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It is an established fact that a positive wave number plays an essential role in Turing instability. However, the
impact of a negative wave number on Turing instability remains unclear. Here, we investigate the effect of the
weights and nodes on Turing instability in the FitzHugh-Nagumo model, and theoretical results reveal genesis
of Turing instability due to a negative wave number through the stability analysis and mean-field method. We
obtain the Turing instability region in the continuous media system and provide the relationship between degree
and eigenvalue of the network matrix by the Gershgorin circle theorem. Furthermore, the Turing instability
condition about nodes and the weights is provided in the network-organized system. Additionally, we found
chaotic behavior because of interactions between I Turing instability and II Turing instability. Besides, we apply
this above analysis to explaining the mechanism of the signal conduction of the inhibitory neuron. We find a
moderate coupling strength and corresponding number of links are necessary to the signal conduction.

DOI: 10.1103/PhysRevE.102.062215

I. INTRODUCTION

In 1952, Turing tried to interpret the mechanism of animal
skin pattern by analyzing the reaction-diffusion system [1].
And Othmer and Scriven found that the topology structure
could induce Turing instability in the cellular network [2].
Isaac et al. investigated the role of the gene network in the
evolution of pattern formation [3]. Then some general meth-
ods to analyze the Turing instability were obtained in the
network-organized system [4,5]. Diego et al. proposed that
the topology of the network determines the Turing system’s
properties [6]. Meanwhile, the eigenvalues and eigenvec-
tors’ distribution showed its role in the Turing instability
[7–9], especially the maximal eigenvalue and the corre-
sponding eigenvector [10–12]. Francesca et al. shown the
increasing numbers of activated unstable modes leads to the
Benjamin-Feir instability [13–15]. Fanelli et al. studied Tur-
ing instabilities from a limit cycle and the dynamics of a
reaction-diffusion system on a multigraph [16,17]. Also, Tur-
ing instability conditions induced by a positive wave number
were discussed in the different network [18–20]. Although
propagation failure induced by anisotropy was investigated
in discrete reaction-diffusion systems [21,22], the negative
wave number’s effect on pattern formation was seldom con-
sidered in the network-organized FitzHugh-Nagumo (FN)
model.

The FN model is a reduced Hodgkin-Huxley system to
explain the generation of action potential [23,24]. And some
dynamical behavior induced by interior and external factors
had been well studied, such as noise [25], delay [26], and
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synchronization [27]. Then, the FN model exhibited some rich
dynamical behavior about pattern formation [28,29], and the
shape and type of pattern formation were affected by dynam-
ical parameters, external periodic forcing, and noise [30–34].
Also, Jing et al. exhibited the chaotic region and the complex
bifurcation phenomena in discrete FitzHugh-Nagumo system
[35]. Meanwhile, all the states of the coupled chaotic system
were addressed in the synchronization of two FN systems cou-
pled with gap junctions [36]. However, the chaotic dynamical
behavior on the network was seldom considered in the FN
model.

In general, Turing instability is that a steady state stable
in the local system can become unstable in the presence of
diffusion or network, and Turing instability is induced by
the positive wave number in the reaction-diffusion system.
But how the negative wave number shows its role in Turing
stability (the firing of a neuron) remains to be solved. It is
well known that neurons’ interaction is like a vast network;
there are two steady states for neurons: the resting state and
the firing state. Also, neurons fire (namely, Turing instability)
when some signals (including inhibitor and activator signals)
are collected enough from others through the neural network.
To further understand the mechanism of the firing of neurons
and the Turing instability, we investigate the FN model’s
stability and show how the topology structure plays a vital
role in the Turing instability. Then we take the weights and
the number of links into account and obtain the firing region.
The chaotic behavior induced by the interaction between I
Turing instability (induced by the positive wave number) and
II Turing instability (caused by the negative wave number)
is studied. Finally, we try to explain the mechanism of the
firing of neurons and Turing instability through the mean-field
method.
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FIG. 1. The stability of system and Turing instability occurs
when � ∈ B = (−∞,−0.8333) ∪ (2, 5). (a) The bifurcation about
eigenvalue � where the dotted line represents unstable equilibrium.
(b) The stability region of system (2).

II. TURING INSTABILITY IN THE
REACTION-DIFFUSION NETWORK

A general Turing system of the FN model in classical
continuous media can be expressed as

∂u

∂t
= f (u, v) + d1∇2u,

∂v

∂t
= g(u, v) + d2∇2v, (1)

where u, v could represent the local densities of activator and
inhibitor species (population, chemical species, ion species,
etc.), and the dynamics of them can be specified by f (u, v)
and g(u, v), d1, d2 are the diffusion constants.

Based on the theory of stability, it is easy to know the
dynamical behavior of the system (3) without diffusion is
stable when Reλ < 0. For reaction-diffusion system (2), we
can obtain the Jacobian matrix [1,28],

B =
(

a11 − d1k2 a12

a21 a22 − d2k2

)
.

where k2 is a wave number (always positive), a11, a12, a21,
and a22 are the partial derivatives of f (u, v) and g(u, v).

In the present paper, a connected network is constructed
to investigate Turing instability induced by the wave number.
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FIG. 2. The topology of the network. (a) The topology when m =
1. (b) The topology when m = 7.

One node connects the next m nodes with the weights p in
the network. The network topology with N nodes can be de-
fined by a symmetric matrix A, where Ai j = p if |i − j| � m,
otherwise Ai j = 0 and Aii = 0, and the degree of node i is
ki = ∑N

j=1 Ai j . System (2) on the network can be rewritten
as

dui

dt
= f (ui, vi ) + d1

∑
j

Ai jui,

dvi

dt
= g(ui, vi ) + d2

∑
j

Ai jvi, (2)

where A is the particular network’s adjacency matrix, and the
adjacency matrix’s eigenvalues can be positive or negative,
which is different from the positive wave number in the con-
tinuous media system. The positive and negative eigenvalues
correspond to the positive (activator) and negative wave num-
ber (inhibitor), respectively.

Then a lemma and theorem are given in the following.
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FIG. 3. The stability when the weights are p = 0.1. (a) The in-
tersection region with the eigenvalues of the network matrix. (b) The
corresponding pattern formation.

Lemma 1. Gershgorin circle theorem [37]. Let A be a
complex N × N matrix, let Ri = ∑

i �= j |ai j | be the sum of the
absolute values of the nondiagonal entries in the ith row, and
let D(aii, Ri ) be a closed disk centered at aii with radius Ri.
Therefore, every eigenvalue of A lies within, at least, one of
the Gershgorin disks D(aii, Ri ). Namely, the eigenvalue �i,

|�i − aii| � Ri.

Theorem 1. For the above adjacency matrix A, k = 2m,
and � is the eigenvalue of A. Therefore, � ∈ C = {�| − kp �
� � kp}.

Proof. According to Lemma 1, we know aii = 0, Ri =
kp(i = 2, . . . , n − 1), R1 = kp, Rn = kp, and |�| � Ri �
kp, namely, −kp � � � kp.

On the basis of Theorem 1, we obtain the region of the
eigenvalues of the adjacency matrix, and then we consider
the stability of system (3). We first consider the stability of
a uniform stationary state (u0, v0) without a network, where
f (u0, v0) = g(u0, v0) = 0. And the Jacobian matrix for every
node at equilibrium (0,0) is

J =
(

a11 a12

a21 a22

)
.

The characteristic function can be written as

λ2
i − Biλi + Ci = 0, (3)
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FIG. 4. The stability when the weights are p = 0.4. (a) The in-
tersection region with the eigenvalues of the network matrix. (b) The
corresponding pattern formation.

where Bi = a11 + a22, Ci = a11a22 − a12a21, and the eigen-

value is λi = Bi±
√

B2
i −4Ci

2 .
For the network-organized system, a general solution can

be expressed as

ui =
N∑

k=1

ckβkeλktφk
i ,

vi =
N∑

k=1

ckeλktφk
i . (4)

where
∑

j Ai jφ
k
j = �kφ

k
i .

Substituting (5) into Eq. (3), the Jacobian matrix for every
node can be written

Bi =
(

a11 + d1�i a12

a21 a22 + d2�i

)
,

where �i is the eigenvalue of matrix A, which corresponds to
−k2 in reaction diffusion, and �1 � �2 � · · · � �N .

Then the characteristic function of system (3) can be writ-
ten as

λ2 − Biλ + Ci = 0, (5)

where Bi=a11 + a22 + d1�i + d2�i, Ci=d1d2�
2
i + (a11d2 +

a22d1)�i + a11a22 − a12a21, and λ(�i ) = Bi±
√

B2
i −4Ci

2 .
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FIG. 5. The stability when the weights are p = 0.5. (a) The in-
tersection region with the eigenvalues of the network matrix. (b) The
corresponding pattern formation.

It is well known that the Turing instability occurs if
and only if there is, at least, a �i to make the eigenvalue
Reλ(�i ) > 0 hold. In general, −k2 = �k means the eigenval-
ues are always negative, namely, the wave number is positive.
Also, we know there are three solutions λ1, λ2, λ3 (λ1 �
λ2 � λ3) of Reλ(�i) = 0. Reλ(�i) > 0 holds if �i ∈ G =
G1 ∪ G2, where G1 = {�|λ2 < � < λ3 and G2 = � < λ1}.
Namely, G is an instability region. For G1, we know the
following lemma.

Lemma 2 [20]. For a network system, the system is always
stable when all the eigenvalues of the network matrix are not
in the instability region � ∩ G1 = � (� represents the empty
set), the instability occurs when � ∩ G1 �= �.

To find the origin of Turing instability (induced by the
negative wave number) and the relationship between p and
k, we rewrite system (3) by the mean-field approximation.
Namely,

dui

dt
= f (ui, vi ) + d1�iui,

dvi

dt
= g(ui, vi ) + d2�ivi. (6)

By linear stability analysis, we obtain the characteristic func-
tion,

λ2 − biλ + ci = 0, (7)
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FIG. 6. The stability when the weights are p = 2.4. (a) The in-
tersection region with the eigenvalues of the network matrix. (b) The
corresponding pattern formation.

where bi=a11 + a22 + d1�i + d2�i, ci=d1d2�
2
i + (a11d2 +

a22d1)�i + a11a22 − a12a21, and λ(�i) = bi±
√

b2
i −4ci

2 .
Namely, the stability of system (7) depends on the sign
of Reλ(�i), which keeps consistent with system (5). If
Reλ(�i) > 0, system (7) is unstable. However, system (7) is
unstable when Reλ(�i ) < 0, which means it does not work
due to the interaction between the negative wave number and
the positive wave number.

To further analyze the dynamic behavior of system (7), we
treat the maximum (minimum) eigenvalue as the leading role
to evaluate the Turing instability region. Because the range �

depends on pk, the above system can be written as

du

dt
= f (u, v) + d1 p ku,

dv

dt
= g(u, v) + d2 p kv. (8)

and

du

dt
= f (u, v) − d1 p ku,

dv

dt
= g(u, v) − d2 p kv. (9)

In general, the stability of systems (9) and (10) deter-
mines the stability of system (3). We suppose �1,�2,�3

are set, and system (3) is stable when pk ∈ �1 and −pk ∈
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FIG. 7. The stability when the weights are p = 2.6. (a) The in-
tersection region with the eigenvalues of the network matrix. (b) The
corresponding pattern formation.

�1; system (3) is periodic oscillatory when pk ∈ �2 or
−pk ∈ �2, and system (3) is chaotic or infinite when pk ∈
�3 or pk ∈ �3. Namely, system (3) is stable, periodic os-
cillatory, and chaotic or infinite, respectively, when pk ∈
�1,�2,�3. To a certain extent, the above results bring
into correspondence with Benjamin-Feir instability [13–15].
We treat periodic oscillatory chaotic or infinite as Turing
instability in this paper because the range of �2,�3 is chal-
lenging to determine. Moreover, the condition of Turing
instability in a network-organized system can be described
that Turing instability occurs in a continuous system, and
one or more of the eigenvalues of the network lies in the
Turing instability region in the network-organized system.
Namely,

Theorem 2. (Sufficient condition of Turing instability). For
a special network system, system (3) is always stable when
±pk ∈ �1; Turing instability occurs when pk ∈ �2 ∪ �3 or
−pk ∈ �2 ∪ �3. [System (3) is periodic oscillatory when
pk ∈ �2; if pk ∈ �3, system (3) is chaotic or infinite.

Proof. Based on the above assumption and Lemma 2, the
maximum eigenvalue �max = pk and the minimum eigen-
value �min = −pk lie in �1. Namely, all the eigenvalues stay
at �1, and the system is stable. Otherwise, Turing stability
occurs.
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FIG. 8. (a) The number of eigenvalues �i when Reλi > 0.
(b) The Lyapunov exponents about p when dt = 0.01. (c) The re-
lationship between the p and the degree k.

III. SIMULATION

In this section, we consider the above system in the
Fizhugh-Nagumo model,

f (u, v) = c

(
u − u3

3
− v

)
,

g(u, v) = c(au − bv),
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FIG. 9. The stability about pk. (a) System (9) is stable when
pk = 0.4. (b) System (9) is a periodic oscillation when pk = 0.85.
(c) System (9) is unstable when pk = 4.85.

where variables u and v are the voltage (activator) and recov-
ery voltage (inhibitor).

Here the Lyapunov exponent in network-organized system
can be defined as

L = ln

⎧⎨
⎩

√∑n
i=1

[( dfi (u,v)
dt

)2 + ( dgi (u,v)
dt

)2]
2n

⎫⎬
⎭, (10)
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FIG. 10. The stability when the weights are p = 0.05, m = 7.
(a) The intersection region with the eigenvalues of the network ma-
trix. (b) The corresponding pattern formation.

where the system is stable or periodic oscillation when L <

0, chaos or infinity appear when L > 0, and dt is the initial
perturbation.

According to the above theoretical analysis, the equilib-
rium point (u0, v0) = (0, 0) of system (2) without diffusion
is stable when 1 < b < a, then the parameters can be set
as a = 2, b = 1.5, c = 1, m = 1. And Turing instability
occurs (� > 0) in the continuous reaction-diffusion sys-
tem when d1 = 0.1, d2 = 0.5. Meanwhile the wave number
could induce the Hopf bifurcation and pitchfork bifurcation
[Fig. 1(a)]. Also, the positive eigenvalue (the negative wave
number) could induce Turing instability (Turing instability
occurs when � < 0) (Fig. 1). Finally, we call I type Tur-
ing instability induced by the positive wave number, and II
type Turing instability induced by the negative wave number
[Fig. 1(b)].

First, we construct a special network with n = 100 al-
though one node just connects its next node with the weights p
in the present paper [Fig. 2(a)], and one node just connects its
next seven nodes [Fig. 2(b)]. The same is true in other cases.
Here we mainly consider the case m = 1, and system (3) can
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FIG. 11. The stability when the weights are p = 0.1, m = 7.
(a) The intersection region with the eigenvalues of the network ma-
trix. (b) The corresponding pattern formation.

be written as

dui

∂t
= f (ui, vi ) + d1

∑
j

Ai jui,

dvi

∂t
= g(ui, vi ) + d2

∑
j

Ai jvi, (11)

where Ai j = p when |i − j| � 1 and i �= j, p > 0 are
weights, otherwise Ai j = 0.

Then we consider the stability of the network-organized
system (12) in the following. Based on Theorem 1, the range
of an eigenvalue �i of the adjacency matrix in system (12)
is in [−2p, 2p]. And due to Theorem 2, the system is al-
ways stable when all the eigenvalues of the network matrix
are not in the instability region � ∩ B = � [Fig. 3(a)], the
pattern formation is uniformly distributed [Fig. 3(b)]. Mean-
while, all the neurons remain in the resting state, and no
action potential occurs when the coupling strength p = 0.1
is weak. But the damped oscillations occur and become stable
[Fig. 4(b)] when [−2p, 2p] approaches the instability region
[Fig. 4(a)]. Namely, some neurons’ spiking occurs, but it was
not enough to conduct completely (conduction failure). It is
easy to know (−∞,−0.8333) ∩ � �= � and (2, 5) ∩ � �= �

[Fig. 5(a)] when p = 0.5, II type Turing instability occurs,
and the system rapidly reaches a stable periodic oscillation
[Fig. 5(b)]. Namely, the signal conduction is expected when
the coupling strength of the neuron is moderate. Then I type
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FIG. 12. The stability when the weights are p = 0.35, m = 7.
(a) The intersection region with the eigenvalues of the network ma-
trix. (b) The corresponding pattern formation.

Turing instability and II type Turing instability occur at the
same time when p = 2.4 [Fig. 6(a)], the corresponding pattern
formation and dynamical evolution are different [Fig. 6(b)].
Although the spiking of neurons occurs, it is not synchronous.
Also, the number of intersections B ∩ � becomes large. And
the number of the intersections B ∩ � becomes larger when
p = 2.6 [Fig. 7(a)], and the chaos or infinity phenomenon
occurs [Fig. 7(b)], which can be verified by the Lyapunov
exponents [Fig. 8(a)]. That means the larger coupling strength
of neurons could induce the chaotic system or nerve disease.
The inhibitory neurons comprise 20%–30% of the neurons,
and they are believed to be important in regulating the action
potential [38,39]. The negative wave number corresponds to
inhibitory neurons, and the positive wave number corresponds
to excitatory neurons. And we may safely conclude that the
number of negative wave numbers (the inhibitory neurons)
should stay within a certain range. From [Fig. 8(a)], only the
number of the negative wave numbers is few at the beginning
when Reλ(�i ) > 0, and the inhibitory neurons could effec-
tively regulate the conduction of signal transmission [Fig. 5].
Otherwise, conduction failure may occur [Figs. 4 and 8].
Meanwhile, the above findings illustrate the importance of the
inhibitory neurons in regulating the action potential [38,39].
Also, the Lyapunov exponent is given, which means the neu-
ral system may become a chaotic state when the inhibitory
neurons are larger [Figs. 8(a) and 8(b)]. Finally, the numerical
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ranges are obtained through pk = 0.8333 and pk = 4.838.
Namely, the system is stable when 0 < pk < 0.8333, and
the system is periodic oscillation (chaotic or infinite) when
0.8333 < pk < 4.838 (pk > 4.838). Above all, Theorem 2 is
a novel approach to Turing instability in a network-organized
system.

To investigate the Turing instability mechanism in the
network-organized system, the region of stability about p and
k is obtained, divided into three parts: stable region, peri-
odic oscillation region, and chaos or infinity region. So what
determines the stability of the network-organized system?
Then we will consider the bifurcation point in the mean-
field system. It is easy to know that the stability of system
(3) is determined by the stability of systems (9) and (10).
And the theoretical results indicate that system (3) is stable
when 0 < pk < 0.8333 [Fig. 9(a)]. Although the mean-field
system’s bifurcation point determines the network-organized
system’s critical values, we only find the critical value (bifur-
cation point) between the stable and the unstable regions. For
the critical value between periodic oscillation [Fig. 9(b)] and
infinity phenomenon (or chaos) [Fig. 9(c)] in the mean-field
system, it is different from system (3). Maybe the chaos phe-
nomenon (or infinity phenomenon) of the network-organized
system is induced by the interaction of network nodes or
the interaction between I Turing instability and II Turing
instability. The term pk can be treated as an external stimulus
of the FN model, and the conduction failure occurs when the
stimulus strength is stronger or weaker. Namely, the moderate
coupling strength is necessary for the signal conduction. Fi-
nally, we consider the network-organized system with m = 7,
which is more complicated. But the dynamical behavior and
conditions of the Turing instability are the same as m = 1,
system (3) is stable [Fig. 10] when pk < 0.8333, periodic
oscillation [Fig. 11], and the chaos or infinity [Fig. 12] occur
when pk > 0.8333.

IV. CONCLUSION

We know that the neural network plays an essential role in
the neural system. However, the role of the coupling weights
in Turing instability and the importance of inhibitory neurons
in conduction failure remain mysteries. To understand the
mechanism of the Turing instability and the origin of the
conduction failure, the theoretical analysis of Turing instabil-
ity and a detail has been investigated in a network-organized
Turing system. This numerical analysis reveals the effects of
the weights on pattern formation and explained conduction
failure mechanism in the inhibitory neurons for the FN model.
Initially, we found the range of network wave number (the
adjacency matrix) using Theorem 1. The stability analysis of
the Turing system in a network-organized system was given
by Theorem 2, and these analytical results are numerically
validated. Additionally, the stability of the organized-network
system is determined by the stability of the mean-field systems
(9) and (10) and this dynamical behavior is determined by the
range pk. We found Turing instability appears with increasing
the negative wave number. The inhibitory neurons could ef-
fectively regulate the conduction of signal transmission, and
the moderate coupling strength is necessary to the signal con-
duction. We also reveal the presence of chaotic phenomenon
due to the interaction of network nodes or the interaction
between I Turing instability and II Turing instability. Mean-
while, the above methods can be used for other models and
networks.
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