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Optimizing the properties of the mosaic nanoscale morphology of bulk heterojunction (BHJ) organic photo-
voltaics (OPV) is not only challenging technologically but also intriguing from the mechanistic point of view.
Among the recent breakthroughs is the identification and utilization of a three-phase (donor-mixed-acceptor)
BHJ, where the (intermediate) mixed phase can inhibit mesoscale morphological changes, such as phase
separation. Using a mean-field approach, we reveal and distinguish between generic mechanisms that alter,
through transverse instabilities, the evolution of stripes: the bending (zigzag mode) and the pinching (cross-roll
mode) of the donor-acceptor domains. The results are summarized in a parameter plane spanned by the mixing
energy and illumination, and show that donor-acceptor mixtures with higher mixing energy are more likely to
develop pinching under charge-flux boundary conditions. The latter is notorious as it leads to the formation of
disconnected domains and hence to loss of charge flux. We believe that these results provide a qualitative road
map for BHJ optimization, using mixed-phase composition and, therefore, an essential step toward long-lasting
OPV. More broadly, the results are also of relevance to study the coexistence of multiple-phase domains in
material science, such as in ion-intercalated rechargeable batteries.

DOI: 10.1103/PhysRevE.102.062213

I. INTRODUCTION

Organic photovoltaics (OPV) have been subjected to in-
tensive research over the past two decades, not only due
to their potential advantages as portable and/or lightweight
technological devices but also for their intriguing physico-
chemical mechanisms of operation [1–4]. At the heart of the
OPV is the nanoscale mosaic active layer of electron donor
(D) and electron acceptor (A) materials, i.e., the so-called
bulk heterojunction (BHJ) [5–11]. This subtle morphology
is essential for the efficient dissociation of excitons at the
D-A interfaces to electrons and holes and for transport of
the latter toward the collectors [12–14]. The short life-
time of the excitons is translated to a spatial length scale,
also known as the diffusion length, which, respectively, sets
about tens of nanometer bicontinuous (ideally, comblike)
morphology [11,15–24].

Recent evidence, however, indicates that in some com-
positions [4,25–33], a third phase, which is being referred
to as a mixed phase (MP), may additionally become stable
along with the pure D-A phases [34,35]. This MP has a
molecular percolating structure about a 1:1 ratio between the
donor and the acceptor molecules [35] and thus is distinct
from a random distribution, although in both cases the av-
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eraged quantity is similar. As such, the MP can be thought
of as a distinct energetic barrier (as being an intermediate
metastable state) between the energetically favorable D and A
phases [35,36], while keeping the exciton dissociation proper-
ties intact. Recent studies indicate that MP plays a role in the
evolution of BHJ, ranging from the width and form of the D-A
interface [25,36,37] to an inhibitor of the phase separation
process [35].

Motivated by three-phase OPV experiments, we study how
the intermediate mixed phase may affect the transverse insta-
bilities of striped BHJ by distinguishing between two generic
modes and the respective role of the boundary conditions
(BC): the bending (zigzag) mode and the pinching (cross-roll)
mode that is critical for operation since it destroys the flux of
charges to collectors, as schematically demonstrated in Fig. 1.
We use a recently proposed Shapira-Gavish-Yochelis mean-
field model [36] that incorporates the morphological evolution
of a three-phase BHJ under illumination and, for analysis,
we employ the generalized eigenvalue methodology [38,39]
to identify the instability onsets. Specifically, we elaborate
on how the stability of the BHJ to pinching depends on the
increase of the energetic barrier of the mixing energy, i.e., the
depth of the intermediate well in the free energy, and exem-
plify the results in the parameter plane spanned by well depth
and illumination strength. The generic nature of the results
provides a plausible strategy to control the morphological
stability of the BHJ under illumination.
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FIG. 1. Illustrations of (a) the bending zigzag (ZZ) and (b) the
cross-roll (CR) instabilities. Horizontal arrows indicate the bending
direction, while vertical arrows show the directions of the opposite
charge fluxes to the electrodes.

II. DETERMINING THE DONOR-ACCEPTOR RATIO

In the dark, the free energy comprises the entropy and the
mixing energy for the material order parameter [36], u :=
ϕA − ϕD ∈ [−1, 1], where ϕA, ϕD are the respective fractions
of the A-D phases. Its dimensionless form reads

EM(u) =
∫

�

1 − u

2
ln

1 − u

2︸ ︷︷ ︸
donor’s entropy

+ 1 + u

2
ln

1 + u

2︸ ︷︷ ︸
acceptor’s entropy

+ β

2
(1 − u2)(u2 + ξ ) + λ

2
|∇u|2 − e0︸ ︷︷ ︸

mixing energy

dx, (1)

where � is the domain, which we take to be a rectangle,
� = (0, lx ) × (0, ly). Further, e0 is a reference energy density
for which the minimum of EM is zero, β determines the ratio
between mixing energy and entropy, and ξ determines the
depth of the intermediate well such that small ξ corresponds
to a lower mixing energy [see Fig. 2(a)], and λ is the penalty
for the creation of multiple interfaces and associated with
the width of the interface. Due to entropy, the minimum

energies of donor-rich (u := u−) and acceptor-rich (u := u+)
phases are shifted from u = ±1 to slightly lower values in |u|,
while the mixed phase always sits at u := u0 = 0, as shown
in Fig. 2(a). Due to conservation of the order parameter,
however, there are many other uniform solutions u = u∗ and
these solutions are related to the D:A ratio of nonuniform
solutions, e.g., D-A interfaces. The connection between the
u∗ and the D:A ratio is made through averaging of u in one
space dimension (1D),

〈u〉 := l−1
x

∫ lx

0
udx. (2)

For the symmetric case 〈u〉 = 0, the amount of donor and
acceptor is identical so that the interface is located at x = lx/2,
and for the asymmetric case, where |〈u〉| > 0, this location is
shifted; note that for the uniform states, 〈u〉 = u∗. Thus, for the
nonuniform solutions that are of interest here, it is required to
identify the allowed range of 〈u〉 and we do it by looking at
the stability of u∗.

The evolution equation [36] [in the dark and with mobility
Du(1 − u2)] reads

∂u

∂t
=Du

∂2u

∂x2
+Du

∂

∂x

{
(1−u2)

[
β(1−6u2−ξ )

∂u

∂x
−λ

∂3u

∂x3

]}
,

(3)

where Du is the diffusion coefficient. Linear stability analysis
(performed on an infinite domain) about uniform states u = u∗
corresponds to

u − u∗ ∝ eαt+ikx + c.c., (4)

where c.c. is the complex conjugate and α is the perturbation
growth rate of wave number k and is given by

α(k) = −Duk2{1 + (1 − u2
∗)[β(1 − 6u2

∗ − ξ ) + λk2]}. (5)

The instability of u = u∗ is of a typical long-wave-number
type [40] and the regime of unstable steady state solutions,
umin

∗ < |u∗| < umax
∗ , is obtained by taking the limit α(k) → 0

(a) (b)

FIG. 2. (a) Free energy functional (1) for uniform u, with ξ = 2.65, e0 = −0.034 (blue, genuine triple well) and ξ = 2.8, e0 = 0.028 (red,
closer to double well), where ξ corresponds to the mixing energy. (b) Stability and instability intervals for uniform solutions determined by
the critical values umin

∗ ≈ 0.30 and umax
∗ ≈ 0.80. The inset demonstrates three-phase interface solutions, as computed from (3), for 〈u〉 = 0 and

〈u〉 = 0.1 (as marked by • in the main figure, respectively); the location of the interface with 〈u〉 = 0 is at x = 0. The horizontal solid and dashed
lines indicate the value u∗ = 〈u〉 = 0.1 and u∗ = 〈u〉 = 0, respectively. Parameters: Du = 1, β = 0.5, ξ = 2.65, λ = 0.1, k = 10−3, lx = 10.
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as k → 0 [see Fig. 2(b)], where

umin
∗ = 1

2
√

3

√
7 − ξ −

√
(5 + ξ )2 − 24/β,

umax
∗ = 1

2
√

3

√
7 − ξ +

√
(5 + ξ )2 − 24/β.

These results imply that any choice within the umin
∗ < |u∗| <

umax
∗ range will result in a coarsening dynamics that mini-

mizes the energetic penalty of the interfaces, following which
phase separation is achieved (not shown here). In the inset
of Fig. 2(b), we show that indeed the interface solutions are

bi-asymptotic to u± and that the location of the interface shifts
according to 〈u〉 that is set by u∗. Thus, in the analysis that
follows, we will focus on the regime 0 < |u∗| < umin

∗ , under
illumination.

III. EXISTENCE OF STRIPES UNDER ILLUMINATION
AND THE EFFECT OF D-A ASYMMETRY

Illumination leads to the creation of excitons which dis-
sociate at the D-A interface and thus drive the BHJ out of
equilibrium. The (dimensionless) total free energy under illu-
mination takes the form [36]

E = EM +
∫

�

χ ln χ + p ln p + n ln n︸ ︷︷ ︸
charges entropy

+φ(p − n) − ε

2
|∇φ|2︸ ︷︷ ︸

electrostatic energy

+ ζ

2
[p(1 + u)2 + n(1 − u)2]︸ ︷︷ ︸

charge affinity

dx,

where the corresponding equations of motion also incorporate the generation and recombination following Buxton and
Clarke [41], and fluxes of electrical charges coupled to morphological evolution of the BHJ order parameter [36]:

∂u

∂t
= Du∇2u + Du∇ · {(1 − u2)[β(1 − 6u2 − ξ )∇u − λ∇3u]}︸ ︷︷ ︸

phase separation

+ Duζ∇ · {(1 − u2)[(p + n)∇u + (1 + u)∇p − (1 − u)∇n]}︸ ︷︷ ︸
donor/acceptor affinity to charges

,

(6a)

∂χ

∂t
= ∇2χ︸︷︷︸

diffusion

− τ−1(1 − u2)χ︸ ︷︷ ︸
dissociation

− χ︸︷︷︸
decay

+ G︸︷︷︸
generation

, (6b)

∂ p

∂t
= Dp∇ · [p∇φ + ∇p︸ ︷︷ ︸

drift−diffusion

+ ζ p(1 + u)∇u︸ ︷︷ ︸
charge affinity

] + τ−1(1 − u2)χ − γ np︸︷︷︸
recombination

, (6c)

∂n

∂t
= Dn∇ · [−n∇φ + ∇n − ζn(1 − u)∇u] + τ−1(1 − u2)χ − γ np, (6d)

0 = ∇ · [ε∇φ] + p − n. (6e)

Here the fields χ, p, n stand for excitons, holes, and electrons,
respectively, φ is the electric potential, Dp, Dn are the respec-
tive diffusion constants, ζ is the interaction energy between
the electrical charges and donor-acceptor compositions, τ is
the exciton’s dissociation time, G is the exciton’s genera-
tion rate, γ is the electron-hole recombination rate, and ε is
the permittivity. For details we refer the reader to Shapira
et al. [36].

Uniform solutions of system (6) are given by

U∗ = (u∗, χ∗, p∗, n∗, 0)T ,

where

χ∗ = τG/(τ + 1 − u2
∗),

p∗ = n∗ =
√

G(1 − u2∗)/[γ (τ + 1 − u2∗)],

and T stands for transpose. Linear analysis in 1D, by replacing
u(x) with U(x), shows that in the range 0 � |u∗| < umin

∗ , the
uniform solution U∗ goes through a subcritical finite wave-
number instability at G = Gc, giving rise to periodic solutions
U�(x) with wave number kc, that corresponds to the spatial
wavelength �c = 2π/kc, where for u∗ = 0 we get

Gc = ε2γ (τ + 1)(βξ − β − 1)2

4(λ − εζ + εζ 2 − 2ζ
√

ελ)2

and

k2
c = (1 − ζ

√
ε/λ)(βξ − β − 1)

λ − εζ + εζ 2 − 2ζ
√

ελ
,

while for |u∗| > 0 the critical values are computed numeri-
cally. The periodic solutions

U�(x) = [u�(x), χ�(x), p�(x), n�(x), φ�(x)]T

bifurcate toward the stable portion of U∗, which is in the direc-
tion G < Gc, and thus are initially unstable. Then they grow
in amplitude and stabilize after the saddle node bifurcation
that is located close to G = 0, and continue to be stable as G
increases, as shown in Fig. 3(a).

Notably, conservation of the order parameter u also forces
the periodic solutions u� to keep the average value that is
initially set by u∗. Namely, periodic solutions (which can
be extended in the y direction to form stripes) that bi-
furcate from u∗ = 0 correspond to symmetric stripes (i.e.,
identical width of the donor and the acceptor domains),
while periodic solutions that bifurcate from u∗ = 0.1, for
example, are asymmetric, in which acceptor domains are
wider; the latter is demonstrated in Fig. 3(b). Next, we
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(a) (b)

FIG. 3. (a) Bifurcation diagram showing the branches of symmetric (cyan) and asymmetric (blue) periodic solutions in 1D, u�, computed
for system (6); solid (dashed) lines indicate stable (unstable) solutions. For these computations, we employed the numerical continuation
package PDE2PATH [42,43], with periodic BC. The periodic solutions bifurcate from the uniform solutions u∗ = 0 and u∗ = 0.1 at the respective
values of G = Gc. (b) Asymmetric stripe pattern plotted at G = 2 after extending u� in the y direction. The solid horizontal line indicates
〈u〉 = 0.1. The arrows at u = ±0.5 indicate the width of the acceptor (A) and donor (D) phases, with A being wider. The domain size is
� = [0, 3�c] × [0, 100] and the critical wavelength of u� is �c ≈ 9.38. Parameters: β = 0.5, ξ = 2.65, λ = 0.1, ζ = 4, ε = 0.25, τ = γ = 100,
Dp = Dn = 3, Du = 1.

calculate the stability properties of stripes in the transverse
direction.

IV. TRANSVERSE INSTABILITY OF THREE-PHASE
DONOR-MIXED-ACCEPTOR STRIPES

For the linear transverse instability analysis of stripes to
zigzag (ZZ) that corresponds to bending and to cross roll
(CR) that causes pinching (see Fig. 1), we employ a general
space-dependent eigenvalue method [44–50] that has been
used, for example, in the context of convection rolls, stripes in
reaction-diffusion media, and thin fluid films. However, due
to application to OPV, our interest here is to reveal the impact
of physical boundary conditions on the instability of stripes,
i.e., on nonperiodic domains in y directions.

A. Linear analysis on unbounded domains

We start by performing a general analysis of stripes on
nonphysical infinite (periodic in the y direction) domains [39],

U(t, x, y) − U�(x) ∝ Ũ(x)eηt+ikyy + c.c., (7)

where η is the growth rate of the wave number, ky, in the
transverse direction to U�(x), and

Ũ(x) = [ũ(x), χ̃ (x), p̃(x), ñ(x), φ̃(x)]T

is always the periodic eigenfunction. This formulation intro-
duces a generalized eigenvalue system,

ηMŨ = LŨ. (8)

In (8), M is a singular projection matrix [38],

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (9)

and L is a linear operator,

L[U�; ky] =

⎛
⎜⎜⎜⎜⎜⎜⎝

DuL1,1 0 DuL1,3 DuL1,4 0

2χu/τ L2,2 0 0 0

L3,1 (1 − u2)/τ L3,3 −γ p L3,5

L4,1 (1 − u2)/τ −γ n L4,4 L4,5

0 0 1 −1 ε
(
∂̂2

x − k2
y

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (10)

where L1,1 = λ[1−u2]∂4
x +2λuux∂

3
x +L(0)

1,1+L(1)
1,1∂x+L(2)

1,1∂
2
x ,

L(0)
1,1 = (

λ
[
2uuxxxx+2uxuxxx−k4

y (1−u2)
]+β

{
uxx(24u3−14u)+u2

x (72u2−14)−k2
y (6u4−7u2+1)

+ ξ
[
2u2

x+2uuxx+k2
y (1−u2)

]}+ζ
{

pxx(1−2u−3u2)+nxx(1+2u−3u2)

− 2
(
uuxx+u2

x

)
(p+n)+ux[(1−4u)nx−(1+4u)px]−k2(p+n)(1−u2)

}−k2
y

)
,

L(1)
1,1 = {

2λu
[
uxxx−k2

y ux
]+4βuux[12u2−7+ξ ]−ζ [4uux(p+n)+2px(2u2−1+u)+2nx(2u2−1−u)]

}
L(2)

1,1 = {
1+β[6u4−7u2+1−ξ (1−u2)]+ζ (p+n)(1−u2)+2λk2

y (1−u2)
}
,
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L1,3 = ζ [(1+u)(1−u2)]∂2
x −2ζux

[
2u2+u−1

]
∂x−ζ

{
2uu2

x−uxx(1−u2)+k2
y (1+u)(1−u2)

}
,

L1,4 = ζ [(u−1)(1−u2)]∂2
x −2ζux[2u2−u−1]∂x−ζ

{
2uu2

x−uxx(1−u2)+k2
y (u−1)(1−u2)

}
,

L2,2 = ∂2
x +1−k2

y +(1−u2)/τ,

L3,1 = Dpζ p(1+u)∂2
x +Dpζ [px(1+u)+2pux]∂x+

{
Dpζ

[
puxx+pxux−k2

y p(1+u)
]−2χu/τ

}
,

L3,3 = Dp∂
2
x +Dp[φx+ζux(1+u)]∂x+

(
Dp

{
φxx−k2

y +ζ
[
uxx(1+u)+u2

x

]}−γ n
)
,

L3,5 = Dp
{

p∂̂2
x +px ∂̂x−k2

y p
}
,

L4,1 = Dnζn(u−1)∂2
x +Dnζ [nx(u−1)+2nux]∂x+

{
Dnζ

[
nuxx+nxux−k2

y n(u−1)
]−2χu/τ

}
,

L4,4 = Dn∂
2
x +Dn[−φx+ζux(u−1)]∂x+

(
Dn

{−φxx−k2
y +ζ

[
uxx(u−1)+u2

x

]}−γ p
)
,

L4,5 = −Dn
{
n∂̂2

x +nx ∂̂x−k2
y n

}
,

note that for simplicity, we dropped the subscript � for all variables while the subscripts x represent derivatives with respect to
the argument.

For the numerical computations, we approximate the spatial operators ∂x and ∂2
x with periodic boundary conditions by [51]

G ≈ 1

2�x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1
−1 0 1

−1 0 1
. . .

−1 0 1
1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D ≈ 1

�x2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where empty entries are zeros and �x is the spatial distance between two points on the uniform grid. Similarly, to effectively
eliminate potential jumps, the operators ∂̂x and ∂̂2

x with homogeneous Dirichlet boundary conditions are approximated by

Ĝ ≈ 1

2�x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
−1 0 1

−1 0 1
. . .

−1 0 1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, D̂ ≈ 1

�x2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and similarly for higher order derivatives.
In Fig. 4, we show two numerical realizations that pro-

duce the instabilities schematically depicted in Fig. 1, for
different MP well depths ξ = 2.65 [in Fig. 4(a)] and ξ =
2.8 [in Fig. 4(b)] while keeping illumination fixed, G = 8.
The dispersion relations (ηZZ and ηCR) indicate that while
in both cases the ZZ (odd symmetry) mode is unstable for
G > GZZ, the CR (even symmetry) mode becomes unsta-
ble [with ηCR(kmax

y ) > 0] only above G = GCR; in Figs. 4(c)
and 4(d), we also show the corresponding ũ component of the
eigenfunctions for the ZZ or the CR modes at kmax

y .
We generalize the results in a parameter plane spanned by

(G, ξ ) (see Fig. 5) and show that a similar trend also persists
(dashed lines) for the asymmetric donor-acceptor ratio. The
instability onsets are defined such that the maximal growth
rate becomes positive, i.e., when η(kmax

y ) > 0, at GZZ and GCR,
respectively. This implies degeneracy above the CR mode,
G > GCR, in a region where a competition between bending
and pinching of stripes should be expected (even though the
ZZ mode has a larger growth rate, ηZZ > ηCR). Next, we show
that this degeneracy is removed once we allow passage of

current through the boundaries in the y direction, i.e., physical
boundary conditions.

B. Realization of instability modes in the presence
of charge outflux

Although in the above analysis we used nonphysical
boundary conditions, as we did not allow charge flux through
the boundaries in the y direction, the results provide a good
guide for realistic charge-flux boundary conditions [41]. We
validate these results by performing direct numerical sim-
ulations using (6) with outflux of charges through the y
boundaries, assuming that these represent the charge collec-
tors (i.e., electrodes) [36]:

(
Ju

y , Jχ
y , J p

y , Jn
y , φ

)T ∣∣
y=0 =

(
0, 0,−Dp p

∂φ

∂y
, 0,

V

2

)T

,

(
Ju

y , Jχ
y , J p

y , Jn
y , φ

)T ∣∣
y=ly

=
(

0, 0, 0,−Dnn
∂φ

∂y
,−V

2

)T

,
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(a) (b)

(c) (d)

FIG. 4. (a) Dispersion relations, as computed from (6), showing
the growth rates of the unstable ZZ (ηZZ, green) and the stable CR
(ηCR, orange) modes at ξ = 2.65 with lx = 6�c and �c ≈ 8.81; at
kmax

y , ηZZ is maximal. (b) Same as (a), but for ξ = 2.8 with lx = 6�c

and �c ≈ 11.66, where also the CR mode is unstable; here, kmax
y

marks the maximum of ηCR. (c) Normalized eigenfunctions of the ZZ
instability, ũZZ(x), centered around u = 0 and rescaled to one-half
the amplitude of the periodic solution, u� (gray line) for ξ = 2.65.
(d) Same as (c), but for the CR eigenfunction ũCR(x) (orange) at
ξ = 2.8. Parameters: G = 8 and other parameters as in Fig. 3.

where V = 0 is a fixed voltage under short circuit conditions,
and the fluxes (in their dimensionless forms) are

Ju = Du(1 − u2)∇ δE
δu

, Jχ = χ∇ δE
δχ

,

Jp = Dp p∇ δE
δp

, Jn = Dn n∇ δE
δn

.

In the x direction, we employ periodic BC for all fields.
At low illumination values, G < GZZ, we find that the

stripes are stable (left inset in Fig. 5). In the region
GZZ < G < GCR, the stripes are unstable only to ZZ, which
as can be expected develops in the bulk (middle inset in
Fig. 5). The agreement with the linear analysis is excellent
and reproduces a similar wave number kmax

y = 0.62, as shown
by the green curves in the middle inset.

In contrast, for G > GCR, the primary instability now de-
velops near the y boundaries and is of a cross-roll mode type
(right inset in Fig. 5). Consequently, the charge-flux boundary
conditions remove the degeneracy of the ZZ and the CR
modes by enhancing the latter. The results are nevertheless,
in agreement with the linear analysis (see orange lines near
the boundaries) for both the developed wave numbers and the
onsets [as shown by the dots (symmetric case) and inverted
triangles (asymmetric case)]. Consequently, these results in-
dicate that decreasing ξ and thus pronouncing the mixing
energy towards a triple well, shifts the instability onsets to
higher G values. The latter, in turn, suggests that the OPV will

become less susceptible to deformation modes that enhance
morphological degradation, in particular the dangerous CR
instability.

V. DISCUSSION

Following recent highlights of a three-phase (donor-mixed-
acceptor) bulk heterojunction (BHJ) in organic photovoltaics
(OPV) [25,32,33,35], we used a mean-field approach [36] to
identify the role of the intermediate mixed phase on morpho-
logical changes. Under illumination, the model is driven out
of equilibrium so that stripe morphology may arise (Fig. 3). In
contrast, under dark conditions, the system evolves solely by
coarsening [35,41]. From a mathematical point of view, stripe
morphology arises due to a finite wave-number instability [36]
that is possible only under illumination and whose nature is
affected by the order parameter and the exciton-electron-hole
fields [see system (6)]. We focus on and distinguish between
two generic transverse instabilities of donor-acceptor stripes
in 2D (distinctly from the formation of stripes by phase sep-
aration) with symmetric and asymmetric compositions (as
summarized in Fig. 5): the bending (zigzag mode) and the
pinching (cross-roll mode). The pinching mode is character-
ized by high mixing energy, whereas at low mixing energies
bending of the donor-acceptor domains is favored. We empha-
size that the timescale separation between the morphological
(material) changes and charge dynamics is of several orders
of magnitude so that our results indicate only the initial trend
and not necessarily convergence to a final state, but the further
evolution, in reality, is extremely slow. Furthermore, the slow
time evolution of the material lowers the sensitivity of the
OPV to finite-amplitude perturbations, and thus the effect, for
example, of sudden changes in illumination is negligible.

Although we limited our analysis to 2D, standard theory
shows that the pinching mode may also lead to discontinu-
ous and isolated domains in 3D [52–55], and thus, in OPV,
loss of current to the electrodes that cause operation fail-
ure. This phenomenon resembles the so-called pearling of
cylindrical threads [56–60]. Moreover, according to numerical
simulations, relatively large D-A volumes of BHJ are more
susceptible to transverse instabilities since the intermediate
phase does not suppress transverse front instabilities that arise
due to curvature effects as in bistable systems [61–64], i.e., in
the direction that is parallel to the electrodes. This is consistent
with the diffusion length of about tens of nanometer size of the
BHJ [16,25].

Consequently, our analysis suggests that the qualitative
significance of three-phase BHJ goes beyond inhibition of
phase separation [35], as it may have tailoring by demand
properties that can be controlled by the composition of the
mixed phase via donor-acceptor choices: by decreasing the
mixing energy parameter ξ , the instability onsets are shifted
to higher illumination values G. This degree of control is
absent or less sequential in two-phase OPV. We believe that
our results may assist in the future design of long-lasting
OPV, consisting of three-phase BHJ. In a broader context, our
results should apply to other systems in physicochemical sys-
tems that exhibit phase separation [65,66] and can be driven
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FIG. 5. Parameter plane (G, ξ ), corresponding to illumination (G) and mixing energy (ξ ), showing the instability regions of stripes. Solid
(dashed) lines denote the onsets GZZ and GCR for the symmetric 〈u〉 = 0 (asymmetric 〈u〉 = 0.1) D-A ratio, as obtained from (8), while •
and � correspond to onsets obtained by numerical integration of (6) with periodic boundary conditions in the x direction and charge flux
in the y direction [36] (see text for details). The insets show snapshots of u obtained by direct numerical integration of (6): the left inset is
the asymptotic solution at (G, ξ ) = (2, 2.65), the middle inset is for (G, ξ ) = (8, 2.65) and t = 2800 as indicated by the bottom diamond,
and the right inset is for (G, ξ ) = (8, 2.8) and t = 1200 as indicated by the top diamond. The green and orange envelope lines in the middle
and the right insets represent the ZZ and the CR modes, respectively, as obtained by eigenvalue analysis (8): the modes are parameterized as
x = (4 ∓ 1/4)�c − ε cos(kmax

y y) with ε = 0.15 and kmax
y = 0.62, as indicated in Fig. 4(a), and x = (4 ∓ 1/4)�c ± ε cos(kmax

y y) with ε = 0.15
and kmax

y = 0.71, as indicated in Fig. 4(b), respectively. The simulations were performed on a domain � = [0, 6�c] × [0, 100]: for ZZ with
�c ≈ 8.81 in x at ξ = 2.65 and for CR with �c ≈ 11.66 at ξ = 2.8. Other parameters are as in Fig. 3.

out of equilibrium, in particular in ion-intercalated renewable
batteries that depend on reversible phase exchanges in charge
and discharge cycling [67–69], such as in Li-based [70–72]
and Ni-based [73–75] electrodes.
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