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Quantum manifestations of homogeneous and inhomogeneous oscillation suppression states
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We study the quantum manifestations of homogeneous and inhomogeneous oscillation suppression states
in coupled identical quantum oscillators. We consider quantum van der Pol oscillators coupled via weighted
mean-field diffusive coupling and, using the formalism of open quantum systems, we show that, depending on
the coupling and the density of mean-field, two types of quantum amplitude death occurs, namely, squeezed and
nonsqueezed quantum amplitude death. Surprisingly, we find that the inhomogeneous oscillation suppression
state (or the oscillation death state) does not occur in the quantum oscillators in the classical limit. However,
in the deep quantum regime we discover an oscillation death-like state which is manifested in the phase space
through the symmetry-breaking bifurcation of the Wigner function. Our results also hint toward the possibility
of the transition from quantum amplitude death to oscillation death state through the “quantum” Turing-type
bifurcation. We believe that the observation of quantum oscillation death state will deepen our knowledge of
symmetry-breaking dynamics in the quantum domain.
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I. INTRODUCTION

The collective dynamics of coupled oscillators are of great
interest in the field of physics, chemistry, and biology [1]. The
two most important emergent behaviors shown by a system
of coupled oscillators are synchronization [2] and oscillation
quenching [3]. While synchronization is predominantly gov-
erned by the phase dynamics, the oscillation quenching is a
manifestation of the amplitude dynamics.

In recent years synchronization in the quantum regime
has attracted much attention: two seminal papers by Lee and
Sadeghpour [4] and Walter et al. [5] unravel the important
aspects of quantum synchronization (i.e., the manifestation
of synchronization in the quantum regime) using the paradig-
matic quantum van der Pol oscillators. Later on, several stud-
ies explored the richness of quantum synchronization [6–10]
and proposed techniques to improve synchronization mea-
sures in the background of quantum noise [11,12]. Recent
experimental observations of synchronization in the quan-
tum regime in spin-1 limit-cycle oscillators [13] and IBM-Q
systems [14] established that quantum synchronization is a
physical reality.

Although much attention has been given in revealing the
quantum manifestation of synchronization, the oscillation
quenching states is a relatively less explored topic. Ishibashi
and Kanamoto [15] first explored the notion of “quantum”
amplitude death in quantum van der Pol oscillators under dif-
fusive coupling. In the classical sense, in the amplitude death
(AD) state oscillators arrive at a common steady state which
was unstable in the absence of coupling, therefore, AD leads

*tbanerjee@phys.buruniv.ac.in

to a stable homogeneous steady state (HSS). Unlike classical
AD, the authors showed that the presence of quantum noise
hinders the genuine AD state; however, a sufficient decrease
in the mean phonon number was considered as the indication
of the quantum AD state. Later, Amitai et al. [16] reported
quantum AD in the presence of a Kerr-type nonlinearity and
showed that anharmonicity leads to true quantum effects in the
oscillation suppression phenomenon. In Ref. [15], a parameter
mismatch was introduced explicitly to induce AD and, in
Ref. [16], the presence of a Kerr-type nonlinearity effectively
introduces frequency detuning between the oscillators that
leads to noise-induced quantum AD. Therefore, parameter
mismatch seems to be a necessary ingredient to induce quan-
tum AD.

Moreover, in the context of coupled oscillators, the oscilla-
tion quenching process is much more subtle. Apart from AD
there exists another oscillation quenching process, namely,
oscillation death (OD) [3]. In the OD state, oscillators popu-
late different coupling-dependent nontrivial steady states and
thereby give rise to symmetry-breaking stable inhomogeneous
steady states (IHSSs). In this context, Koseska et al. [17]
established that AD and OD may occur in the same system
and AD transforms into OD through a symmetry-breaking
bifurcation, which resembles the Turing-type bifurcation
of spatially extended system [18]. However, the quantum-
mechanical analog of the OD state has hitherto not been
reported.

Motivated by the above discussion, in this paper we ask the
following questions: (i) What are the different manifestations
of quantum amplitude death state in coupled identical oscilla-
tors? (ii) Does OD occur in quantum oscillators? If yes, what
is the quantum-mechanical analog of an OD state? To answer
these questions we consider two quantum van der Pol (vdP)
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oscillators [19] coupled by weighted mean-field coupling. The
paradigmatic quantum vdP oscillator has been chosen as the
test bed to study several emergent dynamics in the quantum
domain. More importantly, the quantum vdP oscillators are
proposed to be realizable in experiment with trapped ion
and “membrane-in-the-middle” setup [4,5]. The choice of
weighted mean-field diffusive coupling as the coupling scheme
adopted in this study is motivated by the fact that it is the
simplest yet physically relevant model to distinctly observe
AD and OD [20,21]. Under normal diffusive coupling, AD
appears under parameter mismatch [22,23], and OD generally
coexists with limit cycle(s) making AD impossible and OD
difficult to observe in identical oscillators [3]. In the present
paper, we use two types of weighted mean-field diffusive
coupling, namely, nonscalar and scalar coupling [24]. The
nonscalar coupling is known to induce AD only (no OD state
is possible) and the scalar coupling is conducive to both AD
and OD [25].

At this point it is important to understand the difficulty
of identifying OD in quantum systems. In the case of AD,
the oscillators populate the zero steady state, therefore, a pro-
nounced reduction in the mean phonon number or increased
probability of ground Fock level are the sufficient indicators
of transitions from oscillation to quantum AD state [15,16].
However, in the case of classical OD, since two or more than
two nonzero steady states are created, therefore, the mean
phonon number and Fock level distribution can no longer dis-
tinguish quantum OD and oscillatory states unambiguously.
Because, in the quantum OD state, the mean phonon number
does not reduce drastically and the ground state is no longer
the highest populated state. Therefore, we have to rely largely
on the phase-space representation: for the limiting case of
two oscillators, in the classical OD state two steady states
are created, which are displaced from the origin in phase
space. Therefore, in the quantum OD state it is instructive to
observe the equivalent displacement in the Wigner distribution
function in the phase space.

In this paper, using the formalism of open quantum sys-
tems, we show that, under the weighted mean-field diffusive
coupling, identical quantum vdP oscillators exhibit quan-
tum amplitude death. We identify two types of quantum AD
states, namely, squeezed and nonsqueezed quantum AD: the
former AD state has not been observed in the previous stud-
ies [15,16]. The quantum AD state is explored by using a
quantum master equation and compared with the AD state
of the classical and semiclassical cases. Furthermore, we
find that the quantum OD state does not occur in quantum
oscillators in the classical limit. However, in the deep quan-
tum region we discover an oscillation death-like state which
emerges as the result of the symmetry-breaking bifurcation of
Wigner distribution function. Also, we see that the transition
from quantum AD to OD provides a qualitative indication of
the quantum-mechanical analog of the Turing-type bifurca-
tion.

The rest of the paper is organized in the following manner:
The next section describes the classical and quantum van
der Pol oscillator. In Sec. III we describe the mathematical
model of classical vdP oscillators coupled through weighted
mean-field diffusive coupling. For a clear understanding of the
classical dynamics we revisit the bifurcation scenarios that

lead to classical amplitude and oscillation death. Section IV
presents the results of quantum amplitude death under non-
scalar coupling; also, we compare the results with the noisy
classical model. Section V reports the appearance of squeezed
quantum AD and the quantum manifestation of the oscillation
death state that appears under scalar coupling. Finally, we
conclude the paper in Sec. VI by discussing the importance
of the results.

II. VAN DER POL OSCILLATOR:
CLASSICAL AND QUANTUM

A van der Pol oscillator has the following mathematical
form [19]:

ẍ = −ω2x + k1ẋ − 8k2x2ẋ, (1)

where ω is the intrinsic frequency, k1 is the gain rate cor-
responding to the linear pumping, and k2 is the loss rate
corresponding to the nonlinear damping (k1, k2 > 0). We can
express Eq. (1) in terms of a complex amplitude α = x + iy
(where ẋ = ωy) and the corresponding amplitude equation is
given by (see Appendix A):

α̇ = −iωα +
(

k1

2
− k2|α|2

)
α. (2)

The oscillator shows a limit cycle oscillation with an ampli-

tude
√

k1
2k2

.

The quantum van der Pol oscillator is represented by the
quantum master equation in density matrix ρ [4,5]:

ρ̇ = −i[ωa†a, ρ] + k1D[a†](ρ) + k2D[a2](ρ), (3)

where D[L̂](ρ) is the Lindblad dissipator having the form
D[L̂](ρ) = L̂ρL̂† − 1

2 {L̂†L̂, ρ}, where L̂ represents an opera-
tor. Here and throughout the paper we take h̄ = 1. a and a† are
the bosonic annihilation and creation operators, respectively.
k1 and k2 have the same meaning as in the classical case. In
the classical limit, linear pumping dominates over the non-
linear damping (i.e., k1 > k2) and one approximates 〈a〉 ≡ α,
and starting from the master equation (3) one arrives at the
classical amplitude equation (2) by the following relation:
˙〈a〉 = Tr(ρ̇a) (see Appendix B).

III. CLASSICAL VAN DE POL OSCILLATORS:
NONSCALAR AND SCALAR COUPLING

We consider two identical classical van der Pol oscillators,
which are coupled via weighted mean-field diffusive coupling
scheme. The mathematical model is given below,

ẋ j = ωy j + ε1

(
q

2

2∑
m=1

xm − x j

)
, (4a)

ẏ j = −ωx j + (
k1 − 8k2x j

2
)
y j + ε2

(
q

2

2∑
m=1

ym − y j

)
, (4b)

j ∈ {1, 2}. ε1 and ε2 are the coupling parameters (ε1, ε2 > 0).
Both the oscillators have the common eigenfrequency ω. The
control parameter q determines the density of the weighted
mean field. Originally, the parameter q was introduced in the
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FIG. 1. (a) Nonscalar coupling: Amplitude death (AD) occurs
through inverse Hopf bifurcation (HB). (b) Scalar coupling: AD
appears through HB and oscillation death (OD) emerges through
a symmetry-breaking pitchfork bifurcation (PB). Solid (red) line
shows stable steady state, dotted (black) line shows unstable steady
state, and hollow circles (green) shows stable limit cycle. Parameters
are q = 0.2, ω = 2, k1 = 1, and k2 = 0.2.

context of quorum sensing in genetic oscillators that con-
trols the extracellular autoinducer concentration in cell-to-cell
communication [26,27]. Later on its effect was investigated
in physical systems [20,21,28] and ecological networks (as
a parameter controlling additional mortality) [29]. The cou-
pling scheme was also realized experimentally in electronic
circuits [21,28]. From a physical point of view, q determines
the degree of dissipation in the coupling path: lesser q implies
greater dissipation and vice versa. Generally, q acts as a di-
lution parameter in the limit 0 � q � 1. However, this limit
on q is not strict [30]: for q > 1, it acts as an amplification
parameter.

The coupling scheme of Eq. (4) can be categorized into two
types: (i) Nonscalar coupling: When ε1,2 �= 0 the coupling is
said to be nonscalar coupling. This type of coupling is con-
ducive for the amplitude death state [25]. (ii) Scalar coupling:
If either ε1 = 0 or ε2 = 0, the coupling is said to be scalar
coupling. In this paper we consider ε1 = ε �= 0 and ε2 = 0
because this type of “real-part coupling” is known to induce
oscillation death [25,31].

A. Nonscalar coupling: Classical amplitude death

The amplitude equation of Eq. (4) under nonscalar cou-
pling is
given by

α̇ j = −iωα j +
(

k1

2
− k2|α j |2

)
α j + ε

(
q

2

2∑
m=1

αm − α j

)
.

(5)

Here, without any loss of generality, we consider ε1 = ε2 = ε.
The system represented in Eq. (5) has a trivial fixed point
at the origin: FHSS ≡ (0, 0, 0, 0). One can evaluate the (in-
verse) Hopf bifurcation point through which amplitude death
appears: εHB,ns = k1

2(1−q) .
Figure 1(a) illustrates this scenario in bifurcation diagram

of x1 and x2 with ε for an exemplary parameter set (ω = 2,
k1 = 1, k2 = 0.2, and q = 0.2) (using XPPAUT [32]). In the AD
state one has x1,2 = y1,2 = 0, i.e., both the oscillators attain a
common steady state FHSS, which is the origin.

B. Scalar coupling: Classical amplitude death
and oscillation death

The amplitude equation corresponding to Eq. (4) under the
scalar coupling is given by (by considering ε1 = ε and ε2 = 0)

α̇ j = −iωα j +
(

k1

2
− k2|α j |2

)
α j + ε

2

(
q

2

2∑
m=1

αm − α j

)

+ ε

2

(
q

2

2∑
m=1

α∗
m − α∗

j

)
. (6)

Equation (6) has the following fixed points: the trivial
fixed point FHSS ≡ (0, 0, 0, 0), and additionally a
coupling-dependent nontrivial fixed point FIHSS ≡
(x1

∗, y1
∗, −x1

∗, −y1
∗) where x1

∗ = − ωy1
∗

ω2+εy1
∗2 and

y1
∗ =

(
(ε − 2ω2) + √

ε2 − 4ω2

2ε

)1/2

.

The system shows a transition from oscillatory state to am-
plitude death state through an inverse Hopf bifurcation at
εHB,s = k1

(1−q) [20,21]. An interesting transition from AD to
OD state occurs through a symmetry-breaking pitchfork bi-
furcation at εPB = ω2

k1
[20,21]. This transition from AD to

OD is analogous to the Turing-type bifurcation in spatially
extended system [17]. Figure 1(b) shows the corresponding
bifurcation diagram for an exemplary parameter set (ω = 2,
k1 = 1, k2 = 0.2, and q = 0.2). Here we can see that, unlike
the AD state, in the OD state, two branches of nonzero steady
IHSS emerges, which are placed symmetrically around the
origin: x1 = −x2 and y1 = −y2.

Our main aim in this work is to explore the quantum
manifestation of the above-mentioned classical results. In par-
ticular, we try to reveal the quantum-mechanical analog of the
symmetry-breaking OD state.

IV. QUANTUM VAN DER POL OSCILLATORS UNDER
NONSCALAR COUPLING: QUANTUM

AMPLITUDE DEATH

A. Pure quantum oscillators

The quantum master equation of two nonscalar mean-field
diffusively coupled identical quantum van der Pol oscillators
is given by

ρ̇ =
2∑

j=1

(−i[Hj, ρ] + k1D[a†
j ](ρ) + k2D[a j

2](ρ))

+ qεD[(a1 + a2)†](ρ) + 2ε

2∑
j=1

D[a j](ρ), (7)

where Hj = ωa†
j a j and a j (a†

j ) is the annihilation (creation)
operator corresponding to the jth oscillator. In the classical
limit (k1 > k2) the master equation (7) is equivalent to the
classical amplitude equation (5) through the following rela-
tion: ˙〈a〉 = Tr(ρ̇a).

We numerically solve the master equation (7) using
QuTiP [33]. To visualize and understand the system dynamics
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FIG. 2. (a) Two-parameter diagram in the ε/k1 − q space show-
ing the mean phonon number 〈a†

1a1〉 (= 〈a†
2a2〉) of both the

oscillators. The solid line is the classical Hopf bifurcation curve (HB,
ns). The steady state Wigner functions at (b) ε/k1 = 0.1 showing
limit cycle oscillation and (c) ε/k1 = 5 for q = 0.2 showing quantum
AD. Other parameters are k1 = 1, k2 = 0.2, and ω = 2.

we employ the Wigner function representation in phase space
since it provides a reliable representation of the quantum
dynamical states. Moreover, the Wigner function is also an ex-
perimentally observable quasiprobability distribution function
that makes it accessible [34]. We computed the mean phonon
number 〈a†

1a1〉 (=〈a†
2a2〉) and plot them in the ε/k1 − q pa-

rameter space (since the oscillators are identical, both have
the same mean phonon numbers). Figure 2(a) shows this in
a color map. The solid line indicates the Hopf bifurcation
curve (HB, ns) obtained classically: below the Hopf curve
the classical AD occurs. It is interesting to note that the mean
phonon number also decreases appreciably under the Hopf bi-
furcation curve and, due to the hindrance from quantum noise,
it does not reach zero but shows a moderate collapse in the
oscillation. However, this moderate collapse is stronger than
the noisy classical oscillators (discussed in the next section).
The corresponding steady-state Wigner function of two repre-
sentative points are shown in Figs. 2(b) and 2(c): Figure 2(b)
demonstrates the oscillatory behavior for ε/k1 = 0.1, q = 0.2
and Fig. 2(c) shows the quantum AD for ε/k1 = 5, q = 0.2.

The variation of the mean phonon number (〈a†
1a1〉) with

three different values of q is shown in Fig. 3. It is found that
quantum AD occurs more effectively in the lower q values.
This is due to the fact that a lower (higher) q imposes stronger
(weaker) dissipation in the coupled system. In Fig. 3, the prob-
ability of occupation of the Fock levels are shown in the insets
for two coupling strengths at q = 0.2: for ε/k1 = 0.01 (left
inset) the system shows oscillation and for ε/k1 = 5.75 (right
inset) quantum AD appears. It is clear that, in the quantum AD
state, the occupation near the quantum ground state is much
more prominent.

FIG. 3. The steady-state mean phonon number 〈a†
1a1〉 (= 〈a†

2a2〉)
for three different values of mean-field density (q = 0.2, 0.5, 0.8).
Inset shows the occupation of Fock levels for oscillatory state at
ε/k1 = 0.01 (left panel) and quantum AD at ε/k1 = 5.75 (right
panel) with q = 0.2. Other parameters are k1 = 1, k2 = 0.2, and
ω = 2.

We also explored the deep quantum region where strong
nonlinear damping rate dominates the linear pumping rate
(k2 	 k1) and got qualitatively similar results (not shown
here). In the deep quantum regime only a few states are
populated, which are near the quantum ground state: note that
in the limit k2 → ∞ the steady state density matrix is given
by [4] ρss = 2

3 |0〉〈0| + 1
3 |1〉〈1|, i.e., the system oscillates be-

tween its two lowest lying energy levels. Therefore, the notion
of quantum AD is not obvious in the deep quantum regime
because the mean phonon number always remains very low
irrespective of the coupling conditions.

B. Noisy classical model

For the proper understanding of quantum AD it is in-
structive to compare the results of the quantum system with
the corresponding noisy classical model (or semiclassical
model) [15]. In the noisy classical model the classical dy-
namics is considered in the presence of a finite amount of
noise whose intensity is equal to that of the quantum noise.
To evaluate the amount of quantum noise intensity, a stochas-
tic differential equation is derived from the quantum master
equation following Ref. [15]. For this, the quantum master
equation (7) is represented in phase space using the par-
tial differential equation of the Wigner distribution function
W (α) [35]:

∂tW (α) =
2∑

j=1

[
−

(
∂

∂α j
μα j + c.c.

)

+ 1

2

(
∂2

∂α j∂α j
∗ Dα jα j

∗ + ∂2

∂α j∂α j′
∗ Dα jα j′ ∗

)

+ k2

4

(
∂3

∂α j
∗∂α j

2
α j + c.c.

)]
W (α), (8)

where the elements of the drift vector μ are

μα j =
[
−iω + k1

2
− k2(|α j |2 − 1) −

(
ε − εq

2

)]
α j + εq

2
α j′ ,
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and the elements of the diffusion matrix D are

Dα jα j
∗ = k1 + 2k2(2|α j |2 − 1) + εq + 2ε, Dα jα j′ ∗ = εq,

with j = 1, 2, j′ = 1, 2, and j �= j′. In the weak nonlinear
regime (k2  k1), Eq. (8) reduces to the Fokker-Planck equa-
tion, which is given by

∂tW (X) =
2∑

j=1

[
−

(
∂

∂x j
μx j + ∂

∂y j
μy j

)

+ 1

2

(
∂2

∂x j∂x j
Dxj x j + ∂2

∂y j∂y j
Dyj y j

+ ∂2

∂x j∂x j′
Dxj x j′ + ∂2

∂y j∂y j′
Dyj y j′

)]
W (X), (9)

where X = (x1, y1, x2, y2). The elements of drift vector are

μx j = ωy j +
[

k1

2
− k2

(
x j

2 + y j
2 − 1

)

−
(
ε − εq

2

)]
x j + εq

2
x j′ , (10a)

μy j = −ωx j +
[

k1

2
− k2

(
x j

2 + y j
2 − 1

)

−
(
ε − εq

2

)]
y j + εq

2
y j′ . (10b)

The diffusion matrix has the following form:

D = 1

2

⎛
⎜⎜⎝

ν1 0 εq
2 0

0 ν1 0 εq
2

εq
2 0 ν2 0
0 εq

2 0 ν2

⎞
⎟⎟⎠, (11)

where ν j = k1
2 + k2[2(x j

2 + y j
2) − 1] + εq

2 + ε. From
Eq. (9), the following stochastic differential equation can
be derived:

dX = μdt + σdWt , (12)

where σ is the noise strength and dWt is the Wiener in-
crement. As the diffusion matrix D [given in Eq. (11)] is
symmetric, we can analytically derive σ from it. The diagonal
form of D is given by Ddiag = U−1DU = diag(λ−λ−λ+λ+).
Here λ± = 1

4 {ν1 + ν2 ± [(ν1 − ν2)2 + (εq)2]1/2} and U has
the following form:

U =

⎛
⎜⎝

0 u− 0 u+
u− 0 u+ 0
0 1 0 1
1 0 1 0

⎞
⎟⎠, (13)

where u± = 1
εq {ν1 − ν2 ± [(ν1 − ν2)2 + (εq)2]1/2}. Now,

the σ matrix can be evaluated from the equation

FIG. 4. Nonscalar coupling: Comparison of the classical, quan-
tum, and semiclassical results. At q = 0.2, the average amplitude

from the classical model (|α1|2), mean phonon number from the
quantum model (〈a†

1a1〉), and the averaged amplitude from the noisy

classical model (|α1|nc
2) of the first oscillator plotted together with

coupling strength. Other parameters are k1 = 1, k2 = 0.2, and ω = 2.

σ = U
√

DdiagU−1 and has the following form:

σ =

⎛
⎜⎝

σ1 0 σ3 0
0 σ1 0 σ3

σ3 0 σ2 0
0 σ3 0 σ2

⎞
⎟⎠, (14)

where

σ1 = u+
√

λ+ − u−
√

λ−
u+ − u−

, σ2 = u+
√

λ− − u−
√

λ+
u+ − u−

,

σ3 =
√

λ+ − √
λ−

u+ − u−
.

By solving the stochastic differential equation [Eq. (12)]
(using JiTCSDE module in PYTHON [36]), we compute the
ensemble average of the squared steady-state amplitude of

the first oscillator (|α1|nc
2), averaged over 1000 realizations,

starting from random initial conditions. To compare the sce-
narios of oscillation collapse for each model, in Fig. 4 we

plot the averaged amplitude of classical model (|α1|2), that

of the noisy classical model (|α1|nc
2) and the mean phonon

number of the quantum model (〈a†
1a1〉) of the first oscillator

with the coupling parameter. The averaged classical ampli-
tude shows an abrupt jump from oscillatory state to death
state at εHB,ns. Whereas the mean phonon number and the
averaged amplitude of the noisy classical model do not show
a zero-amplitude death state, rather they show a significant
decrement in amplitude. It can be seen that the mean phonon
number is always less than the average amplitude of the noisy
classical model. Therefore, the quantum AD lies in between
the classical AD and the AD in the noisy classical model.

V. QUANTUM VAN DER POL OSCILLATORS UNDER
SCALAR COUPLING: QUANTUM OSCILLATION

DEATH STATE

The quantum master equation of two coupled identical
quantum van der Pol oscillators under scalar coupling is given

062205-5
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FIG. 5. Scalar coupling: Two-parameter phase diagram of the
mean phonon number 〈a†

1a1〉 for (k1, k2) = (1, 0.2). Insets show
Wigner function in the oscillatory state for ε/k1 = 0.1 and q = 0.2
and squeezed quantum AD for ε/k1 = 5 and q = 0.2. In the quantum
AD state note the presence of squeezing in the quadrature space.
In the Wigner plots axes and scales are identical to Fig. 2. Other
parameter: ω = 2.

by

ρ̇ = −i
[
{ω(a†

1a1 + a†
2a2) + iε

4

{
q(a†

1a†
2 − a1a2)

+
(q

2
− 1

)(
a†

1
2 + a†

2
2 − a1

2 − a2
2
)}

, ρ
]

+ k1

2∑
j=1

D[a†
j ](ρ) + k2

2∑
j=1

D
[
a j

2
]
(ρ)

+ qε

2
D[(a1 + a2)†](ρ) + ε

2∑
j=1

D[a j](ρ). (15)

In the classical limit, Eq. (15) gives the classical amplitude
equation (6) using ˙〈a〉 = Tr(ρ̇a).

We solve the master equation (15) numerically using
QuTiP [33]. At first, similar to the nonscalar coupling case
of the previous section, we consider k1 = 1 and k2 = 0.2. The
results are summarized in Fig. 5: it shows the mean phonon
number 〈a†

1a1〉 (=〈a†
2a2〉) along with the classical Hopf and

pitchfork bifurcation curves in the ε/k1 − q parameter space
(classical bifurcation curves are drawn using the expressions
derived in Sec. III B). The insets in Fig. 5 show the Wigner
function in phase space of oscillatory and quantum AD state
for ε/k1 = 0.1 and ε/k1 = 5, respectively, at fixed q = 0.2.
An interesting observation from the Wigner function plot of
the quantum AD is the presence of squeezing in the quadrature
space. The squeezing gets stronger with increasing ε. This
may be the direct reflection of the classical case, where under
scalar coupling x < y (for x, y �= 0) for a nonzero coupling
strength. This type of squeezing is not present in the case of
nonscalar coupling or in diffusive coupling [15,16] as cou-
pling is symmetric there with respect to all the variables.

In Fig. 5 classical AD occurs below the Hopf bifurcation
curve (HB, s) and left to the PB line and classical OD occurs
below the HB, s curve right to the PB line. Although the oc-
currence of classical and quantum AD agrees with each other
in the parameter space, surprisingly, for no value of ε and

FIG. 6. Scalar coupling: Comparison of the classical, quantum,
and semiclassical results. Plots of the average amplitude from the

classical model (|α1|2), mean phonon number from the quantum
model (〈a†

1a1〉), and the averaged amplitude from the noisy classical

model (|α1|nc
2) of the first oscillator at q = 0.2. Red dashed line

represents the shift of the stable inhomogeneous fixed points from
the origin in the OD state. Other parameters are k1 = 1, k2 = 0.2,
and ω = 2.

q, inhomogeneous steady states (OD) are observed; squeezed
quantum AD appears even beyond the PB line (below the HB,
s curve). However, a slight increase in mean phonon number
〈a†

1a1〉 is observed beyond the classical PB line. For a better
understanding of the fact we study the noisy classical model
using the formalism equivalent to Sec. IV B. Figure 6 shows
the plots of average amplitude and mean phonon number in
classical, semiclassical, and quantum oscillators at a fixed
q = 0.2. Up to the PB line, the quantum AD scenario of
Fig. 6 qualitatively matches with Fig. 4 of the nonscalar case.
Beyond the PB line, in the classical case, oscillation ceases,
and nonzero inhomogeneous fixed points are created that are
shifted from the origin: the (red) dashed line shows the amount
of shift of the fixed points in the classical OD state. However,
in the quantum as well as noisy classical cases, noise tends
to homogenize the steady states around the origin. As a result
no quantum OD is observed here, rather, it results in a slight
increase in the mean phonon number (in the quantum case) or
average amplitude (in the noisy classical case).

Next, we search for any possible symmetry-breaking dy-
namics in the deep quantum regime (k2 > k1). Following
Ref. [11] we choose k1 = 1 and k2 = 3. In this regime only
a few Fock states are populated (near the quantum ground
state) and quantum noise becomes much more prominent.
Therefore, it is inconclusive to distinguish between the os-
cillatory state and the quantum AD state based on the mean
phonon number. However, qualitative changes in the Wigner
function provides distinction between them. Figure 7(a) shows
the Wigner function representation of oscillation in the un-
coupled case (ε = 0) and Fig. 7(c) shows that for quantum
AD at ε/k1 = 20 and q = 0.6 [Figs. 7(b) and 7(d) show the
respective Husimi function [37]]. While in the oscillatory case
the origin shows a dip in the value of Wigner function, in the
quantum AD state it shows a peak.

With further increase in q, at a moderate ε we observe
an interesting symmetry-breaking bifurcation that governs
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FIG. 7. Quantum manifestation of oscillation death (OD): Deep quantum region (k1 = 1 and k2 = 3). (a), (c), (e), (g) Wigner function (b),
(d), (f), (h) Husimi function. (a), (b) Limit cycle oscillation in uncoupled oscillators (ε/k1 = 0) (c), (d) Squeezed quantum AD for ε/k1 =
20, q = 0.6. Quantum OD state for (e), (f) q = 1.25 and (g), (h) q = 1.5: note the emergence of inhomogeneous steady states. (i) Three-
dimensional representation of panel (g). It clearly shows two separated lobes in the phase space. Inset shows the histogram of the real part of
elements of the density matrix: note the presence of coherence terms. Other parameter: ω = 2.

the creation of inhomogeneous steady states, i.e., the quan-
tum oscillation death state. The quantum OD state emerges
as the Wigner function (and therefore, the Husimi func-
tion) bifurcates into two separated lobes in phase space.
Figures 7(e)–7(h) demonstrate the quantum OD state in the
phase space using the Wigner function (upper row) and the
Husimi function (bottom row) for two representative values of
q: Figs. 7(e) and 7(f) are for q = 1.25 and Figs. 7(g) and 7(h)
are for q = 1.5. One can observe that the probability density
is concentrated in the two lobes. The separation between the
two lobes increases with increasing q. The three-dimensional
plot of Fig. 7(g) as shown in Fig. 7(i) adds more clarity to the
occurrence of symmetry-breaking bifurcation and creation of
the quantum OD state. We observed that the Wigner function
in the OD state is not just two lobes separated in the phase
space, which is nothing but classical representation of prob-
ability of two possible outcomes [38], however, in this case
quantum interference terms appear in the middle and exhibits
symmetry-breaking inhomogeneous steady states. This fact is
also verified by the nonzero coherence terms in the density
matrix of this state: the inset of Fig. 7(i) shows the histogram
of the real part of the elements of the density matrix that
exhibits the presence of off-diagonal terms in the density
matrix. Since the quantum OD state occurs in the deep quan-
tum regime, we cannot draw a one-to-one correspondence
with the classical OD state as now the classical amplitude
equation (6) and the quantum master equation (15) are no
longer exactly equivalent. It is noteworthy that in Ref. [11],
a symmetry-breaking bifurcation in the Wigner distribution
function occurs in a squeezing driven van der Pol oscilla-
tor. However, that does not resemble an OD state because it
occurs in a single driven oscillator. In our case the symmetry-
breaking bifurcation occurs due to the coupled interaction of
two oscillators, therefore, the notion of emergent dynamics is
applicable here.

Finally, in the deep quantum regime we tried to map
the zone of occurrence of the quantum OD state in the

ε/k1 − q space. Figure 8 shows the mean phonon number in
the ε/k1 − q space (k1 = 1, k2 = 3): quantum OD emerges
above the dashed line which is plotted by visual inspection
of the bifurcation of Wigner function. In the quantum OD
state one observes a drastic increase in the mean phonon
number, which resembles the fact that, in classical OD, the
inhomogeneous fixed points have nonzero values. However,
an exact demarcation of the quantum OD in the parameter
space is difficult in the absence of any quantitative measure
of this state.

At this point it is important to raise the issue of quantum-
mechanical analog of classical Turing-type bifurcation. As
discussed earlier, in Ref. [17] the transition from AD to OD
through a symmetry-breaking bifurcation was established as
equivalent to the Turing-type bifurcation of a spatially ex-
tended system. In the present study also, in the deep quantum

FIG. 8. Deep quantum region k1 = 1 and k2 = 3: Mean phonon
number 〈a†

1a1〉 in the two-parameter space. Quantum OD occurs
above the dashed line. Solid horizontal line indicates q = 1, ω = 2.
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regime we get quantum AD and OD in the same system.
Moreover, we notice a symmetry-breaking transition from the
squeezed AD state to the quantum OD state with increasing q
(cf. Fig. 7): this may be thought of as the “quantum” analog
of the Turing-type bifurcation. However, since quantum OD
occurs in the deep quantum regime only, therefore, the pres-
ence of strong quantum noise makes it difficult to distinguish
quantum AD from oscillations and to identify the exact route
of transition from quantum AD to quantum OD. Therefore,
more quantitative measures are required to draw any strong
conclusions regarding this.

VI. CONCLUSIONS

In this paper we have studied the quantum-mechanical
manifestations of oscillation suppression states, namely, the
amplitude death and the oscillation death states in two
mean-field diffusively coupled identical quantum van der Pol
oscillators. Our study has unraveled two questions that we
asked in the beginning of this paper. First, identical quan-
tum oscillators can exhibit two types of quantum amplitude
death states, namely, squeezed and nonsqueezed quantum
AD. Second, oscillation death state indeed appears in coupled
quantum oscillators; it is manifested in the deep quantum
regime as the creation of inhomogeneous steady states due
to symmetry-breaking bifurcation in the Wigner function and
Husimi function. Moreover, our results hint at the occurrence
of the quantum analog of the Turing-type bifurcation.

First we have shown that, under nonscalar coupling, the
quantum AD state appears in its nonsqueezed form. With the
scalar coupling we observed a squeezed quantum AD state,
which is unlike a nonscalar or diffusive-coupling-induced
quantum AD state [15,16]. In the higher excitation regime
(i.e., outside the deep quantum zone) the quantum AD has a
one-to-one correspondence with the classical and semiclassi-
cal results. However, in the deep quantum regime the notion of
quantum AD is not obvious because in this regime only a few
Fock levels are populated around the quantum-mechanical
ground state.

In the deep quantum regime with high mean-field density
we have discovered a quantum OD state that emerges as
the consequence of a symmetry-breaking bifurcation in the
Wigner distribution function. To the best of our knowledge
this is the first instance where the quantum equivalence of
the OD state has been observed. Since this state is exhibited in
the deep quantum regime, therefore, a one-to-one correspon-
dence with the classical OD state is not possible. However,
both quantum and classical OD share two common features.
First, they appear under the scalar coupling, and, second, their
manifestation in the phase space is equivalent, viz., the ap-
pearance of inhomogeneous steady states in the phase space.
Since one of our main goals in this paper is the observation of
OD in the quantum regime, therefore, we restrict our study to
two coupled oscillators. In the case of more than two oscilla-
tors, multicluster OD may appear [3] and the identification of
the same in the quantum regime may become illusive.

With the advancement of experimental techniques we
believe that the present coupling schemes can be realized
experimentally, e.g., using the ion trap [4,39] and “membrane-
in-the-middle” experimental setup [40]. Quantum ampli-

tude death is thought to be an efficient means of cavity
cooling [15]; since in the present coupling scheme no pa-
rameter mismatch is required and one has two control
parameters—coupling strength and density of mean-field,
therefore, we believe that the present scheme offers a more
flexible option for cooling. Furthermore, since a strong
squeezing appears in the quantum AD state under the scalar
coupling, therefore, generation of the squeezed state in cou-
pled oscillators and its possible real life applications can be
explored further [41,42]. On the other hand, OD is generally
thought of as the underlying mechanism of cellular differenti-
ation and other symmetry-breaking phenomena in biological
systems [3], however, we have to figure out the exact implica-
tion of the quantum OD state in real quantum systems. Only
then we will be able to identify the application potentiality of
quantum OD in quantum technology.

The observation of a quantum OD state opens up a myriads
of scopes in the study of symmetry-breaking dynamics in
the quantum regime. The shape of the Wigner function in
the quantum OD state has a striking resemblance to that of the
single-photon-subtracted two-mode states with vortex struc-
ture in quadrature space [43] (see Chapter 4 of Ref. [44]);
also, it shares some of the visual features of the squeezed
Schrödinger cat (like) state [45,46]. However, unlike the vor-
tex state and Schrödinger cat state in our system the Wigner
function is always positive. Nevertheless, this visual resem-
blance calls for the further investigation. Our observation of
quantum Turing-type bifurcation hints at the possibility of
Turing patterns in the quantum domain. However, a deep
understanding of this scenario demands much more in-depth
investigations. Recently, the symmetry-breaking partially syn-
chronized states, namely, the chimeras have been reported in
the quantum regime by Bastidas et al. [10]. The connection
between the “quantum” chimera states and the quantum OD
state will be an interesting problem to study in a network of
coupled quantum oscillators [47,48].
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APPENDIX A: DERIVATION OF
AMPLITUDE EQUATION (2)

We consider the complex amplitude of the oscillator (1) as
α = x + iy. Therefore,

α̇ = ẋ + iẏ

= ωy − iωx + ik1y − 8ik2x2y

= −iωα + k1

2
(α − α∗) − k2(α + α∗)2(α − α∗). (A1)

Using polar coordinates α = ηe−iφ we get

η̇ − iηφ̇ = −iωη + k1

2
η(1 − e2iφ )

− k2η
3(e−iφ + eiφ )2(1 − e2iφ ). (A2)
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From Eq. (A2) we can extract equations for η̇ and φ̇,

η̇ = k1

2
η(1 − cos 2φ) − 4k2η

3 cos2 φ(1 − cos 2φ),

φ̇ = ω + k1

2
sin 2φ − 4k2η

2 cos2 φ sin 2φ. (A3)

Now at this point we apply the method of averaging. It can be
done by directly averaging the equations of η̇ and φ̇ over one
time period T = 2π

ω
(for details see Ref. [2], Chapter 7 and

references therein). We get

η̇ =
(

k1

2
− k2η

2

)
η, φ̇ = ω. (A4)

Putting these average values of η̇ and φ̇ in the equation α̇ =
e−iφ (η̇ − iηφ̇) we get the following equation:

α̇ = −iωα +
(

k1

2
− k2|α|2

)
α. (A5)

This is the amplitude equation as given in Eq. (2).

APPENDIX B: CORRESPONDENCE BETWEEN MASTER
EQUATION (3) AND AMPLITUDE EQUATION (2)

In quantum optics the average annihilation operator 〈a〉
and the complex amplitude α are equivalent [45], i.e., 〈a〉 ≡
α. This property bridges the master equation and amplitude
equation. Let us consider the master equation in the Lindblad
form as ρ̇ = −i[H, ρ] + D[L](ρ). Now the average of any

operator Ô is given by 〈Ô〉 = Tr(ρÔ). So the dynamical equa-
tion of 〈Ô〉 is given by

d〈Ô〉
dt

= d

dt
Tr(ρÔ)

= i〈[H, Ô]〉 + Tr(ÔD[L](ρ))

= i〈[H, Ô]〉 + 〈D̃[L](Ô)〉, (B1)

where D̃[L](Ô) is called the “adjoint operator,” having the
following form:

D̃[L](Ô) = L†ÔL − 1
2 {L†L, Ô}

= 1
2 (L†[Ô, L] + [L†, Ô]L). (B2)

Following Eq. (B1) and using the mater equation Eq. (3), we
evaluate the dynamical equation of expectation value of the
annihilation operator 〈a〉 as

˙〈a〉 = i〈[ωa†a, a]〉 + k1〈D̃[a†](a)〉 + k2〈D̃[a2](a)〉
= iω〈〈[a†a, a]〉〉 + k1

2
〈(a[a, a†] + [a, a]a†)〉

+ k2

2
〈(a†2

[a, a2] + [a†2
, a]a2)〉

= −iω 〈a〉 + k1

2
〈a〉 − k2〈a†a2B1〉, (B3)

which is similar to Eq. (2) as 〈a〉 ≡ α and 〈a†a2〉 ≈
| 〈a2〉 | 〈a〉 [6].
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