why the CDR
works. Aiming at a broader audience from different fields,
and trying to use the most simple and transparent concepts
as possible, this is done from a factor analysis point of view
illustrated by a minimalistic toy scenario. Both the theoretical
aspect and the scenarios explored here do not represent a
complete work, but the exploration for the feasibility of a
CDR method to “navigate” through differential structures in
complex networks.

This paper is organized as follows. The mathematical the-
ory, and illustrative motivational toy scenario, for differential
network analysis with the CDR are presented in Sec. II. Then,
we explore the method with larger networks and in a larger
number of conditions in Sec. III. First, CDR is applied on
synthetic networks with N = 2000 nodes in H = 100 dif-
ferent conditions, with a random number of communities
(between 10 and 20) of random sizes (10 to 100 nodes) dis-
tributed in those conditions. The scope here is on networks of
nonoverlapping clusters (or communities), generated from the
stochastic block model (SBM). The clusters can be present
or absent in different conditions. The method’s accuracy
is investigated through Monte Carlo simulations, where we
manipulated the inner probabilities (how strongly the nodes
within a community are connected) and the outer probabil-
ity (how strongly nodes from different communities, and the
“noisy background,” are connected). That is followed by the

FIG. 1. Toy scenario of a small network in H = 4 different con-
ditions. It has N = 200 nodes, which could be members of R = 3
communities. This scenario can be thought of as a system in H dif-
ferent experimental conditions, or an evolving network in H different
time points.

investigation of how the network size, number of networks,
and the mean size of communities influence the method per-
formance. Finally, we show evidence that the method can still
split and organize the structural information in a much richer
and complex scenario, with a real-world data set composed
of four gene coexpression networks obtained from two cell
types × two treatments (interferon-β stimulated or control).
Concluding remarks are made in Sec. IV.

II. METHODS

In this section, we introduce the simple theory and basic
methodology from a factor analysis (FA) point of view. The
material is introduced by blending together a brief review
of some FA results [19,20] with the pursuit of a theory for
differential network analysis and community structure char-
acterization. This means that we will start by being as abstract
as necessary and that references to a “toy scenario” (Sec. II A)
will be used as a motivation and to illustrate the main as-
pects of the proposed framework. Some small conceptual
differences from actual factor analysis will be discussed when
necessary.

A. Motivation: Toy scenario

Consider the scenario of an undirected and unweighted
network with N = 200 nodes, in H = 4 different conditions
in respect to its connections, as shown in Fig. 1. Assume that
nodes neither disappear nor are created, only connections may
change. For each condition h = 1, . . . , H , the network is rep-
resented by its respective adjacency matrix Ah of size N × N ,
with elements ai j = 1 if nodes i and j are connected, but
ai j = 0 otherwise. Hence, the set {Ah}H

h=1 = {A1, A2, A3, A4}
of adjacency matrices represents the structure of the network
across the different H conditions. There are R = 3 highly
connected and nonoverlapping communities of sizes Nr = 60
nodes each, as seen at Fig. 1, labeled as r = 1, 2, 3.

The set {Ah}H
h=1 was generated by a stochastic block

model [21] with the package NETWORKX [22]. The connec-
tion probabilities between nodes within the same community
(inner probability) is p, being q otherwise (i.e., the outer prob-
ability). Setting these probabilities as 0 � q < p � 1 allows
one to generate the R highly connected communities, which
can be visualized as blocks in Fig. 1. For the rest of the
network structure, we considered a “ghost” community of size
N − ∑

r Nr = 20 nodes, with both the within and between
probabilities equal to q. Let the adjacency matrices A1, A2,
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and A3 represent each of these communities. Accordingly, the
scenario depicted here can be seen (conceptually) as R Erdös
and Rényi [23] random networks GNr ,p “planted” on a GN,q.
Because of this, we will often refer to GNr ,p as the “random
background.”

By design, the toy scenario illustrates two aspects regard-
ing the structural changes in the network. The first one refers
to the presence or absence of a community in a given con-
dition. Specifically, communities r = 1 and r = 3 are present
at all H conditions, while r = 2 is absent at conditions h = 2
and 4. In this aspect, the structure of the network is the same
in (i) conditions 1 and 3, as well as in (ii) conditions 2 and 4,
but (iii) different otherwise. That is the main structural change
that we want to identify.

However, the internal structure of conditions (and back-
ground noise) may be different, as follows. The second aspect
refers to how strong a community is, as compared to the
connections of its members to the other nodes (i.e., nodes
from the other communities, as well as from nodes from the
random background). This is done by using different combi-
nations of the probabilities p and q. The values for conditions
1 and 2 are (p, q) = (1, 0.02), therefore, the communities
are fully connected (known as 1-cliques). The communities
became much more weakly connected in conditions 3 and
4 by setting p = 0.6, while the background noise becomes
stronger by a factor of 10 at condition 4 with q = 0.2. So,
the mixing between communities and background noise is
larger at condition 3, and much larger at condition 4. Later, we
will investigate how the mixing level interferes on the CDR
method.

Remark 1. We call attention to one consequence of the
SBM, that could otherwise pass unnoticed. For example, the
internal structure of the community r = 1 can be completely
different between conditions 3 and 4. They just share the same
inner probability p = 0.6, but the actual connections of their
nodes are set at random by the model. The same occurs for
the random background in conditions 1 and 3: the inner and
outer probabilities p = q = 0.02 are the same, but the actual
connections are not.

B. Theoretical framework

The initial assumptions of the method are as follows. There
exists an abstract property yi, i = 1, . . . , HN , for the N nodes
in the H conditions. For example, this means that for a given
node j ∈ [1, N], the properties y j+(h1−1)N and y j+(h2−1)N will
refer to the same node j in two different conditions h1 �= h2 ∈
[1, H]. Conceptually, we will assume that a causal relation-
ship exists between the set {yi}HN

i=1 and the sets of unknown
and abstract processes {ξi}vi=1 and {e}HN

i=1 (i.e., the factors or
latent variables). For now, we just assume that y, ξ , and e can
be represented as vectors in an abstract vector space, mainly
because we will need the concept of inner products 〈•|•〉 to
represent the extent to which they are (or they are not) close.
In the set {ei} are the factors specific for each yi (i.e., the
unique factors). The set {ξi} are factors that can influence
any and several yi (i.e., the common factors). We assume that
the common and unique factors are independent, 〈ξi|e j〉 = 0,
and that the unique factors are orthogonal, 〈ei|e j〉 = 0 if i �= j
(orthogonality of the common factors will not be assumed

yet). By defining the column matrices Y = [y1 . . . yHN ]�,
X = [ξ1 . . . ξv]�, and E = [e1 . . . eHN ]�, one can write the
linear model

Y = �X + �E, (1)

known as the fundamental equation of factor analysis [20].
The matrices � (size N × v) and � (size HN × HN) provide
the common and unique factor loadings (or weights), respec-
tively. Matrix � is diagonal (i.e., off-diagonal elements are
equal to zero) because the factors ei are unique. Without loss
of generality, we assume the factors’ norm is equal to one
because they can be absorbed by the factor weight matrices �

and �. So, 〈ei|e j〉 = δi, j and 〈ξi|ξi〉 = 1 (δ is the Kronecker’s
delta function).

Finally, we assume that the goal of modeling a given
phenomenon (with data from a set of observations) through
network theory is to investigate the differential clustering of
nodes: what structures remain the same, and what changes,
along with the different conditions H . Now, we explore two
consequences of model (1) under those assumptions.

1. Feasibility for differential network analysis and clustering

The characterization of the clustering of nodes along con-
ditions due to the sharing of latent variables ξi could be
achieved by inspecting the structure of the matrix �. To see
this, consider the product between yi and ξ j : RYX

.= YX�,
with elements [RYX ]i, j = 〈ξi|y j〉. Because 〈ξi|e j〉 = 0, we
have

RYX
.=

⎡
⎣ 〈ξ1|y1〉 · · · 〈ξv|y1〉

...
. . .

...

〈ξ1|yHN 〉 · · · 〈ξv|yHN 〉

⎤
⎦ ≡ �RXX , (2)

where RXX
.= XX�.

Expression (2) can be simplified even further if we are
allowed to assume orthogonality between the common factors
〈ξi|ξ j〉 = δi, j . Under that new assumption, for which hence-
forth we restrict the scope of this paper, (2) becomes

RYX = �. (3)

To gather insights of the implications of (2) and (3), we
use (1) to frame the problem of differential network analysis
and community characterization of the toy scenario shown
in Fig. 1. In that context, and because we now know the
real community structures across conditions (i.e., the ground
truth), a reasonable hypothesis is that the “true” underlying
community structure to be captured by (1) is given by the R
known planted communities only, and not by the background
noise from GNq. Then, by design the underlying theoretical as-
sumptions for the FA model (1) would be (i) ξ1 is the “cause”
of the community structure of nodes 1 to 60 (i.e., r = 1) at
all H = 4 conditions; (ii) ξ2 for nodes 61 to 120, but only at
conditions h = 1, 2. (iii) ξ3 for nodes 121 to 180 at all H = 4
conditions. Note that the labels 1, 2, and 3 were used here for
the sake of illustration (e.g., community r = 1 could be re-
lated to ξ3 and so on). Because of that, expressions (2) and (3)
tell us that these causal relationships should be reflected on
the structure of the common factor loading matrix � as high
loadings related to those three factors ξ for the properties yi
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FIG. 2. Schematic picture of the intuitive expected structure of
matrix � in the context of the toy scenario of Fig. 1. The leading three
columns �•k = [〈ξk |y1〉 . . . 〈ξk |yHN 〉]�, with k = 1, 2, 3, are shown.

within these ranges. That is schematically shown in Fig. 2,
where �•k = [〈ξ1k|y1〉 . . . 〈ξk|yHN 〉]�.

The main result of this paper is based upon finding (or
extracting) that special structure from measured data because
it clearly reports on the structural changes of the network. In
a sense, this provide us with a map, or a book composed by H
“chapters” within the H segments of length N , that allows one
to navigate through the network differential structure history.
Therefore, our aim now is to obtain that idealized structure
after fitting observed data on a model based on (1), and then
both (i) community structure characterization and (ii) differ-
ential network analysis would be straightforward.

There is a subtle conceptual difference between model (1)
and an actual factor analytical model. In the latter, y refers to
measured data. However, in this paper we are considering y
just as an abstract concept within a vector space, which will
provide us with flexibility latter. Accordingly, no assumptions
will be made regarding particular statistics of y (e.g., a random
variable with zero mean and unity variance). As well, we will
make use of the concept of a Gramian matrix, instead of the
covariance or the correlation matrices, for the matrices related
to the inner products. Actual measured data will be inserted
into the framework in the next section, when we show one
way to extract the structure �.

2. Extracting the structure of �

Consider the projection of yi onto itself, RYY
.= YY�

(with matrix elements [RYY ]i, j = 〈yi|y j〉). Because the com-
mon and unique factors are orthogonal, one can write RYY =
�2RXX + �2, an expression that is often known as the fun-
damental theorem of factor analysis [20]. Rearranging for
�2, and because one previously assumed the orthonormality
between the common factors, we have

�2 = RYY − �2. (4)

We will simplify (5) even further by assuming that the term
�2 is negligible, so

�2 = RYY . (5)

That is an assumption very often used in FA. If there exists
a way to estimate the contributions from the unique factors,
one can go back and simply update the diagonal elements
of �2 (because �2 is a diagonal matrix). Finally, writing the

eigendecomposition RYY = V�V�, we have

� = �1/2V. (6)

The eigenvectors vk correspond to the columns of matrix V,
with respective eigenvalues σk , k = 1, 2, . . . , n, in the main
diagonal of matrix �. We assume they are in the decreasing
order σ1 > σ2 . . . > σn.

Remark 2. While we will be using sequential indexing to
facilitate the interpretability of the figures, no aspect of the
CDR is influenced by it. Specifically, by shuffling the nodes’
indices of the H adjacency matrices through a random per-
mutation Pπ , the new factor loading matrix is simply �̃ =
Pπ�1/2V ≡ Pπ�. To make this point clear for an audience
with diverse backgrounds, that equivalence (i) is illustrated
in the simulated examples, and (ii) the mathematical proof is
given in the Appendix A.

That is one of the several procedures for extracting the
structure of the factor loading matrix. It is sometimes called
principal component factor analysis [19], or referred to as
extraction through principal components analysis (PCA) [20].
However, that is the case when RYY comes from measured
data (equivalently, yi is a random vector). So, now we need
to address the aforementioned conceptual different between
model (1) and an actual factor analytical model: yi are con-
cepts, not random variables.

What does it mean that two nodes belong to the same
community? The answer can (and should) depend on the
actual research question and the field-dependent character-
istics that one aims at by grouping the nodes and asking
for their differential network structure. Here, letting yi be
concepts and not actual data, we aim at that flexibility for
the CDR framework to address different field-specific points
of view. This can be put more clearly through the following
example, which will be used as well to establish remaining
procedures.

Consider again the toy scenario of Fig. 1, and assume
that the measured data is the set {Ah}H

h=1. For the task at
hand (differential network analysis) and the characteristics of
the community structures (high within connected blocks, low
between connectivity), one reasonable choice is to use the
similarity of the list of neighbors between nodes and condi-
tions to capture the relevant question one wants to address
through a differential network analysis. Given two nodes i
and j, their list of neighbors in conditions h1 and h2 are the
columns [Ah1 ]•i and [Ah2 ]• j of the respective adjacency matri-
ces. Let X = [A1 A2, . . . , AH ] be the N × HN matrix formed
by horizontally concatenating the H adjacency matrices (see
Fig. 3, top panel). Accordingly, one defines the estimate R̂YY
for RYY as

RYY
.= YY� =̂ R̂YY � X�X, (7)

where the symbol =̂ stands for “estimated from.” Here, we are
using the symbol � to emphasize that this definition depends
on the field-specific characteristics that are pertinent for the
question one wants to answer. Henceforth in this paper, we
will make use of (7) to estimate the common factor loadings
�̂ through the eigendecomposition of X�X.

The leading five columns of the estimated loadings, �̂•k for
k = 1, . . . , 5, are shown in Fig 3 (middle row). Henceforth,
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FIG. 3. Results of the CDR on the toy scenario of Fig. 1. The concatenated matrix X is shown on top. The structure of matrix � is shown
before (middle) and after (bottom) the varimax rotation. Before rotation, the leading loadings �̂•k contain mixed information regarding the
R = 3 communities. After the varimax rotation (bottom row), the rotated loadings �̂∗

•k are unmixed and bring more detailed information about
the communities and on how they change between the H = 3 conditions, a structure that clearly mirrors the idealized one of Fig. 2.

we will call them simply “loadings.” They contrast deeply
with the desired “simple” structure previously shown in Fig. 2.
Specifically, one sees a mixed signature of communities,
which is more entangled in the leading two loadings. Actually,
that is indeed the expected intermediate result from FA. The
reason is that we have applied PCA to extract the loadings
and PCA, by itself, is the solution for the maximization
problem max tr cov(X ) given the restriction of orthonormality
of the principal directions 〈vi|v j〉 = δi, j . So, PCA maxi-
mizes the variance explained by the leading k components,
and a large amount of the information becomes entangled
in the leading eigenvectors vi and, consequently, in the
leading �̂•k .

The usual followup procedure in FA is based on Thur-
stone’s concept of simple structure [24]: the rotation of the
factor loadings by a given criterion that maximizes the sim-
plicity of �̂, and so (hopefully) enhancing the interpretability
of that matrix.

3. Varimax rotation and the simple structure of �

Kaiser’s varimax [25] is considered the most-efficient (or-
thogonal) rotation in FA [26], and the most often applied.
Let the elements of the factor loading matrix be �̂ = [λk,d ].
The varimax rotation aims at finding the orthogonal rotation
�̂∗ = �̂T that satisfies the varimax criterion (VC)

VC(�) =
S∑

k=1

⎡
⎣ 1

D

D∑
d=1

λ4
dk −

(
1

D

D∑
d=1

λ2
dk

)2
⎤
⎦. (8)

Specifically, (8) is the raw varimax criterion. It represents
the maximization of the variance across the columns of the
squared factor loadings matrix. The summation is over the first
S factors �̂•k , k = 1, . . . , S.

The result of that rotation is shown in Fig. 3(bottom), with
S = 20. Each leading �̂∗

•k carries now a unique fingerprint
of (i) each community for (ii) each condition, similar to the
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FIG. 4. Estimated Gaussian kernel densities for each segment h
for the leading five rotated factor loadings �̂∗

•k , corresponding to
Fig. 3 (bottom). Darker shades refer to larger values of k.

expected idealized structure in Fig. 2. The main result of this
paper is that that approach recovers the full “story” of the
network, where each “chapter” is encoded on each H = 3
segment of length N . Then, it becomes straightforward to
read: communities 1 and 2 were present along with all H = 3
conditions, while community 2 disappeared in condition h =
2 but reappeared in h = 3. Another information is provided
by the different magnitude of the pulselike pumps at different
segments of the same �̂∗

•k . For example, consider the �̂∗
•1.

The first two pumps have the same magnitude, which is larger
than the magnitude of the last two segments. This means that,
aside from the community r = 1 being present in all H = 4
conditions, something in its structure is more similar within
conditions h ∈ {1, 2} and h ∈ {3, 4} than between them. By
design, we know that this should be a consequence of the
different inner probabilities: p = 1 for h ∈ {1, 2} and p = 0.6
for h ∈ {3, 4}.

Another point of view is provided by Fig. 4, which shows
the distribution of weights for all �̂•k segments (before and

after rotation). They correspond to Fig. 3, and are equivalent
for both the sequential indexing and randomized one.

Before rotation, there are two problematic aspects that
could compromise the use of post-processing tools to identify
the communities r that share the same condition h. First,
several segments contain mixed information from different
communities. Second, some distributions are extremely close
[e.g., (k, h) = (1, 3) and (3,1)]. That can occur even for a seg-
ment containing information of only two distributions [e.g.,
(k, h) = (3, 2)]. That distance could be so close (as compared
to the others) that it would be necessary to isolate those cases
and look for a specific fine tuning to identify the indices
corresponding to each cluster.

On the contrary, both problematic aspects were rectified
by the rotation. Each segment contains information about
different communities, and the distance between distributions
increased. In Sec. II C, we will show how that greatly simpli-
fies the identification of the communities r that share the same
condition h, by allowing one to use each segment within �̂∗

•k
as binary classifiers.

As a remark, note that because of the stochastic block
model applied, the structure of a given community is not iden-
tical in different conditions (when p < 1, i.e., communities
are not 1-cliques), nor are the connections of its nodes with
the outer nodes (for any value of p). Even so, the proposed
approach shows a clear representation of the shared commu-
nity structure, by splitting and organizing that information in
different factor loading vectors �̂∗

•k .
That outcome shows that the number of rotated vectors S

should be larger than the number of features to be “split and
organized.” This allows for sufficient degrees of freedom for
the rotation to accommodate those features and the “noise.”
This does not imply the necessity of a priori knowledge of
the number of communities, nor on how they are shared in
different networks. On the contrary, one can overshoot as we
did by using S = 20 (using all vectors would imply a higher
computational demand, which could be prohibitive in some
scenarios). A complementary strategy is comparing the results
for two different values of S: if they are different, S should be
increased.

There is another feature in Fig. 3 worthy of comment. A
constant trend (vertical shift) in the leading loadings (both
before and after rotation) is clearly seen when the larger outer
probability q = 0.2 is used to build the network. That trend
is a known consequence of not using a column-centralized
matrix in PCA. Actually, the trend is present in the other
loadings too. It is more visible for larger values of q because
the larger the q, the larger the mean value of each column
of X (i.e., more connections imply at more “ones” instead of
“zeros”). For the rotated loadings, it is clearly visible in the
fourth (last) segment of length N of the leading three rotated
loadings �̂∗

•k . For our goal in this paper, that trend is irrelevant.
Remark 3. The analysis here could be conducted by the

point of view of the eigenvectors vk (the columns of V). In
that case, the correct way to obtain the varimax rotated v∗

k is
using the scaled σ

1
2 vk to find the rotation T, and then applying

the rotation to the original (not scaled) eigenvectors v∗
k = vkT.

The pitfall here is that, because the scaled eigenvectors cor-
respond to the common factor loadings, one could assume
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incorrectly that the rotated eigenvectors could be obtained
simply by rescaling the already rotated factor loadings. How-
ever, this process of scaling, rotating, and rescaling yields an
oblique rotation.

On the one hand, the interpretability provided by the visual
inspection of the rotated factor loadings can provide insights
into the data set and be used as an exploratory tool. On the
other hand, because of the way information is organized, it is
straightforward to use each �̂∗

•k segment as binary classifiers
to identify the communities r that share the same condition h.
This is discussed in the next section.

C. Segments of �̂∗
•k as binary identifiers

Let �̂∗
•k,h denote each segment of length N of the rotated

factor loadings matrix kth column, with elements �̂∗
•k,h(i),

i = 1, 2, . . . , N . Those segments are binary classifiers, which
can be used to cluster the nodes into one or two groups given
their respective weights �̂∗

•k,h(i) (by referring to that clusters
as “groups” we aim to avoid any confusion with the planted
communities r). For instance, consider the segment �̂∗

•1,1 in
Fig. 3 (bottom). The weights �̂∗

•1,1(i) clearly form two clus-
ters: one with values near the “noise floor” and the other with
much larger values than the noise floor variance. That can be
seen, as well, in the distribution of weights in Fig. 4. Let us
denote those two groups seen in �̂∗

•1,1(i) by labels 0 and 1. We
define the index vector s(k,h) of length N with elements

s(k,h)
i =

{
0, if node i belongs to group 0
1, otherwise. (9)

On the other hand, note that the “flat” segment �̂∗
•3,2, which

is the fingerprint of the absence of r = 2 in condition h = 2,
will generate a s(3,2) with all its elements equal to 0 (i.e., all
nodes are associated to the noise floor, and so to group 0).
The differential structure in Fig. 3 is so clearly discernible
that the clustering could be done by visual inspection (even
for the example with randomization of indices). However, that
could potentially lead to rather subjective conclusions, and for
large numbers of conditions and communities a nonautomated
procedure would be prohibitive.

An alternative solution would be applying a given clus-
tering algorithm of choice. In this paper, we opt to use
the density-based spatial clustering of applications with
noise [27,28] (DBSCAN), with the parameters’ number of
neighbors and distance equal to 5 and 1

100 of the amplitude
of the �̂∗

•k,h, respectively. By design in the next section’s
numerical experiments, the ground truth is known, and hence
it is used to construct the index vectors sr

true for each r =
1, 2, . . . , R planted community.

D. Statistical analysis

In order to quantify the accuracy of the rotated �̂∗
•k on

correctly identifying the communities r that share the same
condition h, we use the score provided by the area under
the receiver operating characteristics curve (AUC-ROC). The
ROC curve is a common tool in machine learning, used to
compare the performance of binary classifiers. It is a graph-
ical representation where the true positive rate (also called

sensitivity or recall) is plotted against the false positive rate for
different thresholds used in the decision function. That score
can have values between 1 and 0.5: a random classifier will
have AUC-ROC equal to 0.5, whereas a perfect classifier will
have ROC-AUC equal to 1.

Then, we compute the AUC-ROC score between a single
s(k,h) and all the R other sr

true vectors (see Sec. II C). We pick
the largest value and the value of r for which it occurred, and
use them to represent both the method score in identifying
the community with label r through the the �̂∗

•k,h segment.
Note that the knowledge about the condition h, where that
community r was found, is already provided by the h index
of the current ξ ∗

k,h.
Finally, the overall accuracy will be quantified by the frac-

tion of reliably detected communities. Specifically, we count
the number of detected communities with a ROC-AUC score
above a given threshold and divide that value by the real
(known) number of communities. The value of this threshold
is 0.8.

III. RESULTS

The motivation in this section is twofold. First, numerical
experiments are conducted to test the accuracy of the CDR
method in unveiling the history of structural changes in more
challenging scenarios, by identifying the communities r that
share the same condition h. We apply the CDR on synthetic
networks with N = 2000 nodes in H = 100 different condi-
tions, with a random number of communities (between 10
and 20) of random sizes (10 to 100 nodes) distributed in those
conditions. The scope here is on networks of nonoverlapping
clusters (or communities), generated from the stochastic block
model. The method’s accuracy is investigated through Monte
Carlo simulations in scenarios with H = 100 and 10 con-
ditions, where we manipulated the inner probabilities (how
strongly the nodes within a community are connected) and the
outer probability (how strongly nodes from different commu-
nities, and the “noisy background” are connected). Then, we
explore how the network size, number of networks, mean size
of communities, and number of possible shared communities
influence the method performance.

Second, we show evidence that the method can still split
and organize the structural information, in a much more
complex and real-world scenario, in the context of gene co-
expression network analysis of single-cell data. The data set
used consists of expression data of 9768 genes, from 2 differ-
ent cell types and in 2 different experimental conditions. In
our specific setting, this means a network with 9768 nodes
in H = 4 conditions. While the adjacency matrices in that
context are weighted rather than binary, and as well there
could be both positive and negative connections, we show that
the CDR can find unique and subtle nuances of the structural
differences. That is done here for illustrative purposes, and not
to unveil any meaningful biological result for the specific data
set we used. Biological inference through CDR is currently
being investigated, with results to appear soon [29].

While the numerical benchmarks represented here are a
much more complex scenario than the previous toy one, it
is only a small representation of the myriad ways in which
the network structure could change in real-world systems. For
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FIG. 5. Concatenated matrix X (top) for the large network (N = 2000) with R = 20 communities randomly distributed along H = 100
conditions (before and after randomization of indices). Community sizes 10 � Nr � 100 were sampled from a uniform distribution. Inner and
outer probabilities are (p, q) = (0.6, 0.02). Before rotation (black) the factor loadings �̂•k show mixed signatures of the communities (clearly
visible with the restored sequential indexing). After rotation (blue), each community in each “shared” condition is clearly represented within
the same �̂∗

•k . See Fig. 6 for the respective scatter plots.

instance, we are focusing on communities that could only
be present or absent. In reality, there can be superpositions,
growing and shrinking, combinations of those processes, etc.
Notwithstanding, as the motivation of this paper is to provide
a first step for the CDR method, we make our best to explore
this constrained scenario deeply.

A. Synthetic networks

We start by mimicking the scenario of a large network
with N = 2000 nodes in H = 100 conditions. In a similar
fashion as in the toy scenario of Fig. 1, a set of 100 adjacency
matrices {Ah}100

h=1 was generated using the SBM. However,
the difference is that the number of planted communities
in each condition, the community sizes and their specific
labels were chosen from random uniform distributions. Fig-
ure 5 (top) shows the 10 blocks of the concatenated matrix

X = [A1 A2, . . . , A100] associated with the first seven and last
two adjacency matrices. The inner and outer probabilities are
p = 0.6 and q = 0.02.

The specific steps to generate this scenario are as follows:
(1) An array containing 20 tuples (r, Nr ) was generated

with Nr ∼ U (10, 100), associating a given community label
r = 1, . . . , 20 with its respective community size.

(2) An array containing 100 tuples (h, Rh), with Rh ∼
U (10, 20), specifies the number of communities Rh to be
planted in a condition h.

(3) Fixing h, the adjacency matrix Ah was generated with
Rh communities as specified by the step (2), but with commu-
nity labels randomly sampled (with equal probability) from
the array generated in step (1).

(4) Step (3) was repeated for h = 1, . . . , 100.
Note that, as in the toy scenario, the nodes belonging to

the same community with label r, but in different conditions
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FIG. 6. Scatter plots of the leading 10 factor loading vectors of
Fig. 5, obtained through the CDR from the networks with random-
ization of indices. The CDR can split and organize the information
of the shared network structures (see text).

h, will have a different specific internal (and external) con-
nections. Only their inner and outer probabilities are the same
across conditions.

In summary, each condition h = 1, . . . , H can have 10
to 20 planted communities, and each of them can have (or
not) different sizes. A given community can appear in several
conditions, but its internal and external connectivity will be
(very likely) different.

The leading 10 loadings before and after rotation are shown
in Fig. 5. As in Sec. II A, we present the results for both the
sequential indexing of nodes and the randomization of in-
dices. The varimax rotation was performed with S = 2R = 40
vectors, assuming that the double of the maximum allowed
number of communities (in any condition) will provide a
sufficient degree of freedom for the algorithm to achieve the
desired simple structure. The expected mixing before rotation,
and clear representation of the differential network structure
after rotation, can be seen. Comparing the rotated factor load-
ings with and without randomization of indices, it is clear that
the CDR can unfold and organize the shared structures along
with the different networks. Its performance and limitations
will be investigated now by using each segment as binary
identifiers (as proposed in Sec. II C), it is worth mentioning
the fingerprints of the smallest communities at the last load-
ings �̂∗

•k (e.g., for k = 20, not shown) would not be visually
discernible from the random “noise floor” in a real application
(i.e., with nonsequential indexing). However, next we show
that they can still be used as binary classifiers for the DB-
SCAN and correctly identify these communities and where
(which h) they correspond to.

A clear representation of what the CDR is achieving is
provided by the scatter plots in Fig. 6. It shows �̂•k1 versus
�̂•k2 (before rotation) and �̂∗

•k1
versus �̂∗

•k2
(after rotation),

with k = 1, . . . , 10 and k1 �= k2. Before rotation, two features
can be seen. The first one is that different factor loading
vectors can be correlated. This can be seen in the clusters
that are not located mainly along the horizontal or vertical
axis. The second is that each vector contains information of
several clusters, which can be seen for all cases in the figure.
After rotation, the information is completely reorganized: (i)
no vectors remain correlated, (ii) and each vector contains
information only of one community (cluster) and the noise
background. Note that those scatter plots are equivalent for
both successive and randomized indexings.

Now, we assess the fidelity of this representation pro-
vided by the rotated �̂∗

•k . The AUC-ROC scores are shown
in Fig 7(a) (for the sake of clarity, only values above 0.6
are shown). The distribution of values will be discussed later.
Still, one can see that the majority of them are near 1: the
best achievable balance between almost perfect (i) sensitivity
(100% true positive rate) and specificity (0% false positive
rate). Those values can be contrasted with the ground truth
shown in Fig. 7(b). The filled squares indicate the planted
communities: black if the community was identified by the
method (i.e., a ROC-AUC score above 0.8), and red other-
wise. The fraction between detected and planted communities
(the number of black squares divided by the total number of
squares) is 0.84. That means 921 successful identifications,
and 130 misses. By comparison with the actual community
sizes Nr , given by plotting the array with 20 tuples (r, Nr ) in
Fig 7(c), we see that the small communities, with size near 10,
are more likely to be missed.

Figure 8 shows the distribution of ROC-AUC scores rela-
tive to the community sizes. Two features can be seen, which
confirms the previous discussion. First, communities with size
above 60 nodes were detected with a score above 0.98, and
they form the vast majority of identifications [see Fig. 8(b)].
Second, the smaller communities can be harder to detect,
and this is more prominently seen for communities with size
below 20 nodes.

The previous results depend on the specific realization that
generates the 20 tuples (r, Nr ) [Fig. 7(c)], as well as the other
random features. Furthermore, we would like to explore how
the mixing (relative magnitudes between p and q) influences
those results. So, we now employ a Monte Carlo strategy,
for which the previous scenario can be considered one of its
specific realizations. The steps are as follows:

a. We fix in inner and outer probabilities (p, q).
b. Matrix X = [A1 A2 . . . AH ] is generated by using steps

1–4.
c. The fraction of communities detected and planted is

calculated as before.
d. Steps a–c are repeated NMC = 20 times.
That was done for 20 increasing values of the outer prob-

ability q ∈ [0.01, 0.9]. We considered scenarios with inner
probability p = 0.6, 0.8, and 1 (1-cliques). Figure 9(a) shows
the result (mean ± standard deviation) for H = 100 condi-
tions. It is seen that the lower the mixing (i.e., p been more
prominent than q) the detection curve (i) decays slower and
(ii) starts decaying at a larger-q value. As mentioned before,
if a given small community appears in several conditions, its
“signal” would be stronger. That would counterbalance its
small size, allowing it to be detected. Because of that, we
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FIG. 7. Communities planted and detected for the large network in H = 100 conditions (see Fig. 5). (a) ROC-AUC scores of the
communities detected by the rotated loadings �̂∗

•k . For clarity, only scores above 0.6 are shown. We considered a successful detection if
the ROC-AUC score is above 0.8. (b) The ground truth: communities planted in each condition h. Colors indicate if they were successfully
detected (black) or not (red). (c) The community sizes Nr ∼ U (10, 100) used in this simulation. Smaller communities are more likely to be
missed by the method.

repeat the experiment for a much lower number of conditions
H = 10. In this scenario, it is much less likely that any of
the 20 possible communities will appear several times. As a
consequence [Fig. 9(b)], the detection curves start decaying at
a lower value of q as compared to the scenario with H = 100.
Regarding the speed of decay (slop), it is very similar to the
previous case but for a small segment (between q ≈ 0.1 and
0.2) for the p = 1 curve.

Now, we investigate how the number of planted networks
R and the total number of nodes N influences the CDR accu-
racy. For this, we fixed the number of networks (conditions)
H = 10 and the connection probabilities (p, q) = (0.8, 0.2),
which correspond to the vertical dotted line in Fig. 9(b). For

FIG. 8. Distribution of ROC-AUC scores shown in Fig. 7(b). The
fidelity of community detection (a) is higher for larger communities.
Because several scores are equal to 1, the respective makers are
overlapped, and in (b) one can see better their distribution. Remark:
for the sake of clarity, only values with ROC-AUC larger than 0.6 are
plotted.

each h, the number of planted communities Rh is drawn from
a random uniform distribution centered at Rmean with a disper-
sion of 20%. Specifically, Rh ∼ U (�0.8Rmean�, �1.2Rmean�).

The parameter plane (Rmean, N ) is explored as follows.
Ten linearly spaced values Rmean ∈ [5, 50] are used. For
the network size, we use nine linearly spaced values N ∈
[1000, 5000]. For each combination (Rmean, N ), we calculate
the mean value of the fraction of correctly identified commu-
nities over 20 different realizations.

Figure 10 show the results. For the range of parameters
explored, there is a noticeable dependence on the network
size. The larger N , the smaller the ratio of identified commu-
nities. On the contrary, there is very little dependence (if any)
upon the (mean) number of planted communities Rmean. Note
that a high value of q = 0.2 has been used here. For values
q < 0.1 (not shown), no noticeable dependence was found. As
a remark, because of the random sampling of Rh, the sum of
community sizes could be larger than N at some realizations.
If that occurs for at least one of the 20 realizations, we consid-
ered the mean fraction as a missing value, which is responsible
for the white squares in the figure.

B. Genetic data

Here we give an illustrative example of how the CDR can
split and organize the information about the shared commu-
nity structures of real-world data, which could be used in the
context of differential gene coexpression network analysis.
The scope in this section is purely mathematical. The use of
CDR for biological inference is currently being investigated
in collaboration with a team of bioinformaticians, with results
to appear soon [29].

We will use a gold-standard data set [30] for single-cell
analysis with 12 different cell types and two experimental
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FIG. 9. Fraction of detected communities with ROC-AUC score
above 0.8. The curves show the mean (± standard deviation) over 20
Monte Carlo runs for an increasing outer probability q ∈ [0.01, 0.9]
and three fixed values of the inner probability p. The number of
conditions is (a) H = 100 (see Figs. 5–7) and (b) H = 10, both for
a network of size N = 2000. A larger H increases the chance of a
given community appearing on multiple conditions, which increases
its chance of being detected. This causes the slower decay of the
curves in (a) as compared to (b).

conditions (treatment group). To illustrate the CDR, we ar-
bitrarily selected two cell types: CD4 naive T cell (henceforth
referred as T cells) and CD14-mono cells, both labeled as
STIM (IFNB stimulation) or CRTL (control) regarding their

FIG. 10. Fraction of detected communities in the parameter
plane (Rmean, N ), corresponding to the vertical dotted line in
Fig. 9(b) [i.e., (H, q) = (10, 0.2)]. Values represent the mean over
20 Monte Carlo runs.

FIG. 11. Genetic data scatter plots (before and after rotation)
show the enhanced interpretability (i.e., simple structure) provided
by the varimax rotation as compared to the unrotated �̂•k .

respective treatment group. Accordingly, H = 4 weighted and
undirected (coexpression) networks Wh ∈ R9768,9768, which
conceptually represent what we called conditions in the CDR
method, were built with the 9768 genes with larger expression
variance across samples (see Appendix B for details).

Finally, the input for the CDR was the matrix X =
[W1 W2 W3 W4] of size 9768 × 39 072. The varimax rotation
was performed with S = 60. We experimented with different
values (e.g., 40 and 100), with no impact on the following
results.

Figure 11 shows the scatter plots of the leading 10 vectors,
both before and after rotation. One can see that the rotation, in
general, was able to split the “arms” of the “starlike” shapes
into different and uncorrelated vectors. The few vectors that
remain correlated became more aligned to the horizontal and
vertical axes. However, note that in contrast with the well be-
haved scenario from the SBM, there is no clear-cut distinction
between different distributions (clusters) in those scatter plots.
Nevertheless, the information of the shared structures is much
more organized.

Now, we turn to a specific question: Do the split and orga-
nized nuanced features correspond to the mathematical ground
truth within the respective correlation matrices? Figure 12
shows the leading seven rotated factor loading vectors �̂∗

•k .
From them, we arbitrarily selected two segments and took the
gene labels corresponding to the six largest absolute loadings:
the sets L1 and L2.

The set L1 corresponds to six genes with the exact same
(high) loadings at the Tcctrl condition, which are highlighted
with a rectangular (orange) box in Fig. 12(a). Their loadings
are near to zero at the other conditions. Those features indicate
that the L1 genes form a highly connected community only
at the first condition. Figure 12(b) shows that the prediction
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FIG. 12. Applying the CDR framework to gene coexpression
networks. (a) Cell and/or group specific nuances are clearly sug-
gested by the rotated loading vectors �̂∗

•k . (b) Correlations in the
original expression data for the selected genes in the set L1 show
that they form a highly connected community specific for Tc cells in
the control group. (c) As before, but for the genes from the set L2.
These genes are part of a more complex structure of highly connected
nodes specific for cMono cells, and more “stronger” in the control
group than in the stimulated one.

fully agrees with the correlations of the L1 genes within each
original expression data set.

The set L2 (pink box) corresponds to six genes with high
but different loadings at the cMonoctrl condition. Some of
them still have more than average loadings at the last con-
dition cMonostim, but for all other conditions their loadings
are almost zero. The prediction here is that the L2 genes form
a highly connected community at the third condition, and
some aspects of that community are present and attenuated
at the last condition. Again, this is in agreement with the
correlations seen through the original expression data set,
Fig. 12(c).

IV. CONCLUSION

In this paper, we have proposed a theory and method
(CDR) for the characterization of shared “structural roles”
of nodes simultaneously within and between networks, by
splitting and organizing that information in a meaningful way.
The outcome is a highly interpretable map that can be used
for automatic feature extraction and as an exploratory tool.

Without loss of generality, for the sake of presentation,
we have assumed that each network represents different
experimental conditions. They could be, equivalently, repre-
sentations of time-evolving network (i.e., in different time
points) layers in a multiplex network, etc.

Supported by a transparent and straightforward theory,
rooted in the factor analysis framework, the method pro-
vides flexibility to address different research-field-specific
questions. This is accomplished by defining what is the
scientific-meaningful characteristic (or relevant feature) of a
node at the problem at hand, and then mapping it to an
appropriate mathematical similarity construct to estimate the
proximity from measured data. In the context of differen-
tial network analysis, with communities of highly connected
nodes, in this paper the method was illustrated by assuming
as the relevant feature the similarity of the list of neighbors
between nodes, captured by the notion of proximity through
the inner (vector) product.

The insights provided by the method and its accuracy
have been explored in numerical benchmarks generated by
a stochastic block model. In the scope of nonoverlapping
communities (which could be present or absent on a given
condition), the results have shown the method’s high accuracy
despite very different (i) community sizes, (ii) total number
of communities within a given condition, and (iii) number of
networks being compared (e.g., experimental conditions).

The results from the single-cell gene expression data set
have provided evidence that the method can still split and
organize the structural information in a much richer and com-
plex scenario. How to use that outcome to extract biologically
meaningful information is currently being investigated, with
promising results to appear soon.

Aside from its potential use as an automatic feature ex-
traction tool and preprocessing tool, we discuss that another
potential strength of the method is its “story-telling”-like char-
acterization of the information encoded in a set of networks.
We hope that could be used to pinpoint unexpected shared
structure, leading to further investigations and providing new
insights.
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APPENDIX A: NONSEQUENTIAL INDEXING

Consider the column vector Y = [y1 . . . yHN ]�. Each con-
secutive h = 1, . . . , H block of rows (with size N) represents
the nodes of each h network. If one shuffles the nodes’ in-
dices, that means that the same shuffling is applied on each
H segment of Y . Let us call the matrix that performs that
specific “block” permutation on vector Y by P∗

π . Note that
{P∗

π } ⊂ {Pπ }, meaning that the subset of all “block” permuta-
tions is a subset of all possible permutations. In the following,
we work with the generic Pπ .
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Shuffling the nodes’ indices gives the new column vector
Ỹ = PπY . That permutation propagates into the new factor
loading matrix as follows. First, we have the new

R̃YY = ỸỸ� = PπY (PπY )� = PπYY�P�
π = PπRYYP�

π .
Second, given (5) and (6), the new factor loading matrix
is �̃ = Pπ�1/2V ≡ Pπ�. So, the permutation of nodes’
indices implies at the same permutation of the rows of �, and
not of its columns. If a block permutation P∗

π is used, that
guarantees that the same splitting and organizing outcome
of CDR is obtained: each shared feature corresponds to the
same segments of the original columns � (i.e., �̂∗

•k and after
rotation).

APPENDIX B: GENETIC DATA

The single-cell data set [30] consists of gene expression
data of peripheral blood mononuclear cells (PBMCs) divided
into two groups based on treatment: one with and the other
without interferon-β (IFNB) stimulation. Both the data set
and one tutorial (with R code) for its analysis can be found in

Ref. [31] and within the SEURAT R package [32]. The data set
contains the expression data of 14 053 genes for 12 different
cell types. To illustrate the CDR, we arbitrarily chose the
expression data of CD4 naive T cell and CD14-mono cells, in
the STIM (IFNB stimulation) and CRTL (control) conditions,
were used to build H = 4 gene coexpression networks, as
follows.

Let the matrices Eh, with h = 1, . . . , H , be the (log-
normalized) expression data with genes in rows and samples
in columns. From the 14 053 genes, we removed the ones
with a variance less than 10−10, and then selected the genes
with the highest variance corresponding to the 0.1 quan-
tile (9768 genes). That resulted at four expression data
matrices with sizes E1 ∈ R9768,1034, E2 ∈ R9768,1579, E3 ∈
R9768,1036, and E4 ∈ R9768,3285. For each one, a coexpression
similarity matrix Wh = cor(Eh) of size 9768 × 9768 was esti-
mated, with h = 1, . . . , 4. To decrease the computational time
of the eigendecomposition, all correlations between ±0.02
were set to zero. The concatenation of those matrices, X =
[W1 W2 W3 W4] of size 9768 × 39 072, was used as the input
for CDR.
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