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Crossover of dynamical instability and chaos in the supercritical state
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We calculate the maximal Lyapunov exponent for a bulk system of 256 Lennard-Jones particles in constant
energy molecular dynamics simulations deep into the supercritical state. We find that the maximal Lyapunov
exponent undergoes a crossover and that this crossover coincides with the dynamical crossover at the Frenkel
line from liquid physics. We explain this crossover in terms of two different contributions to dynamical
instability: diffusion in the liquidlike state below the Frenkel line and collisions in the gaslike state above. These
results provide insight into the phase-space dynamics far from the melting line and densities where rare-gas
approximation are inapplicable.

DOI: 10.1103/PhysRevE.102.062206

I. INTRODUCTION

Equilibration remains one of the major unanswered ques-
tions in nonequilibrium statistical mechanics [1], despite the
phenomenal success and ubiquity of equilibrium statistical
mechanics in physics. The measure-preserving (Liouvillean)
dynamics of Hamiltonian systems prohibits the diffusive
smoothing of the probability density function into its equi-
librium form starting from an arbitrary initial state [1], but in
mixing dynamical systems any subset of the phase space will,
after enough time, uniformly explore the available phase space
[2]. Phase (and time) averaged properties in a mixing system
approach well-defined constants as t → ∞ as any probability
density spreads out to explore the entire phase space and
becomes uncorrelated with its initial conditions at t = 0 [2].

The mixing property has its origins in dynamical instability
[3], a measure of which is the Lyapunov spectrum [2]. Lya-
punov spectra measure the rate of divergence of neighboring
trajectories in phase space. Consider a point �(0) in the phase
space at time t = 0 and its perturbation in the phase-space
direction i, �(0) + δ�i(0). If the dynamics are unstable, then
this perturbation will rapidly grow and erase correlations be-
tween the two trajectories. The state after time t = τ can be
written �(τ ) + δ�(τ ), where �(τ ) is the time-evolved un-
perturbed trajectory, and the time-evolved perturbation δ�(τ )
will, in general, spread into all phase-space dimensions. The
Lyapunov exponents, λi are defined [4]

λi = lim
t→∞

1

t
log

[ | δ�i(t ) |
| δ�i(0) |

]
. (1)

The Lyapunov spectrum therefore defines the directions in
which the phase-space contracts and expands under time evo-
lution. The sum of the Lyapunov exponents is related to the
phase-space contraction rate and thus vanishes for Liouvil-
lean flows [4]. The presence of just one positive Lyapunov
exponent signifies dynamical instability, and the perturbation
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size |δ�(t )|
|δ�(0)| will be dominated by the largest positive Lyapunov

exponent, �. We may therefore write

� = lim
t→∞

1

t
log

[ | δ�(t ) |
| δ�(0) |

]
, (2)

assuming that we can ignore the contrived case where the
initial perturbation is perpendicular to the fastest expand-
ing phase-space direction. The Lyapunov spectrum will, in
general, be functions of the phase space; however, for er-
godic systems it can immediately be seen from Eq. (1)
that the spectrum will be a constant for a given dynamical
system.

Chaotic dynamics have received ample attention in physics
beyond theoretical considerations. Lyapunov exponents have
been used to calculate transport properties [5–8]. Addition-
ally, the ability of digital computers to faithfully represent
the dynamics of chaotic systems is an increasingly impor-
tant question (for a particularly striking example of a digital
computer’s failure, see the recent work [9]), and the Lya-
punov spectrum has been proposed as a natural measure of
the deviation of the calculated trajectory from the “true”
one [10].

In this work we study the maximal Lyapunov exponent
(MLE) � of atomic Lennard-Jones (LJ) systems in the solid
phase and liquid phase above and below the Frenkel line
(FL) using molecular dynamics (MD) simulations. The FL
separates two different dynamic regimes in the fluid phase:
At temperatures below the line, atomic motion combines
oscillation around quasiequilibrium positions with diffusive
jumps (“liquidlike”); above the line, atomic motion is purely
diffusive (“gaslike”) [11–13]. See Fig. 1 for representative
trajectories in these different states from MD simulations.
This gives a practical criterion to calculate the FL based on
the disappearance of the minima of the velocity autocorre-
lation function (VAF). The FL represents a crossover not
only in dynamics but also in thermodynamics and structure
[14–20]. The nature of the crossover at the FL is not yet well
understood, and many interesting and competing phenomena
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FIG. 1. Projected particle trajectories on the x-y plane (in re-
duced length units, see Table I) at a reduced concentration of 1.056
in the solid phase and the fluid phase below and above the Frenkel
line.

which separate “liquidlike” and “gaslike” states in supercrit-
ical fluids have been discovered [21–25]. Classification and
stratification of the supercritical state therefore remains an
open and exciting problem.

One of the seminal examples used in chaos theory is the
Lorentz gas [26], which models an ideal gas in the dilute limit,
and whose Lyapunov exponent is well known [4]. On the other
hand, the Lyapunov spectrum of condensed phases have also
been well studied in the condensed phase using MD simula-
tions [27–31]. The behavior of Lyapunov spectra across phase
transitions has been documented [28–35], exhibiting discon-
tinuities in the MLE itself or its first derivative with respect
to an order parameter. Phases are an ultimately macroscopic
notion, but particle dynamics and phase-space properties like
Lyapunov spectra can both provide a quantitative microscopic
description of the phases and the transitions between them,
motivating our line of inquiry.

In this paper we show that dynamically distinct states
which the FL separates are also chaotically distinct. The MLE
is known to change over the melting line so it stands to reason
that dynamical changes in the supercritical state should have
an effect on the MLE too. Specifically, the MLE experiences
a change in its evolution with total system energy which
coincides with the loss of atomic oscillation over the FL. This
change in evolution is explained in terms of the a shift of
chaotic dynamical events, from oscillation to diffusive jumps
to ballistic collisions (see Fig. 2 for an overview).

II. METHODS

We consider a bulk system of 256 atoms with
periodic boundary conditions interacting under the

FIG. 2. Summary of our main results: Evolution of dynamical
instability in condensed matter, from solids at low temperature to
gaslike supercritical fluids at high temperature. The figure shows
the dynamical regimes in each state of matter (oscillation, diffusion,
collisions) and their relationship to the dynamical instability.

LJ potential:

Vi j = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
, (3)

where Vi j is the pair potential energy between atoms i and j,
ε is the well depth, σ is the atomic radius, and ri j is the radial
distance between them. For the purpose of continuity, we have
selected the LJ potential characterizing argon (see Table I),
whose behavior across the FL has been well characterized
[14,15,36]. We use the DL_POLY MD simulation package
[37], which in the NVE ensemble uses the velocity-Verlet
[38] integration algorithm. In simulations, we use time units
of picoseconds (ps) and integration time steps between 10−3

and 10−5 ps, with none of our results displaying sensitivity on
the choice of time step within this range. For analysis and dis-
cussion, we use the reduced time t∗ = t/τ [τ =

√
mσ 2/ε =

2.163 ps] instead. Total energy is conserved to within 0.01%
for all production runs.

TABLE I. Potential parameters used in the molecular dynamics
simulations.

Parameter Value

Mass (amu) 39.95
ε (eV) 0.01032
ε (K) 119.65
σ (Å) 3.4
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TABLE II. Thermodynamic data for each system investigated: ρ,
mass density; n, concentration (number density); TF , temperature at
the Frenkel line; T ∗

F = kBTF /ε, reduced temperature at the Frenkel
line; EF /N , energy per particle at the Frenkel line; E∗

F /N = EF /εN ,
reduced energy per particle at the Frenkel line. kB is Boltzmann’s
constant and ε is given in Table I. The reference energy is E∗/N = 0
at n∗ = 0.5917 and T ∗ = 0.5 (20 K).

n∗ 0.7101 0.8284 1.065

ρ (g/ml) 1.199 1.403 1.798
n (Å−3) 0 0.01807 0.02108 0.02710
TF (K) 295 997 3850
T ∗

F 2.45 8.33 32
EF /N (eV) −0.00432 0.116 0.650
E∗

F /N 5.28 16.9 69.0

Our initial configuration consisted of 256 argon atoms in
a cubic cell arranged in an FCC crystal structure [39] with
lattice constants of 6.049, 5.747, and 5.285 Å, corresponding
to reduced concentrations (n∗ = n/σ 3) of 0.7101, 0.8284, and
1.065 respectively. Mass and number densities in standard
units are given in Table II. In order to generate structures
corresponding to the target temperatures, the crystalline initial
conditions were heated in the NVT ensemble using a fluctu-
ating disspative (Langevin) thermostat for 2 × 105 MD time
steps. The temperature ranged from 20 K in the crystalline
state to 5000 K in the deep supercritical state, passing the
melting line and Frenkel line. Temperature T is defined from
equipartition as

T = 2Ekin

(3N − 6)kB
, (4)

where Ekin is the kinetic energy averaged over the trajectory,
N is the number of atoms, and kB is Boltzmann’s constant.
Near the melting line, we increased the density of temperature
points to capture the sharp transition there. Relevant physical
parameters in DL_POLY units and reduced LJ units are listed
in Table II. The configurations generated in this heating stage
were used as initial conditions for data collection in the NVE
ensemble for 2 × 105 MD time steps. From this stage statisti-
cal data such as total energy, diffusion coefficients, and VAFs
were collected.

The final configurations from NVE data collection were
used as the initial configurations in the production runs where
the MLEs were calculated. We calculated the MLE using the
tangent space method [40]: At the beginning of the produc-
tion run, the phase space was perturbed in such a way that
every phase-space coordinate is changed, but the total energy
remains fixed. The system is evolved for a time 
t∗ = 0.25
(≈0.5 ps) before the MLE is calculated using Eq. (2). The
evolved perturbation is then projected along itself such that
its magnitude equals that of the initial perturbation |δ�(0)|
and the process is repeated up to 100 times. The MLE we
calculated this way is insensitive to our choices of initial
perturbation size |δ�(0)| and the evolution time 
t∗ within
reasonable ranges. The calculated values are then averaged to
give the mean MLE over a given trajectory, �. We calculate
identical results for � (up to statistical fluctuations) under

FIG. 3. Reduced energy per particle E∗/N across the melting line
at reduced concentrations of (a) 0.8284 and (b) 1.065.

different initial conditions. This fact, combined with states
neighboring in total energy having neighboring values of �

means that the time averaged MLE, �, and the phase average
MLE, 〈�〉, are the same quantity. From here onward we shall
not distinguish these two quantities and use the term MLE and
symbol � to refer to them.

III. RESULTS AND DISCUSSION

We first discuss the transition at the melting line. Reduced
energies as a function of reduced temperature are plotted in
Fig. 3. The well-known discontinuity of energy across the
melting line allows us to discern its location when we plot the
MLE versus reduced energy in Fig. 4. We see the previously
documented [28–31,34] discontinuity in the MLE in the tran-
sition from the solid to liquid phase. Dynamically speaking,
the distinction between these phases is that liquids combine
oscillation with diffusive jumps (in this sense the liquid is
called a “dynamically mixed state” [13]). This was used by
Nayak et al. to describe the discontinuity of the MLE in terms
of the sudden expansion in the available phase space. This is
a point we shall return to when we discuss the FL.

We plot VAFs in Fig. 5, indicating the FL determined
by the disappearance of the minima. At lower densities, the
disappearance of the minima happens fairly steadily. How-
ever, at the highest density, a very slightly minimum remains
for a temperature range that spans almost 1000 K. The
“zoomed-in” inset of Fig. 5 shows the gradual disappearance
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FIG. 4. Maximal Lyapunov exponent � across the melting line
at reduced concentrations of (a) 0.8284 and (b) 1.065.

of this minimum—these VAFs are mostly indistinguishable
at a lower resolution despite being at very different energies.
This means that after most atomic oscillation is dispersed, a
very slight component disappears far more gradually, which
happens because the system density is fixed at a high value.
In this sense, the system is almost completely diffusive and
“gaslike” far before the disappearance of the minimum, and
the last leg of the transformation takes place much more
slowly. Energies and temperatures at the FL are listed in
Table II.

Figure 6 plots the MLE as a function of reduced energy, up
to and beyond the FL. We also include the thermodynamic
definition of the FL, cV = 2 [13], as an alternative marker
of the dynamical crossover. The high-temperature functional
dependence of the MLE is clearly visible with the logarith-
mic axes: � = a(E∗)b. A power law with temperature for
the MLE has been observed in a diverse range of condensed
matter systems [41–43], though at far lower temperatures than
those probed in this study. At lower densities, the crossover
to this power-law relationship closely coincides with the both
the dynamical crossover at the FL and the thermodynamic
crossover at cV = 2. At the highest density, the dynamical
crossover occurs deep within this power-law regime. How-
ever, we note, as discussed above, a very small minimum in
the VAFs disappears in the energy range of E∗/N ≈ 40 to
E∗/N ≈ 68 (this is a larger range than that between the melt-
ing line and FL at the other densities), which corresponds to a

FIG. 5. Velocity autocorrelation functions as a function of re-
duced energy per atom and reduced time Z (t∗) at the four different
concentrations.

very minor component of molecular oscillation disappearing
in this range. For the most part, atomic oscillation gives way
to diffusion at much lower energies than the disappearance of
the minimum, represented in Fig. 6 by the gradual approach
to the power-law relationship as oscillatory modes disappear.

The reason the crossover in the MLE at the FL is gradual
rather than abrupt is because the crossover in dynamics is
also gradual. Across the melting line, the particle dynamics
abruptly gain an oscillatory character. A liquid just above
the melting line has a finite relaxation time between dif-
fusive “jumps,” allowing it to support transverse collective
modes below a certain wavelength [44–46]. As temperature
is increased, the relaxation time becomes shorter, reducing
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FIG. 6. Maximal Lyapunov exponent � in the fluid state at re-
duced concentrations of (a) 0.7107, (b) 0.8284, and (c) 1.056. The
red lines are fitted power-law relationships � = a(E∗)b, meant as
visual guides.

the maximum wavelength of transverse modes and thereby
decreasing the heat capacity due to a reduction of the de-
grees of freedom in the system [47]. As the relaxation time
drops below the oscillation period (at the FL), all oscillatory
motion is lost, the system becomes fully diffusive, and the
transverse spectrum becomes empty. This is accompanied by a
thermodynamic crossover. Below the FL, the decrease in heat
capacity is caused by the loss of long wavelength transverse
modes due to the increasing relaxation time, above the FL, the
decrease in heat capacity is caused by the loss of short wave-
length longitudinal modes as the mean free path increases

[13]. In harmonic systems, this crossover takes place at a heat
capacity of cV = 2 (with units where kB = 1). The thermo-
dynamic and dynamic (VAF) criteria correspond closely here
and in previous studies [12,48].

This interpretation allows us to make sense of our results
here. Between the melting line and the FL, as the relaxation
time decreases, the MLE increases with energy. The MLE
increases because of the increased prevalence of diffusion
events. Diffusion events involve an abrupt change in phase-
space coordinates as an atom escapes from its local “cage”
into another (see Fig. 1). These events are typically instigated
by an atom’s neighbors opening a low-energy pathway to form
a neighboring cage with their thermal motion (the energy
barrier of escape is lowered rather than the particle gain-
ing the necessary energy to overcome the high barrier). We
propose that these diffusion events are the liquid equivalent
to “collisions” from kinetic theory because they involve a
near-instantaneous decorrelation in particle coordinates and
velocities and are sensitive to initial conditions (in the sense
that an atom undergoes such an event because of transitory
circumstances in its neighbors). The discontinuity of the MLE
at the melting line is due to the sudden introduction of these
events. This regime terminates smoothly as the relaxation time
becomes comparable to the liquid oscillation period and a
local rigid structure can no longer be defined. In other words
the state becomes dynamically pure as atoms are continuously
diffusing rather than doing so in opportunistic jumps (again
see Fig. 1). The events of dynamic sensitivity are now the col-
lisions of kinetic theory. Scattering is what makes the Lorentz
gas a chaotic dynamical system [26]. These collisions now
determine the evolution of the MLE without contribution from
diffusion events, which is why it follows a single functional
form. The collisions become more frequent with temperature
at a fixed density. For a hard-sphere gas, the mean collision
rate is [49]

wcoll = nπd2

√
6kBT

m
. (5)

This is a concave function of temperature (and thus energy),
which is a property exhibited by the MLE at all densities (the
gradient in the log-log plots in Fig. 6 is less than unity). At
the lower densities, this power-law regime spans more than
an order of magnitude of energy above the FL. The fluid
at the highest density, even well below the FL, is mostly
dominated by diffusion and collisions, but there is a transitory
period of oscillation for some molecules. We can interpret that
collisions are responsible for the bulk of dynamical instability
in these states, but a small fraction of atoms at any given time
undergoing oscillation do not contribute to dynamical instabil-
ity in this way. This crossover period of small deviation from
the power law is much smaller at lower densities.

IV. CONCLUSIONS

We have presented a novel study of Lyapunov exponents
which focuses on the supercritical fluid state. We find that
the MLE in the “gaslike” deeply supercritical LJ system
evolves with energy according to a single analytic function,
which we explain in terms the fluid’s dynamical evolution.
Recent advances in the field of theoretical liquid physics

062206-5



C. COCKRELL PHYSICAL REVIEW E 102, 062206 (2020)

[13] have explained many liquid properties by describing the
state in terms of two dynamical modes: molecular oscillation
around quasiequilibrium positions and abrupt diffusion events
between quasiequilibrium positions. Molecular oscillation ter-
minates at the FL, and the dynamical evolution switches from
a loss of oscillation to a decline of collisions. This dynamical
crossover causes a crossover in both thermodynamics and
structure in many different fluid systems [14–20]. On the
basis of our MD simulations, this same dynamical crossover
causes a crossover in the MLE. This crossover is seen power-
law dependence of the MLE on energy above the FL and
the deviation from this law below the FL. We explain this
crossover in terms of diffusion events and collision events,
prevalent below and above the FL respectively, which we
propose are the major contributors to dynamical instability in
these fluid states (as summarised in Fig. 1). The Lyapunov

spectrum is linked to dynamics much more intimately than
thermodynamics and structure and has been used in the past to
indicate changes of phase [28–32,34,35]. Our results therefore
do not only help understand microscopic chaos in the fluid
state, but also show that the depiction of liquids as dynam-
ically mixed states and the idea of the FL which separates
regions in the supercritical part of the phase diagram are
supported directly by properties of the classical phase space
itself.
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