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Critical exponents in coupled phase-oscillator models on small-world networks

Ryosuke Yoneda ,* Kenji Harada, and Yoshiyuki Y. Yamaguchi
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

(Received 9 July 2020; revised 5 November 2020; accepted 23 November 2020; published 14 December 2020)

A coupled phase-oscillator model consists of phase oscillators, each of which has the natural frequency
obeying a probability distribution and couples with other oscillators through a given periodic coupling function.
This type of model is widely studied since it describes the synchronization transition, which emerges between
the nonsynchronized state and partially synchronized states. The synchronization transition is characterized by
several critical exponents, and we focus on the critical exponent defined by coupling strength dependence of the
order parameter for revealing universality classes. In a typical interaction represented by the perfect graph, an
infinite number of universality classes is yielded by dependency on the natural frequency distribution and the
coupling function. Since the synchronization transition is also observed in a model on a small-world network,
whose number of links is proportional to the number of oscillators, a natural question is whether the infinite
number of universality classes remains in small-world networks irrespective of the order of links. Our numerical
results suggest that the number of universality classes is reduced to one and the critical exponent is shared in
the considered models having coupling functions up to second harmonics with unimodal and symmetric natural
frequency distributions.
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I. INTRODUCTION

Ever since Huygens found that two pendulum clocks hang-
ing on a wall swung in the opposite direction from each other,
many illustrations of synchronization have been established
in various fields of nature, such as frog choruses [1], flashing
of fireflies [2,3], metronomes [4], and circadian rhythms [5].
It is natural to try to understand synchronization theoreti-
cally, and a coupled phase-oscillator model is one successful
model to describe synchronization [6]. This model consists of
many coupled oscillators, and the coupling is expressed by a
periodic coupling function. Each oscillator has the so-called
natural frequency, randomly drawn from a natural fre-
quency distribution. When the coupling strength K increases,
the oscillators exhibit the synchronization transition from
the nonsynchronized state to (partially) synchronized states.
The synchronization transition is continuous or discontinuous,
depending on the natural frequency distribution and the cou-
pling function [7–17].

The critical phenomena have been extensively studied in
statistical mechanics. One of their remarkable features is the
existence of universality classes; the systems in a universality
class share the critical exponents defined around the critical
point K = Kc of a continuous transition. One of the critical
exponents is β, defined by r ∼ (K − Kc)β , where r is the order
parameter. Thus, it is natural to ask the universality classes
in the coupled phase-oscillator models through values of the
critical exponent β.

For the all-to-all and uniform coupling, extended studies
have revealed that the value of β depends on the coupling
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function and the natural frequency distribution [7–17]. For
simplicity, we focus on coupling functions which have two
harmonics at most and review values of the critical exponent
β for the following three cases: (i) the second harmonics is
absent, (ii) the second harmonics has the opposite sign from
the leading harmonics, and (iii) the second harmonics has
the same sign as the leading harmonics. We assume that the
natural frequency distribution is unimodal and symmetric and
that the second-leading term of its Maclaurin expansion is
of the order 2n, where n ∈ N. A Gaussian distribution and
a Lorentzian distribution have n = 1, for instance.

In cases (i) and (ii), the model shows a continuous
transition, whereas in case (iii), a discontinuous transition
occurs [12], hence we cannot define the critical exponent β.
In case (i), the model becomes the Kuramoto model [7], a
paradigmatic coupled phase-oscillator model. Several studies
have pointed out that the critical exponent β = 1/(2n) [7–10].
This n dependence is a strong feature of the Kuramoto model
and gives a sharp contrast with case (ii). In case (ii), the critical
exponent β becomes 1 for n = 1 [11–14], and this value is
suggested to be universal irrespective of n ∈ N [12].

Apart from the all-to-all coupling, couplings represented
by complex networks are of interest, like random graphs,
scale-free networks, and small-world networks [18]. In par-
ticular, we focus on the small-world network because it is
ubiquitous in the real world [19], and it is a notable net-
work for the synchronization. The synchronization transition
appears with the critical exponent β = 1/2 in small-world
networks even if they are very close to the one-dimensional
lattice [20], while the one-dimensional lattice hardly shows
synchronization [20–22]. The previous research [20], how-
ever, fails to consider universality since it has treated only
case (i) with n = 1, whereas other universality classes might
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be hidden in other cases as mentioned above. In this paper,
we numerically study the synchronization transitions in small-
world networks in all the cases, (i), (ii), and (iii), with varying
values of n. Our results suggest that the critical exponent is
universally β = 1/2 for any n ∈ N in cases (i) and (ii), where
the transition is continuous, while discontinuity in case (iii) is
inherited.

This paper is organized as follows. In Sec. II, we briefly in-
troduce the small-world network and coupled phase-oscillator
models on it. We also introduce a family of natural frequency
distributions, whose second-leading term is of the order 2n. In
Sec. III, we show the finite-size scaling to calculate the critical
exponent β. A similarity between systems in the small-world
network and noisy systems is discussed in Sec. IV. Finally, in
Sec. V, we summarize this paper and note some future works.

II. COUPLED PHASE-OSCILLATOR MODELS
ON SMALL-WORLD NETWORKS

A coupled phase-oscillator model is defined by

dθi

dt
= ωi + K

2k

∑
j∈�i

fa(θ j − θi ),

fa(θ ) = sin θ + a sin 2θ, (1)

for i = 1, . . . , N . θi and ωi are the phase and the natural fre-
quency of the ith oscillator, respectively, and ωi is randomly
drawn from a natural frequency distribution, g(ω). K > 0 is
a coupling constant, describing the strength of the coupling
between oscillators. The index set �i contains the indexes of
oscillators connecting to the ith oscillator, and it determines
the network of couplings. For instance, the all-to-all coupling
gives �i = {1, . . . , N}, and the nearest-neighbor coupling on
the one-dimensional lattice gives �i = {i − 1, i + 1}.

The coupling network represented by {�i}N
i=1 is arbitrarily

chosen. In this paper, we are interested in the small-world
network, which possesses the properties of a small diameter
and a large clustering coefficient despite its sparsity. The
small-world network can be seen in various fields of the real
world, such as human relationships, the World Wide Web, and
citations of scientific papers. In 1998, Watts and Strogatz pro-
posed a breakthrough network model showing the properties
of a small-world network, which is created in the following
algorithm [19]. We first make a periodic k-nearest-neighbor
network with N nodes, which results in kN links. Then we
rewire each link with probability p, keeping in mind that we
do not allow self-loops or link duplications. Moreover, we use
only connected small-world networks: if a generated network
is disconnected, we discard it and generate another one until
a connected one is created. See Fig. 1 for a comparison be-
tween the all-to-all network and a small-world network. In
this paper, we use the Watts-Strogatz small-world network
with k = 3 and p = 0.2, following the previous research [20]
which shows emergence of the synchronization transition in a
small-world network.

As the natural frequency distribution g(ω), we introduce a
family of distributions parametrized by a natural number n ∈
N,

gn(ω) = n

�(1/(2n))�
e−(ω/�)2n

, (2)

FIG. 1. Comparison between the all-to-all network (left) and a
small-world network (right) with 20 nodes. The small-world net-
work is constructed from the k-nearest-neighbor lattice (k = 3) with
rewiring probability p = 0.2.

where �(z) = ∫ ∞
0 t z−1e−t dt is the Gamma function defined on

Re(z) > 0. Here, � > 0 is a parameter describing the width
of the distribution. We note that n = 1 gives the Gaussian dis-
tribution. The distribution gn(ω) is unimodal and symmetric
with respect to ω = 0, and its Maclaurin expansion has the
form

gn(ω) = gn(0) − Cnω
2n + · · · , (3)

where Cn = n/(�(1/(2n))�2n+1) is positive. We remark that
the generalized Lorentzian distribution introduced in Ref. [23]
also has the same expansion form up to the second-leading
term. In the limit n → ∞, gn(ω) converges to g∞(ω) in the
L1 norm:

g∞(ω) =
{

1/(2�), ω ∈ (−�,�);

0 otherwise.
(4)

This distribution is a uniform distribution on a compact sup-
port. See Fig. 2 for graphs of the distributions gn(ω) and
convergence to g∞(ω).

To visualize the extent of synchronization of oscillators, we
introduce the order parameter rN defined by

rN =
∣∣∣∣∣

1

N

N∑
j=1

eiθ j

∣∣∣∣∣. (5)
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FIG. 2. Graphs of gn(ω) with n = 1, 2, 3, 10, and ∞, where we
set � = 1. gn(ω) converges to g∞(ω) in the limit n → ∞.
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The order parameter represents the centroid of the oscillators
moving on the complex unit circle S1. When the oscillators
are uniformly distributed on S1, which corresponds to the non-
synchronized state, rN gets close to 0. On the other hand, when
the oscillators gather at a point on S1, which corresponds
to the synchronized state, rN equals 1. The order parameter
rN is therefore useful for monitoring synchronization of the
coupled phase-oscillator models. In the next section, we look
into the dependency of the order parameter rN on the coupling
strength K .

The coupled phase-oscillator model of the small-world
network represented by Eq. (1) has been considered previ-
ously [24,25], but we stress that the numbers of links are
completely different from ours. From the construction algo-
rithm, a small-world network has kN links and k = 3 in our
networks but k = O(N ) in the literature. An advantage of
networks with k = O(N ) is that they can be analyzed through
the equation of continuity [26]. Nevertheless, this advantage
implies at the same time that such a small-world network in
the literature is essentially the same as the all-to-all coupling
and is not suitable for detecting new universality classes.

III. NUMERICAL SIMULATIONS

In the large population limit N → ∞, the coupled phase-
oscillator model, Eq. (1), is expected to show a synchroniza-
tion transition around a critical point Kc. For K < Kc, the order
parameter r(K ) := limN→∞ rN (K ) is 0, which corresponds to
the nonsynchronized state. On the other hand, for K > Kc,
the model shows partially synchronized states, in which r(K )
exhibits power-law behavior close to the critical point in the
form of

r(K ) ∼ (K − Kc)β, (6)

where β is one of the critical exponents. The critical exponents
are crucial to describe critical phenomena, and models are
classified into universality classes, each of which shares the
same critical exponents. Calculating the critical exponents,
including β, is therefore an important topic from theoretical
and numerical perspectives.

A. Finite-size scaling

The critical exponent β is defined in the large population
limit N → ∞, but the limit cannot be achieved through nu-
merical simulations. To overcome this difficulty, we use the
finite-size scaling theory, which provides us the limit from
observations in finite-size systems. The first assumption of
our finite-size scaling theory is the existence of the coherent
number Nc(K ) [27] diverging at the critical point K = Kc as

Nc(K ) ∝ (K − Kc)−ν̄ , (7)

where ν̄ is another unknown positive critical exponent. The
coherent number corresponds to the correlation length in a
simple lattice model. The second assumption is that the order
parameter rN (K ) depends on K only through the ratio

N

Nc(K )
∝ [(K − Kc)N1/ν̄]ν̄ . (8)

These assumptions imply that rN (K ) can be represented by

rN (K ) = N−β/ν̄F ((K − Kc)N1/ν̄ ), (9)

where the function F , which is called the scaling function,
must be

F (x) ∝ xβ for large x (10)

to reproduce the critical exponent β in the limit N → ∞.
We remark that the exponent β/ν̄ expresses the finite-size
fluctuation of rN (K ) at the critical point K = Kc.

The finite-size scaling is widely used for numerical studies
of critical phenomena in continuous phase transitions, includ-
ing coupled phase-oscillator models [20,28–33]. An important
remark on Eq. (9) is that, on the ((K − Kc)N1/ν̄ , Nβ/ν̄rN )
plane, observed values of rN (K ) must collapse on a single
graph of F for any values of N and K . The unknown values of
Kc, β, and ν̄ are determined by detecting the best-fit values.
The detection is performed by using the Bayesian scaling
analysis [34,35], for which a brief introduction is given in the
Appendix.

B. Computation of the order parameter

We determine the value of the order parameter rN (K ) for a
given set of (N, K ) through temporal evolution of the system
and two steps of averaging. The model equation, Eq. (1), is
numerically integrated by using the fourth-order Runge-Kutta
algorithm with the time step δt = 0.1. Initial values of the
phases {θi} are randomly drawn from the uniform distribution
on the interval [0, 2π ), and the natural frequencies {ωi} are
randomly drawn from the distribution function gn(ω). The
order parameter rN defined by Eq. (5) depends on time t , and
we take the time average in the time interval t ∈ [300, 500].
This is the first averaging.

Further, we perform 400 realizations by changing small-
world networks, the initial values of {θi}, and {ωi} for a given
set of (N, K ). To compute the confidence interval of the order
parameter, the resampling technique is in use. We choose 200
samples of 400 realizations and calculate the mean of the
time-averaged order parameter in the chosen 200 samples.
The mean of the ith resampling is denoted r (i)

N (K ), and we
perform the resampling for S = 1000 times. The value rN (K )
is determined by taking the second averaging over S samples
{r (i)

N (K )}S
i=1, which also provide the confidence interval of

rN (K ).
See Fig. 3 for the obtained rN (K ) for a = 0 and −0.2

with n = 1, where the condition a � 0 is expected to give
a continuous transition. In the following two sections, we
compute the critical exponents for a = 0 and a = −0.2 and
show discontinuity for a = 0.5, respectively. We remark that
a = −0.2 and 0.5 are not special values. They are arbitrarily
chosen from a neighborhood of a = 0 to demonstrate dif-
ferences among the three cases of (i) a = 0, (ii) a < 0, and
(iii) a > 0.

C. Critical exponents for continuous transition

The finite-size scaling, Eq. (9), is a powerful tool to com-
pute the unknown values of Kc, β, and ν̄, but it is not perfect
if N is not sufficiently large. We thus compute the unknown
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FIG. 3. Graphs of order parameter rN (K ) with its confidence
interval for the model, (1), where we take the coupling function fa(θ )
with (a) a = 0 and (b) a = −0.2. As a natural frequency distribution,
we use g1(ω) with � = 1 and N = 1600, 3200, 6400, 12 800, and
25 600, from top to bottom. rN (K ) and its confidence interval are
evaluated by the resampling technique. Error bars are so small that
they may not be visible.

variables for three values of N ∈ {Nmin, 2Nmin, 4Nmin} and
observe convergence by varying Nmin. Moreover, we use the
resampling technique again to estimate the unknown values
with their confidence intervals. Consequently, we have S =
1000 sets of the three values for a given Nmin as reported in
Fig. 4 because each resampling set r (i)

N (K ) determines them.
Finally, the values and the confidence intervals of Kc, β, and ν̄

are computed as the averages and the standard deviations over
S = 1000 sets. The estimated values are verified in Fig. 5,
where all the points lie on a single curve representing the
scaling function F for Nmin = 6400.

The estimated values of Kc, β, and ν̄ are summarized in
Table I. The row of Nmin = ∞ is obtained by extrapolation
from Nmin = 1600, 3200, and 6400 as demonstrated in Fig. 6.
We note that the extrapolated values of β are close to 1/2
and those of ν̄ are close to 5/2 irrespective of the values of
a and n. The universality is completely unlike the all-to-all
interaction case. Here we note that this result shares the same
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FIG. 4. Scattering plots of computed parameters (a) (β, Kc ) and
(b) (ν̄, Kc ), evaluated by the Bayesian scaling analysis. Here, we use
(a, n) = (0, 1), and we set Nmin to 1600, 3200, and 6400.
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FIG. 5. Graph of scaled order parameter rN (K )Nβ/ν̄ versus
scaled coupling constant (K − Kc )N1/ν̄ for (a, n) = (0, 1), where
we use β, ν̄, and Kc, obtained by the Bayesian scaling analysis for
Nmin = 6400. The values of β, ν̄, and Kc are listed in Table I. We see
that the scaled data are well collapsed to the scaling function F .

critical exponent ν̄ = 5/2 as the all-to-all interaction case for
(a, n) = (0, 1) calculated in Ref. [36].

The value ν̄ � 5/2 is not in agreement with the value ν̄ �
2 previously reported for (a, n) = (0, 1) [20]. We suppose
that the discrepancy comes from the method to compute the
critical exponents. In the literature, the authors used the fact
that rN (K )Nβ/ν̄ takes a constant value irrespective of N at
the critical point K = Kc [see Eq. (9)]. Using this fact, they
first find the best-fit values of β/ν̄ and Kc by varying the
system size N . One more equation is obtained by derivating
the finite-size scaling, Eq. (9), which produces

log

[
drN

dK
(Kc)

]
= 1 − β

ν̄
log N + const. (11)

Plotting the left-hand side as a function of log N , one has the
slope (1 − β )/ν̄. A remarkable disadvantage of this method is
that the estimation relies on a high precision of rN (K ) around
the critical point K = Kc, while the Bayesian scaling analysis
uses rN (K ) in a wider interval of (K − Kc)N1/ν̄ and provides
persistence against fluctuation. We, therefore, believe that ν̄ �
5/2 obtained by the Bayesian scaling analysis is more reliable.

D. Discontinuity of transition

In the all-to-all interaction a positive a induces discontinu-
ity of the synchronization transition [12]. We reveal that the
transition is discontinuous also in a small-world network. The
discontinuity appears as a result of a subcritical transition, and
a subcritical transition has metastability: A partially synchro-
nized state is stable in addition to a stable nonsynchronized
state for a fixed K close to the critical point. The metasta-
bility implies that the final state depends on the choice of
the initial state, and the dependency is extracted by observing
hysteresis.

Fixing a = 0.5, we check the existence of hysteresis by
preparing two sets of the initial phases {θi}N

i=1 for each K :
(i) We start from K = Kstart , where Kstart is sufficiently smaller
than the critical value Kc, and the initial phases {θi}N

i=1 are
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TABLE I. Critical exponents β and ν̄ and the critical point Kc of (1) depending on the coupling function fa(θ ) = sin θ + a sin 2θ and the
natural frequency distribution gn(ω) in Eq. (2), for a = 0 and −0.2 and n = 1, 2, 3, and ∞. For each pair of (a, n), we use Nmin = 1600, 3200,
and 6400 and execute the Bayesian scaling analysis [34] to find the best parameter fitting, (9). We extrapolate the critical values to Nmin = ∞
by using the least squares method, and they are listed on the row Nmin = ∞. Here, we show the confidence intervals for the last digit of the
estimated values in parentheses; for example, 2.13(3) = 2.13 ± 0.03.

fa(θ ) gn(ω) Nmin Kc β ν̄

a = 0 n = 1 1600 2.13(3) 0.33(4) 2.61(7)
3200 2.07(1) 0.42(3) 2.53(5)
6400 2.05(1) 0.47(3) 2.45(4)
∞ 2.02(2) 0.51(4) 2.40(6)

n = 2 1600 1.85(1) 0.27(2) 2.67(5)
3200 1.78(1) 0.37(2) 2.53(3)
6400 1.755(9) 0.44(2) 2.50(3)
∞ 1.72(1) 0.49(2) 2.43(4)

n = 3 1600 1.80(1) 0.28(2) 2.62(4)
3200 1.76(1) 0.33(2) 2.51(3)
6400 1.723(8) 0.44(2) 2.51(3)
∞ 1.69(1) 0.47(2) 2.46(4)

n = ∞ 1600 1.83(1) 0.27(1) 2.50(4)
3200 1.79(1) 0.36(2) 2.52(3)
6400 1.780(8) 0.41(2) 2.46(3)
∞ 1.76(1) 0.46(2) 2.46(4)

a = −0.2 n = 1 1600 2.43(5) 0.38(8) 2.67(9)
3200 2.35(2) 0.44(6) 2.58(7)
6400 2.34(1) 0.45(4) 2.42(6)
∞ 2.31(3) 0.48(6) 2.36(8)

n = 2 1600 2.09(3) 0.31(4) 2.87(7)
3200 1.99(2) 0.41(4) 2.65(5)
6400 1.96(1) 0.47(3) 2.52(4)
∞ 1.91(2) 0.51(4) 2.41(6)

n = 3 1600 2.04(3) 0.27(5) 2.85(8)
3200 1.96(2) 0.37(4) 2.65(5)
6400 1.91(1) 0.49(3) 2.59(4)
∞ 1.86(2) 0.55(4) 2.50(6)

n = ∞ 1600 2.08(3) 0.25(4) 2.76(6)
3200 2.00(1) 0.38(4) 2.69(5)
6400 1.97(1) 0.43(3) 2.54(4)
∞ 1.94(2) 0.49(4) 2.49(6)

randomly drawn from the interval [0, 2π ). At a certain value
of K , the final phases at t = 500 are used as the initial phases
at the successive value K + �K in the increasing direction.
The increase in K is continued up to K = Kend, where Kend is
sufficiently larger than the critical value Kc. We call process
(i) the “forward” process, and r (forward)

N (K ) denotes its order
parameter. (ii) Contrary to the forward process, we start with
the random initial phases {θi}N

i=1 at K = Kend and decrease K
up to K = Kstart following the same procedure as the forward
process. We call this process the “backward” process, and
r (backward)

N (K ) denotes its order parameter. We have executed
the numerical simulations of Eq. (1) for a = 0, −0.2, and 0.5,
and n = 1, 2, 3, and ∞. For the system size N = 25 600,
the hysteresis appears only for a = 0.5 regardless of n as
illustrated in Fig. 7 for n = 1. We have checked that t = 500
is sufficiently long to pass the transient period, and simula-
tions up to t = 800 do not affect the hysteresis. We therefore
conclude that the system represented by Eq. (1) shows a dis-
continuous transition for a = 0.5 as the all-to-all interaction
case.

IV. SMALL-WORLD NETWORK AND NOISE

We discuss similarity between systems in small-world net-
works and noise systems. For simplicity, we consider the
Kuramoto model (a = 0) briefly. The steady state in the
Kuramoto model is proportional to δ(ω − Kr sin θ ) in the
synchronized regime of ω [8,37], where δ is Dirac’s delta
function. The δ function with the integration over ω and
symmetry of the natural frequency distribution yield the self-
consistent equation of the order parameter r as

r = Kr
∫ π/2

−π/2
gn(Kr sin θ ) cos2 θdθ. (12)

The order parameter r is sufficiently small around the critical
point and we perform the Maclaurin expansion of gn. The
leading order of the expansion, which is O(r), determines
the celebrated critical point Kc = 2/[πgn(0)]. The partially
synchronized branch is obtained by balancing the second-
leading order of O(r2n+1) with the first-leading order of
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FIG. 6. Graphs of β as a function of 1/Nmin for (a) a = 0 and
(b) a = −0.2 in Eq. (1). Critical exponents obtained by the finite-
size scaling are shown with error bars, and the least squares method
shows the extrapolations at the left boundary of the panels. For each
a, the resulting linear regression lines are drawn with the solid line
for n = 1, the dashed line for n = 2, the dot-dashed line for n = 3,
and the dotted line for n = ∞.

O(r(K − Kc)), and the balance results as r ∝ (K − Kc)1/(2n).
We then obtain the critical exponent β = 1/(2n).

On the contrary, in a small-world network, a steady state
is not written in the form of the δ function and the syn-
chronized oscillators are still “noisy” as shown in Fig. 8.
The synchronized oscillators no longer capture the flatness
of gn(ω) around ω = 0, and the critical exponent β falls into
the classical value 1/2 regardless of the natural frequency
distribution gn(ω) as a noisy system [38].

Moreover, in the model having the nonvanishing second
harmonics of the coupling function with a < 0, the noise
recovers β = 1/2 [11], whereas the no-noise system gives
β = 1 [39]. The universality of β = 1/2 observed in systems
in small-world networks is therefore very similar to that in
noisy systems.

V. DISCUSSION AND CONCLUSION

We calculated the critical exponents β and ν̄ for coupled
phase-oscillator models on small-world networks by using
the finite-size scaling method. We set the coupling function
as fa(θ ) = sin θ + a sin 2θ and the natural frequency distri-
bution as gn(ω) defined in Eq. (2), and we studied the (a, n)
dependency of the critical exponents. Our numerical results
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FIG. 7. Graphs of rN (K ) and its error bar of (1) for (a) (a, n) =
(0, 1), (b) (a, n) = (−0.2, 1), and (c) (a, n) = (0.5, 1) with two dif-
ferent types of initial phases, where we set the number of oscillators
N = 25 600. We see that, only in (c), rN (K ) takes a different value
depending on the choice of the initial phases around K ∈ (1.6, 1.8).
Inset in (c): Graph of r (backward)

N (K ) − r (forward)
N (K ).

suggest that β = 1/2 and ν̄ = 5/2 for all gn(ω) and coupling
function fa(θ ) with a = 0 and −0.2. This universality shows
a sharp contrast with the all-to-all interaction case, which has
various values of β depending on the coupling function and
the natural frequency distribution. A possible explanation of
the source of contrast can be found in the number of links
of networks considered: our small-world network has O(N )
links, while the all-to-all interaction has O(N2) links. We have
also found that the model, Eq. (1), shows a discontinuous
transition for a = 0.5. The (dis)continuity is a weaker prop-
erty than the values of the critical exponents, and it is shared
between the two types of networks: networks with O(N ) links
and networks with O(N2) links.

We end this paper by commenting on two future works.
First, we picked up two representative points of a from a
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FIG. 8. Snapshots of oscillators on the (θi, ωi ) plane at t = 500.
(a) The all-to-all network. (b) A small-world network. The system
size N = 6400. The coupling constant K = 4.5. (a, n) = (0, 1).

neighborhood of a = 0 to investigate universality of the criti-
cal exponents. Studying a global phase diagram on the (K, a)
plane is a subject for future research. Second, we note the
universal value β = 1/2 in the Kuramoto model, which is
recovered by adding noise regardless of the natural frequency
distribution [38]. A small-world network may play a role of
noise due to inhomogeneous couplings, and another project to
do is to make a bridge between a noisy Kuramoto model and
a model on a small-world network.
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APPENDIX: BAYESIAN SCALING ANALYSIS

We briefly review the Bayesian scaling analysis [34,35], a
statistical method for estimating the values such as β, ν̄, and

Kc in Eq. (9). We write these values as θp = (β, ν̄, Kc). We
assume that the scaling function F in Eq. (9) obeys a Gaussian
process,

F ∼ GP
(
m, kθh

)
, (A1)

with mean function m(·) and covariance kernel kθh (·, ·). Here
θh denotes the hyperparameters of the covariance kernel. We
also set m = 0 for simplicity. In the following, we also use the
notation θ = (θh, θp). For the data {rNi (Ki )}M

i=1, the rescaled
data Xθp,i = (Ki − Kc)N1/ν̄

i and Yθp,i = rNi (Ki )N
β/ν̄
i must col-

lapse on the scaling function as Yθp,i = F (Xθp,i ). Since F is
a Gaussian process, Yθp obeys an M-dimensional Gaussian
distribution, and the probability of Y for the parameter θ is

p(Y | θ) = N
(
Yθp | 0, Kθ

)

= 1

(2π )N/2[det Kθ]1/2
exp

[
−1

2
Y T

θp
K−1

θ Yθp

]
. (A2)

Here, [Kθ]i, j = kθh (Xθp,i, Xθp, j ) is an M × M–dimensional ma-
trix. By assuming that the prior distribution of θ is uniform, we
have

p(θ | Y ) ∝ p(Y | θ) (A3)

from Bayes’ theorem. The most probable parameters θ are,
therefore, estimated by finding the minimum of the likelihood
function given by

Lθ = log(det Kθ ) + Y T
θp

K−1
θ Yθp, (A4)

which is obtained by taking the log and discarding the con-
stants in Eq. (A2). The gradient of Lθ for an element θ ∈ θ is
given by

∂Lθ

∂θ
= tr

[
K−1

θ

∂Kθ

∂θ

]
−(

K−1
θ Yθp

)T ∂Kθ

∂θ

(
K−1

θ Yθp

)+2Y T
θp

K−1
θ

∂Yθp

∂θ
,

(A5)

and using this gradient, the gradient method gives us the most
probable parameters θ.

In this paper, we consider a kernel based on a radial basis
function kernel,

kθh (x, y) = θ1 exp

[
− (x − y)2

θ2

]
+ θ3δ(x, y), (A6)

which is parameterized by θh = (θ1, θ2, θ3) with θ1,2,3 > 0,
and δ(x, y) = 1 when x = y; otherwise, δ(x, y) = 0. Here, θ3

denotes the data fidelity. Roughly speaking, a sample path of
the Gaussian process associated with a radial basis function
kernel are known to be an infinitely differentiable function;
see [40, corollary 4.13] for a rigorous statement. Therefore,
the Bayesian scaling analysis only assumes the smoothness of
a scaling function, and it does not need an explicit form. See
Refs. [34,35] for more detailed discussions.
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