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Deadlocks in the synchronization of pulse-coupled oscillators on star graphs
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Some convergence proofs for systems of oscillators with inhibitory pulse coupling assume that all initial
phases reside in one half of their domain. A violation of this assumption can trigger deadlocks that prevent
synchronization. We analyze the conditions for such deadlocks in star graphs, characterizing the domain of
initial states leading to deadlocks and deriving its fraction of the state space. The results show that convergence
is feasible from a wider range of initial phases. The same type of deadlock occurs in random graphs.
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I. INTRODUCTION

Pulse-coupled oscillators were introduced to model and
explain synchronization phenomena in natural systems [1,2].
Each oscillator’s phase variable φ ∈ [0, 1] increases with time
until it reaches the threshold φ=1, where the oscillator “fires”
to send a pulse to adjacent oscillators and to reset φ to
zero. Whenever an oscillator receives a pulse, it adjusts its
own phase according to a phase response function h(φ). In
nature, the evolution of the phase and its reaction to receiv-
ing a pulse are predetermined (e.g., in neurons [3,4]). In
human-made systems, however, they are often configurable or
programmable features [5–7].

Ever since the dynamics and synchronization of pulse-
coupled oscillators were analyzed rigorously [8], scientists
have taken various approaches to proving and investigating
the convergence to a synchronized state. This was done for
different network types [8,9] and phase response functions
[10–14]. Arbitrary networks do not necessarily synchronize—
convergence proofs exist only for certain assumptions or
restrictions. For instance, it is known that globally coupled
oscillators synchronize for almost all initial conditions with
a phase response function that implements a constant phase
jump in the positive direction (excitatory coupling) [8] or
in the negative direction (inhibitory coupling) [10,15]. With
some restrictions on the phase response function and tem-
poral evolution of φ, synchronization is shown numerically
for lattices [11] and with almost no restriction for chains and
directed trees [16]. In directed ring graphs, synchronization
can be achieved through sufficiently strong coupling for ar-
bitrary initial conditions [17]. Some systems do not converge
for certain initial conditions. The probability of convergence
to synchrony has been derived for aperiodic, strongly con-
nected, directed graphs [18]. For arbitrary, connected graphs,
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convergence proofs exist that restrict the initial phase for
each oscillator to a half-arc in the phase space [6,16]. This
restriction is motivated by some graphs prohibiting at least
one node from ever firing if inhibitory coupling is involved.
An example of a type of graph exhibiting this phenomenon is
the star graph [6].

Many publications on pulse-coupled oscillators aim to
show that certain types of graphs of pulse-coupled oscillators
synchronize. In contrast to this, we study systems that do not
synchronize. It is known that pulse-coupled oscillator systems
may exhibit periodic states, also called phase-locked states
in reference to the eponymous phenomenon in continuously
coupled oscillators [19]. We empirically observe that several
randomly initialized networks of pulse-coupled oscillators
do not just evolve into periodic states but actually exhibit
deadlocks. In a deadlock state, at least one node is perma-
nently prevented from firing and thus never synchronizes with
the rest of the network.

In this paper, we derive the entire domain of initial configu-
rations prohibiting the firing of the center node in a star graph.
The occurrence for such a deadlock was observed in our pre-
vious work [6], where it was circumvented by introducing the
concept of stochastic coupling, in which a pulse is sent with
a certain probability only. We now provide a more thorough
analysis of this deadlock mechanism. Our insights pave the
way to understanding the conditions that lead to a deadlock.
In particular, we determine how likely it is for the center
node in a randomly initialized star graph to be prevented from
firing and show by simulation that deadlocks occur in random
graphs as well.

We study star graphs for multiple reasons: First, the star
graph is known to suffer from deadlocks [6]. Second, star
graphs on their own are very relevant in real-world networks.
To give an example, they play a prominent role in local area
computer and telecommunication systems, which are often
designed as a “star topology” with a central hub, base station,
or access point. Third, large and complex networks often
include hubs with many links to other nodes and thus contain
stars as basic subgraphs. This generally includes small-world
networks [20] and specifically power grids [21] and computer
networks [22].
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II. MODEL

A star graph consists of a single center node νc and n leaf
nodes ν1, . . . , νn with links between νc and each leaf node but
no links between the leaf nodes. All nodes are identical os-
cillators with an internal phase φ ∈ [0, 1] increasing linearly
with time. The oscillators interact through exchanging pulses
via the links of the network. While no pulses are received and
φ < 1, each phase evolves with time t according to dφ/dt=1.
A pulse is sent to all adjacent nodes whenever φ = 1, at
which point φ is also reset to zero. Upon receiving a pulse, an
oscillator’s phase is changed to h(φ), where h: [0, 1] → [0, 1]
is the piecewise linear phase response function

h(φ) =
{

(1 − a) φ for φ � 0.5
(1 − a) φ + a for φ > 0.5 .

(1)

The phase response parameter a ∈ (0, 1) determines the in-
teraction strength, i.e., the effect an incoming pulse has
on an oscillator’s phase. The used combination of an ex-
citatory and an inhibitory coupling domain has beneficial
effects on synchronization [14,23]. The function is simple
enough to be implemented in resource-constraint systems,
where it serves as a kind of proportional control mecha-
nism, drawing the receiving oscillators’ phases towards zero,
i.e., to the current phase of the sending oscillator. The ex-
change of pulses between coupled oscillators thus reduces the
differences between their phases over time. For oscillators
numbered in the order of their next firing time, such that
φk < φk−1 for k ∈ [2 . . n], we evaluate the level of synchro-
nization in the graph by the phase spread s := 1 − maxk δk ,
where δk = (φk−1 − φk ) (mod 1) is the phase gap leading up
to the kth oscillator. The phase spread s represents the length
(normalized by 2π ) of the smallest connected interval on
the unit circle that contains all points ϕk = exp[2π iφk]. As
the system synchronizes, the largest phase gap tends to one:
δmax → 1. If the phases are degenerate, their order is not well
defined. The definition of the phase spread holds for any of the
allowed orders. If all phases are equal (φk = φ ∀k), we speak
of a perfectly synchronized system, as all firing events always
occur simultaneously. A nonsynchronized system with the
phase response function (1) does not reach perfect synchro-
nization in finite time but is considered to be synchronized if
s is below a certain threshold.

All leaf nodes receive pulses only from νc but not from
the other leaf nodes. Thus, the synchronization process is
advanced only by the firing events of νc. Upon such an event,
all leaf nodes change their phases according to (1), and the
phase gaps change to

δ+
k =

{
δk + a (1 − δk ) if 0.5 ∈ [φk, φk−1)
(1 − a) δk else.

Illustrating all phases as points on the unit circle, these phase
gaps are arcs on the circle (Fig. 1). Always one such arc
contains the phase φ = 0.5. A pulse from νc lengthens this
antipodal arc but shortens all other arcs.

III. DEADLOCKS

Since (1) allows for inhibitory effects from receiving
pulses, it is conceivable that νc never fires. Such a deadlock

antipodal gap

leaf node phase

resetting
center node

after reset, the
antipodal gap
is widened

leaf node phases
drawn backwards

leaf node phases
pushed forwards

FIG. 1. The center node fires. Phase constellation before the fire
event (left) and after reception of the pulse by leaf nodes (right). The
antipodal phase gap increases; all other gaps decrease.

occurs if the phase φc(tk ) on the verge of receiving a pulse
from νk is in the inhibitory domain for all k ∈ [1 . . n]. In fact,
deadlocks may occur for any phase response function with an
inhibitory part, including delay-only functions. A discussion
of piecewise linear delay-advance phase response functions
with a switching phase φs �= 0.5 goes beyond the scope of
this work but follows the same train of thoughts. Formally, a
deadlock state is a configuration of the phases that prevent at
least one oscillator’s phase from reaching 1. There are config-
urations that lead to a deadlock state only after every oscillator
has fired at least once. In simulations, we have regularly seen
this transition to a deadlock for random graphs but never for
star graphs. Thus, the following analysis of deadlocks in star
graphs does not cover the domain of attraction toward the
set of these configurations. To gain an understanding of the
process that keeps νc in a deadlock, we focus on the sequence
of phases that νc exhibits right before the firing events of each
of the leaf nodes.

A. Setup

We randomly initialize the n leaf nodes, which then evolve
according to the described model, thus firing periodically, in-
dependent from each other at times tk + m T with k ∈ [1 . . n]
and m ∈ N. For simplicity, we label the leaf nodes according
to their firing order. The center node’s phase φc begins to
evolve with φc(t0) = 0. Its phase right before receiving a pulse
from a leaf node determines whether it moves forward (excita-
tory coupling) or backward (inhibitory coupling) as a reaction.

Let t0 coincide with the time directly after a firing event of
νn. If νc is caught in a deadlock, only inhibitory coupling will
occur. Thus, in a deadlock, right before νk fires at time tk , the
center node exhibits the phase

φc(t−
k ) = φc(t0) (1 − a)k−1 +

k∑
l=1

δl (1 − a)k−l . (2)

If any of these phases is larger than one half, the center node
“escapes” the inhibitory domain and will fire at some point in
time and consequently not be in a deadlock.

Before determining the domain of initial phase gaps that
keep νc in a deadlock, we first derive that in such a deadlock
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the phases in (2) converge monotonically to a distinct, finite
sequence (�k )k∈[1..n] dependent only on the initial phases of
all leaf nodes νk . Then we derive the fraction of initial config-
urations of leaf node phases that lead to such sequences.

B. Limit behavior of φc

For the analysis of convergence one commonly uses the
system’s return map, i.e., the function that maps an oscillator’s
current phase to its phase after one period T = 1 has passed.
Since in a deadlock all nodes but νc oscillate undisturbed with-
out incoming pulses, only the return map for νc is of interest.
After one period every leaf node fired exactly once. So the
phase of νc will have changed from φc(t0) to (1 − a) φc(tn)
due to its internal dynamics and reaction to received pulses.

We now show that a fixed point �0 of this return map exists
and that

(ξ0,m)m∈N := φc(t0 + m T ) (3)

converges monotonically to �0. Further, because φc(tk ) is
fully defined by φc(t0) and the times between consecutive
pulses δ j , for j ∈ [1 . . k], �0 analogously defines a finite
sequence (�k )k∈[1..n] of center node phases before the firing
of νk . We will show that the sequences

(ξk,m)m∈N := φc(tk + m T )

likewise converge monotonically to �k , respectively.
If a fixed point of the return map exists, it fulfills

φc(t0) = (1 − a) φc(tn). From this and (2) we derive �0,
which coincides with νc’s phase after the reception of pulse
a from νn in a converged state,

�0 = 1 − a

1 − (1 − a)n

n∑
l=1

δl (1 − a)n−l ,

with a �= 0. The elements of the converged sequence
(�k )k∈[1..n] are then defined by

�k = �0 (1 − a)k−1 +
k∑

l=1

δl (1 − a)k−l . (4)

To show convergence, we use the recursive definition
of (3),

ξ0,m = ξ0,m−1 (1 − a)n + G, (5)

with the added constant

G := (1 − a)
n∑

l=1

δl (1 − a)n−l

and expand it to an indexed notation

ξ0,m = ξ0,0 (1 − a)m n + G
m−1∑
l=0

(1 − a)l n.

In the limit of m → ∞, the sequence converges to

ξ0,∞ = 1

1 − (1 − a)n
G = �0.

The convergence is monotonic because

ξ0,m+1 − ξ0,m = (1 − a)m n(1 − (1 − a)n)︸ ︷︷ ︸
>0

(�0 − ξ0,0),

which is positive (increasing) if ξ0,0 < �0 and negative (de-
creasing) if ξ0,0, > �0.

Since we required 0 = ξ0,0 < �0, by comparing (2) and (4)
we see that the sequences (ξk,m)m∈N also converge monotoni-
cally to their limits �k .

C. Volume of deadlock configurations

Now that we know the long-term behavior of νc, we define
a condition for its limit sequence �k that is equivalent to νc

being in a deadlock. The map from phase gaps between leaf
nodes δk to the sequence of center node phases �k is linear
and defined by an n × n matrix A with entries

Akm = (1 − a)k−m

1 − (1 − a)n
×

{
1 k � m
(1 − a)n else.

A deadlock occurs if all center node phases in the sequence
�k are smaller than one half. Using the matrix A, the deadlock
condition is thus given by

0.5 � � = A δ (6)

with � = (�1, . . . , �n)T, the vector consisting of the ele-
ments of (�k )k∈[1..n], and δ = (δ1, . . . , δn)T. The symbol �
refers to an element-wise � relation. Note that A depends only
on a and is thus fixed for a given phase response function. To
determine the domain of deadlock configurations (deadlock
domain), we observe that the configuration space (i.e., the
space of all combinations of phase gaps δ) is the standard
(n − 1)-simplex in Rn,

Sn =
{

δ ∈ Rn

∣∣∣∣∣ δk � 0 ∧
∑

k

δk = 1

}
.

The deadlock domain, which is a subset of Sn, is

Dn = {δ ∈ Sn | 0 	 A δ 	 0.5}.
To get an idea of the incidence of deadlock occurrences,

we derive the fraction of initial configurations exhibiting
deadlock behavior over all possible configurations, which cor-
responds to calculating the (n − 1)-dimensional volumes of
Dn and Sn embedded in Rn. Per definition of the phase gaps
we have

δn = 1 −
n−1∑
m=1

δm, (7)

which defines a hypersurface in Rn, whose (n−1)-
dimensional volume is given by

v =
∫

V

√
n dV,

where the factor
√

n is the Jacobian determinant of the
parametrization and dV denotes the multidimensional volume
element. For the entire configuration space (i.e., V = Sn) the
integral yields

v(Sn) =
∫ u1

0
. . .

∫ un−1

0

√
n dδ1 . . . dδn−1 =

√
n

(n − 1)!
, (8)
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where uk is defined by the requirements that it may not fall
below zero and the sum of all δk needs to be one:

uk = max

(
0, 1 −

k−1∑
m=1

δm

)
. (9)

Similarly, the integral over the deadlock region takes
the form

v(Dn) =
∫ u1

l1

. . .

∫ un−1

ln−1

√
n dδ1 . . . dδn−1 , (10)

but the upper and lower limits (uk and lk) need more consider-
ation than for (8). In addition to (7), the limits are governed by
(6). Since the upper and lower limits of δk are affected by both
preceding as well as following δm �=k , it is not straightforward
to define exact limits for each δk . We can, however, derive the
exact limits for δn−1 and use the extra condition ln−1 � un−1

to reduce the feasible integration interval In−1 := [ln−1, un−1]
to a point (i.e., no contribution to the overall integral) if
δ1, . . . , δn−2 allow for at most one value of δn−1 that has δ

lie in the deadlock domain.
As before, δn is determined by (7). We also keep the upper

limits from (9) for k < n.
The additional limitations on δn−1 come from (6). Using

(7) and the definitions

Ãkm :=
{

Akm − Akn m �= n
Akn m = n

k, m ∈ [1 . . n] ,

δ′ := (δ1, . . . , δn−1, 1)T, (11)

we rewrite (6) to form the n conditions

Ãm· · δ′ � 1
2 , with m ∈ [1 . . n] . (12)

From (11) we see that the entry Ãmk is positive if k � m < n
and negative otherwise. Thus, rearranging (12) for δn−1

and introducing

	m := 1

Ãm(n−1)

(
1

2
−

n∑
j = 1

j �= n − 1

Ãm j δ
′
j

)
, 	0 := 0

and the index set

M := [1 . . n]\{n − 1},
we find for m ∈ M the lower constraints δn−1 � 	m and for
m = n−1 the upper constraint δn−1 � 	n−1. Then

ln−1 = max
m∈M∪{0}

	m.

Depending on a, there are δ′ for which ∃ m ∈ M s.t.
	m > 	n−1. Such δ′ do not represent configurations in the
deadlock domain because 	n−1 � δn−1 � 	m �=n−1 follows
from the transformed deadlock condition (12) and it contra-
dicts 	n−1 � 	m. For the integration we thus have to require
that un−1 � ln−1. So the upper limit is

un−1 = max

{
ln−1, min

{
1 −

n−2∑
j=1

δ j,	n−1

}}
.

If the bounds of δn−1 reduce its range to ln−1 = un−1, the
integral over δn−1 is zero and thus the entire integral will not
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FIG. 2. Fraction of oscillator configurations leading to a dead-
lock in the synchronization of star graphs. Deadlocks occur only for
a sufficiently large response parameter a > 2/n (small circles). They
become more frequent with increasing a and number of leaf nodes n.
Shown are the curves for n ∈ {4, . . . , 10}. For the maximum response
a=1, the oscillators reset their phases straight to the beginning or
end of their cycle. This also holds when all configurations with all
δk � 1

2 (dashed lines) lead to a deadlock (if n > 2).

get contributions from that particular combination δ. There-
fore we do not need to further constrain the bounds on δk<n−1,
and we leave them as in (8) and (9).

Solving (10) and dividing the result by (8) gives the frac-
tion of configurations leading to a deadlock. Figure 2 shows
this fraction as a function of the response parameter a for
different values of the number of leaf nodes n.

For many values of a, the actual domain of configurations
leading to a deadlock is much smaller than the domain of con-
figurations excluded in Refs. [6,16,17]. In fact, no deadlocks
occur for a � 2/n. This in turn means that many more config-
urations may synchronize than these papers prove. For a = 1,
all configurations with δk � 1

2 ∀ k keep νc in a deadlock. This
maximum deadlock domain D̂N is also the complement to
the domain of guaranteed synchronization. Its fraction of the
entire configuration space is V (D̂N )/V (SN ) = 1 − n/2n−1.

IV. RELEVANCE OF DEADLOCKS

As we derived the incidence of deadlocks in star graphs,
the question arises whether this phenomenon plays a role in
other graphs as well. Since our analytic approach is tailored
to star graphs and in this form works only for them, we now
investigate the synchronization behavior numerically, focus-
ing on random graphs, as a prominent example.

Our simulation employs Gilbert random graphs G(n, p)
with n nodes and connection probability p [24]. We use five
different orders n = 15, 20, . . . , 35 and generate five ran-
dom graphs for each of them. For given n, the value of p
is chosen from a uniform distribution between 2/n and 7/n.
The response parameter a is varied from 0.05 to 1. For each
graph and response parameter, we initialize the nodes with
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FIG. 3. Ratio of initial configurations that do not lead to syn-
chrony for 25 connected random graphs G(n, p) with n nodes and
connection probability p as a function of the response parameter
a. There are many nonsynchronizing configurations for weak inter-
actions (small a), all of which lead to periodic states. For strong
interaction (large a), most configurations lead to synchrony, but the
ones that do not synchronize have at least one deadlock node. The
(n, p)-values of those graphs are given and their curves are marked.
For each graph, the dot marks the smallest a for which more than half
of the nonsynchronizing configurations exhibit deadlocks.

a random phase between zero and one, simulate the system
over 2000 periods, and record the state to which the system
has converged. The process is repeated 3000 times for each
combination of parameters. The ratio of nonsynchronizing
configurations in these runs is shown in Fig. 3.

As a result, we find two types of stable, nonsynchronized
states. The first type is a periodic state, where all nodes agree
on a common frequency but do not align the start of their
cycles, despite regular pulse exchange between all neighbors.
These states are responsible for the rise of nonsynchronizing
configurations for small values of a. The second type is a
deadlock state, where at least one node νc never fires and thus
also never synchronizes with the rest of the network. States
exhibiting deadlocks make up the nonzero ratios of nonsyn-
chronizing configurations for large values of a. Two examples
of an 11-node random graph with initial configurations lead-
ing to a periodic state and a deadlock state, respectively, are
shown in Fig. 4.

In our simulations, the probability of periodic, nonsynchro-
nized states to occur is highest for weak interactions and tends
to zero or a small value at stronger interactions. In contrast,
graphs that exhibit deadlocks have an increased probability of
converging to a deadlock state for very strong interactions—
for one of the generated graphs even up to almost 40%.

A node whose phase is reduced due to an incoming pulse
effectively has a prolonged time spent in the inhibitory do-
main. The stronger the coupling, the longer this time becomes,
making it more likely to receive another inhibitory pulse. As
we have seen for star graphs, with sufficiently many incom-
ing pulses, a node can be kept in a deadlock and stronger
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FIG. 4. Examples of nonsynchronizing configurations. Upper
row: graph and two sets of initial phase configurations, indicated by
the directions of the arrows. Lower row: pulses over a few periods
after a sufficient convergence time. Left side: a periodic state that
does not further synchronize despite repeated communication. Right
side: some nodes in a deadlocked state [marked black in (b)], in
which they are prevented from firing; the remaining nodes have
converged to a periodic state.

interaction reduces the number of pulses required for the
deadlock, i.e., makes the deadlock more likely to occur in a
random graph.

In star graphs we did not encounter nonsynchronized peri-
odic states without deadlocks. The effects allowing a network
of pulse-coupled oscillators to converge to a periodic state
have been studied [19], but a detailed discussion goes beyond
the scope of our paper.

Deadlock states appear in two situations, with different
impact on the synchronization. First, they may appear as a
side effect of a periodic state. If νc gets enough inhibitory
input from its neighbors in the periodic state, it never fires,
but its removal from the network would have no impact on the
system. Second, νc is a bottleneck in the graph, i.e., removing
νc from the graph splits it into more than one component.
As a bottleneck, the firing behavior of νc directly impacts the
synchronization of the remaining nodes, since no information
is transmitted from one of the otherwise disconnected compo-
nents to another, without νc firing.
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In some systems, completing the internal cycle of a node is
necessary for other internal processes, for instance, to facili-
tate the transfer of information to neighbors. Thus, preventing
a node from firing may have more severe consequences than
a nonsynchronized, periodic message exchange. A deadlock
state is thus qualitatively different from other nonsynchro-
nized states, and its potential presence in random graphs
makes an analysis of the phenomenon a worthwhile endeavor.

V. CONCLUSIONS

This paper analyzed a deadlock effect that prevents certain
graphs of pulse-coupled oscillators from synchronizing. For
star graphs, we showed that the domain of configurations
exhibiting a deadlock is, for some intervals of the response
parameter a, only a small subset of the configurations that
are excluded in convergence proofs found in the literature.
This result provides an analytical upper bound for the volume

of synchronizing states, complementing the existing lower
bound [6,16]. We computed the fraction of initial states lead-
ing to a deadlock in star graphs and found a condition for the
maximum steepness of the phase response function necessary
for exhibiting deadlocks. Simulations show that synchroniza-
tion deadlocks can also occur in random graphs. In both star
and random graphs, deadlocks seem to be more prominent if
there is a strong reaction to incoming pulses and require the
affected nodes to have a certain minimum degree. Knowing
this phenomenon complements our understanding of nonsyn-
chronizing behavior and could help in the design of network
synchronization techniques.
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