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Layered localization in a chaotic optical cavity
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We propose and demonstrate the localization of resonant modes in a Limaçon optical microcavity with layered
phase space involving both major and minor partial barriers. By regulating the openness of the cavity through the
refractive index control, the minor partial barriers, which do not directly confine the long-lived resonant modes,
are submerged successively into the leaky region. During the invalidation process of the minor partial barriers,
it is found that the quality factor and the conjugate momentum of the resonant modes exhibit changes with the
emergence of turning points. Such phenomena are attributed to the joint confinement effect by the minor partial
barriers together with the major one in the layered phase space. This paper helps to improve the understanding
of complex dynamics, and sheds light on the fine design of photonic devices with high performance.

DOI: 10.1103/PhysRevE.102.062208

I. INTRODUCTION

Localization of resonant states is crucial in the study
of dynamical systems for revealing the quantum feature of
stochastic motions [1–6]. Within a fully chaotic region, a
ubiquitous localization mechanism is provided by partial bar-
riers in the phase space [7–10], which has been investigated
in various systems such as nonlinear oscillators [6], chaotic
billiards [10–12], and ionizations [13–15]. The partial barrier
is a ubiquitous structure in chaotic phase space, formed by ho-
moclinic orbits, cantori, or periodic orbits [7,8]. For classical
dynamics, a partial barrier imperfectly divides the chaotic re-
gion into two nearly isolated subregions. All motions crossing
the partial barrier must pass through a specific area named as
flux determined by the partial barrier. In the quantum regime,
a wave packet with an extended size hardly resolves the flux
due to wave effects, which suppresses the classical transition
across the partial barrier [10,16]. Therefore, the nearly invari-
ant subregions divided by the partial barrier provide resonance
zones for wave localizations [8,10], even though the holistic
classical dynamics does not support any regular orbits with
strong coherence. In this view, long-lived resonant states can
also exist in the chaotic phase space with the assistance of
partial barriers.

In previous works, this localization mechanism is only con-
sidered with the existence of a single partial barrier [9,12,16],
by which a resonant mode is directly confined in the quantum
regime [10]. However, for a real chaotic system, there gener-
ally exist multiple partial barriers forming a layered structure
in the phase space. The impact on the localization of resonant
modes by multiple partial barriers has been still elusive so far.
In this paper, we propose and demonstrate the layered local-
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ization of an open system in a Limaçon optical cavity in the
quantum regime. Here the phase space is divided by several
homoclinic partial barriers. The long-lived resonant modes
are mainly governed by one major partial barrier, which
bounds most of the mode projection in the phase space [10].
Other partial barriers, named as minor partial barriers, locate
between the major one and the leaky region (Fig. 1). By
adjusting the cavity refractive index to control the openness
of the system, we investigate the localization of whispering
gallery modes (WGMs) [17] through tracing their quality fac-
tors (Q) and the averaged conjugate momentum. During the
submersion process of the minor partial barriers into the leaky
region, explicit turning points of the Q factor and conjugate
momentum are observed, revealing the additional localization
effect brought by the minor partial barriers. Moreover, through
varying the mode number and the deformation of the cavity, it
is found that this turning point is influenced by both the flux
of the partial barrier and the size of the Planck cell.

II. CHAOTIC OPTICAL CAVITY SYSTEM

The chaotic system used here is an asymmetric optical mi-
crocavity which provides a significant platform for the study
of both classical and wave chaos [17–21], benefiting from its
phase space with multitudinous structures and the easy control
of openness. In the past decades, numerous advanced devel-
opments have been witnessed in asymmetric microcavities,
such as dynamical tunneling [22–24], non-Hermitian physics
[25,26], low-coherence lasers [27–29], and nonlinear optics
[30,31]. The classical dynamics of the light inside a chaotic
asymmetric optical cavity is described by the billiard model,
which records the reflection position s and the incident angle
χ for each reflection of the propagating light [Fig. 1(a)]. The
real-space trajectory of the light in the cavity can be mapped
into the phase space (Poincaré surface of the section) with the
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FIG. 1. (a) Schematic diagram of the billiard model for a
Limaçon cavity. As an example, hyperbolic (dashed line) and el-
liptic (dot-dashed line) three-period orbits in real space are given.
(b) Poincaré surface of section with chaotic dynamics. The cor-
responding three-period orbits are also given in the phase space,
marked with circles (hyperbolic) and crosses (elliptic). (c) The
Husimi projection (heat map) of a WGM is confined by the major
partial barrier (black curve). Partial barriers of six-, five-, four-, and
three-period orbits are marked with I, II, III, and IV, respectively. The
dashed line denotes the critical line of total internal reflection, which
defines the leaky region (gray region). The size of Planck cell h is
given in the lower-right corner for reference, which represents the
relative size of the wave packet. Inset: Field distribution of a typical
fundamental WGM in real space.

arc length s normalized to 2π and the corresponding conjugate
momentum sinχ [32], as shown in Fig. 1(b).

Here we choose a Limaçon shaped cavity with an easily
modulated phase space, which has been extensively re-
searched in various fields [33–37]. The cavity boundary shape
is described by the function in polar coordinates (r, φ) :
r(φ) = 1 + ε cosφ, where ε is the deformation parameter.
The deformation parameter ε is large enough (ε = 0.43 if not
indicated otherwise) to ensure that the phase space is highly
chaotic. In this case, the impact of remaining island structures
under the wave effect can be ignored [33], so that the sticki-
ness originated from the island structure [38] can be avoided.
The phase space is divided by the homoclinic partial barriers
which are formed by the stable and unstable manifolds of the
hyperbolic periodic orbits [7]. The stable (unstable) manifold
is the set of points converging to the periodic orbits in forward
(backward) evolution [32,39], marked by the blue (green)
dashed curves in Fig. 1(b). The corresponding flux A [shaded
area in Fig. 1(b)], characterizing the transition property of
the partial barrier, is derived from the area enclosed by the
partial barrier and its one-time backward mapping [red curves
in Fig. 1(b)] [8]. In addition, the optical cavity is a partially
open system, the leakage of which is determined by the re-

fractive loss. As shown in Fig. 1(c), the leaky region in the
phase space is defined by the critical line corresponding to the
critical total internal reflection sinχc = 1/n, where n is the
relative refractive index between the cavity and the external
medium.

Generally, the Husimi projection is employed to charac-
terize a resonant mode in the phase space [40], as shown in
Fig. 1(c). It is found that the major partial barrier I efficiently
confines the fundamental WGM, while the existing minor
partial barriers, i.e., II, III, and IV, are away from the resonant
mode in the phase space. Despite the tiny overlap with the
mode distribution, the minor partial barriers also bring an
additional localization effect.

III. LAYERED LOCALIZATION MANIFESTED BY
GLOBAL PROPERTIES

In order to investigate the localization from the minor
partial barriers, we regulate the openness of the asymmet-
ric cavity and monitor the global properties of the resonant
modes. This is because the openness of the system con-
nects the transient and the persistent dynamics [41], and
the localization representing asymptotic behaviors is severely
modulated by the short-time dynamics close to the leaky re-
gion. As a technical method, the openness of the system is
manipulated by changing the refractive index n to control the
critical line, and the corresponding influence on the localiza-
tion can be explicitly reflected in the form of quality factors
and conjugate momentum of the resonant modes.

A. Quality factor

First, we investigate the Q factor of fundamental WGMs,
which instructively manifests the decay rate and the localiza-
tion of the mode. By employing the boundary element method
[42], the field distributions and Q factors of the long-lived
resonant modes are obtained [43]. Then we trace the WGMs
with the same angular mode number m during the variation
of the critical line, which is mostly confined by the partial
barrier I marked as the black curve in Fig. 2(b). The mode
number m for fundamental WGMs in an asymmetric cavity
is defined with the number of maxima along the azimuthal
direction divided by 2. Note the field distribution of WGMs in
the real space [inset of Fig. 1(c)] is characteristic to ensure
that the same mode is traced while varying the openness.
Figure 2(a) shows the dependence of the Q factors on the
critical line with different mode numbers m. It is found that
for a fixed mode number, the Q factors tend to descend with
the lift of the critical line due to the increment of system
openness, and commonly exhibit an explicit turning point in
the blue region. As an example, the turning points of the Q
factors with the mode number m = 65 is plotted in the inset
of Fig. 2(a). Bounds of the blue region are defined by the
turning points for m = 60 and 69 curves, in which resonant
modes take additional leakage along with the rising critical
line. For a more intuitive aspect, the blue region containing
the turning points is found coincident with partial barriers
II, as shown by the blue curve in Fig. 2(b). Owing to the
little change in radiation loss induced by material refractive
index, the emergence of the turning points implies that the
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FIG. 2. (a) Q factors of WGMs depending on the critical line
sinχC. The WGMs with different mode numbers m are mostly con-
fined by the major partial barrier I. Inset: A specific illustration of the
turning point in the blue region. The turning point is defined as the
intersection of fitting slopes. (b) The phase space marked with the
blue and gradient green shadows, which correspond to the regions
with same color in (a). (c) Turning points of Q and fitting errors in
the blue region (partial barrier II) vs the mode number m and the ratio
between flux A and Planck cell hm.

additional localization brought by the minor partial barrier
takes responsibility for the emergence of turning points. When
the critical line lifts high enough to cover a partial barrier,
the additional localization of this partial barrier becomes void.
Then the leakage process of the WGMs encounters a transition
and turns out to be the turning points in the slopes of Q factors.
Additionally, it is also found that the slopes at the green
region show weak correlations, where a turning point ought
to emerge due to the localization effect of partial barrier III.
However, other low Q modes with higher radial number living
in the resonance zone between partial barriers II and III induce
modal coupling effect to fundamental WGMs. The modal
coupling takes undesired interference to the leakage process
[44–46], which surpasses the localization effect brought by
the partial barrier III and results in the weak correlation in
the slopes. In contrast, the modes localized between partial
barriers I and II are far detuned from the fundamental WGMs.
Therefore, there is no modal coupling for the blue region case,
for which we will focus on this region in the rest of this paper.

Furthermore, we note that the position of turning points
in the blue region exhibits a strong dependence on the mode
number m shown in Fig. 2(c). This localization is tightly
related to the transition property of partial barriers, which is
governed by the ratio between the flux of the partial barrier A
and the size of Planck cell hm [16]. In our case, A is the flux
of the partial barriers II, which is constant for the specified
boundary condition. The size of Planck cell hm = 1/nkR is

FIG. 3. (a) Husimi projection of a typical WGM confined by
partial barrier I in logarithmic scale. (b) Averaged momentum 〈p〉
of the Husimi distribution depending on the critical line sinχC with
different mode numbers. (c, d) Comparison between the Q factors
(red curve) and the symmetric derivative of the averaged momen-
tum �〈p〉/�sinχC (black curve) for mode number (c) m = 63 and
(d) m = 67. The blue dashed line marks the position of the turning
point.

varied with different mode numbers m, where k denotes the
wave vector in vacuum and R denotes averaged radius of
cavity in the polar coordinate. Especially, the product nkR
keeps nearly invariant for a fixed mode number m, so that the
size of Planck cell hm is uniformed with the refractive index
n but dependent with the mode number m. For our system,
the ratio A/hm is comparable with 1 representing a proper
wave effect, in which the transition rates through the partial
barriers are explicitly modulated by the ratio A/hm [10,16].
Here the dependence of the turning point on the ratio A/hm

is plotted in Fig. 2(c), exhibiting a positive correlation. This
phenomenon can be understood as that the transition rates rise
with a smaller Planck cell hm for the shrinkage of wave effect,
resulting in the weak localization. As a result, the global prop-
erties of the system with smaller hm are less affected by the
additional localization effect of the partial barrier, and need
larger openness to manifest the dramatic change in Q factors.

B. Conjugate momentum

Besides the investigation of the Q factors, the conjugate
momentum of the resonant modes is also explored in the
phase space. As shown in Fig. 3(a), the Husimi projection of
a typical WGM shows a layered distribution in the logarith-
mic scale, the contours of which are coincident with partial
barriers. Quantitatively, we calculate the averaged momen-
tum 〈p〉 = ∫∫

pH (s, p)dsd p with the conjugate momentum
p = sinχ and Husimi projection H (s, p). Following the same
instructions as tracing the Q factor of the WGMs, we obtain
the trend of the averaged momentum with the changing of the
critical line shown in Fig. 3(b). With the lift of the critical
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line, the remanent tail of the projection close to the leaky
region vanishes gradually, which naturally results in the rising
trend of the averaged momentum. To reveal the variation in the
momentum of the resonant mode, the symmetric derivative of
the averaged momentum is investigated and compared with Q
factors as shown in Figs. 3(c) and 3(d). As for the WGMs with
different mode numbers m, both of the symmetric derivative
curves exhibit single major peaks in the blue region, which
are exactly coincident with the turning point of Q factors with
respect to partial barrier II. This result implies that the minor
partial barriers have impacts on the holistic dynamics literally.

The features of momentum curves can be well explained by
the layered structure with partial barriers. In our system, the
leakage of modes is characterized by the lowest partial barrier
beyond the critical line. For example, in Fig. 3, the critical line
changes from the level below the partial barrier II to approach
the partial barrier I. In this process, the leakage is initially gov-
erned by the partial barrier II. The averaged momentum grows
evenly due to the enlargement of the leaky region until the
critical line touches the partial barrier II. When the critical line
reaches the partial barrier II, its additional localization is de-
stroyed and the leakage experiences a dramatic change, result-
ing in a sudden rise in the averaged momentum. After this, the
leakage will be governed by the partial barrier I and the growth
of averaged momentum tends to be even. As a result, the sym-
metric derivative curves of averaged momentum commonly
show peaks corresponding to the turning point of Q factors,
which represents the invalidation of a minor partial barrier.

IV. VARIANCE OF THE TURNING POINT

At last, we present the determinant of the localization
effect of a single partial barrier. As mentioned in Fig. 2(c),
the drift of turning points is supposed to be caused by the
changing ratio of flux to Planck cell A/hm. Different from
variation in the Planck cell shown in Fig. 2, now we control
the flux A by choosing different deformation parameter ε.
Figure 4(a) illustrates the incoming fluxes of the five-period
partial barriers (II) with different deformation parameters ε in
the phase space. The profiles of partial barriers are roughly
the same but the incoming fluxes are quite different, and the
corresponding ratio A/hm is given in Fig. 4(b). For cavities
with larger deformation parameters, the dynamics is more
disordered, so that the corresponding fluxes are larger than
those with smaller deformation. Then we focus on a single
WGM (m=65) to investigate the change of turning points with
different deformation parameters following the same instruc-
tions in Fig. 2. The variation of Q factors with the changing
critical line is illustrated in Fig. 4(c), and the corresponding
turning points of these curves are given in Fig. 4(d).

However, unlike the results in Fig. 2(c), the turning points
keep almost invariant with the change of ratio A/hm. This
phenomenon is mainly attributed to two destructive effects
caused by the enlarged flux and the lowered offset. As for
the latter, specifically, the flux in the case of a cavity with a
larger deformation parameter has a lower edge sinχE marked
in Fig. 4(a), which is supposed to touch the critical line earlier
at a lower position of sinχ . Therefore, the turning points turn
out to be at a lower position of sinχ , which counteracts the
effect by the increased ratio A/hm shown in Fig. 2(c). By

FIG. 4. (a) The incoming fluxes of partial barriers II in the phase
space with different deformation parameters ε. (b) The ratio A/hm vs
the deformation parameter ε. The corresponding lower edge of the
incoming flux sinχE is also marked with the red curve. The mode
number is fixed as m = 65. (c) Quality factors of WGMs depending
on the critical line sinχC with fixed mode number m and different
deformation parameters ε. (d) The Q turning point and fitting error
in the partial barrier II region vs the deformation parameter ε. A
modified result with the red curve is obtained by considering the
relative position with the edge sinχE.

recording the relative distance from the edge sinχE to the
turning point, a modified turning point is estimated in Fig. 4(d)
simultaneously. The modified result shows a same correlation
with Fig. 2(c), implying that the ratio A/hm indeed takes
responsibility to the turning point in this process.

V. DISCUSSION AND CONCLUSION

The method to investigate the layered localization by par-
tial barriers is also realizable in real experiments. It is realistic
to reach a wide range of critical line tuning by employing a
jet asymmetric microcavity or putting the asymmetric micro-
cavity in a liquid environment, where the relative refractive
index can be easily controlled. Similar setups such as liquid
jets [24,47] have been realized to investigate the unidirectional
emission and dynamical tunneling in asymmetric microcavi-
ties. It is achievable to analyze the localization of resonant
modes through monitoring mode Q factors from the transmis-
sion spectra of a passive optical cavity or measuring the lasing
threshold of an active cavity.

In summary, we propose and demonstrate the localiza-
tion within a layered phase space in the quantum regime by
utilizing a chaotic optical cavity. Besides the major partial bar-
rier directly confining the resonant modes, the minor partial
barriers also take joint confinement effect for localization of
resonant modes. The localizing capacity of the minor partial
barrier is demonstrated and studied by controlling the open-
ness of the system and observing the global performance of
resonant modes, i.e., Q factor and averaged conjugate momen-
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tum. Consequently, these global properties present turning
points as the minor partial barrier gradually submerges into
the leaky region. In addition, the turning point shows a de-
pendence on the flux A and the size of Planck cell hm. Noted
that although this paper mainly focuses on the three-layer
structure divided by one major and one minor partial barrier,
this result is the simplest model for the effects of layered
partial barriers and can be readily extended to the structure
with more minor partial barriers. This demonstrated layered
localization by multiple partial barriers is of great importance
for understanding the complex dynamics in fundamental re-
searches and can be utilized in the design of functional cavities
with flexible emission features and exceptional modes.

For future researches, there exist the following unsolved
problems and challenges.

(1) The dependence of the turning point and the ratio A/hm

is phenomenologically explained in this paper, while a quan-
titative prediction is required for this dependence in physics.

(2) The optical cavity in this paper is a partially open
system governed by Fresnel’s law, while a chaotic system with
an absolutely absorbed leakage can also be investigated for the
layered localization [9,41,48,49].

(3) The dynamical tunneling [22,50] is ignored in this
paper but makes a difference in the localization of reso-
nant modes, which can be impacted by the changing Planck
cell.

(4) There is a small rising tendency for Q curves before the
turning point we defined in Fig. 2, which cannot be explained
by our model. Some other mechanisms, e.g., external coupling
[51], are required to be considered in future works.
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