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Thermal decay rates of an activated complex in a driven model chemical reaction
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Recent work has shown that in a nonthermal, multidimensional system, the trajectories in the activated
complex possess different instantaneous and time-averaged reactant decay rates. Under dissipative dynamics, it is
known that these trajectories, which are bound on the normally hyperbolic invariant manifold (NHIM), converge
to a single trajectory over time. By subjecting these dissipative systems to thermal noise, we find fluctuations
in the saddle-bound trajectories and their instantaneous decay rates. Averaging over these instantaneous rates
results in the decay rate of the activated complex in a thermal system. We find that the temperature dependence
of the activated complex decay in a thermal system can be linked to the distribution of the phase space resolved
decay rates on the NHIM in the nondissipative case. By adjusting the external driving of the reaction, we show
that it is possible to influence how the decay rate of the activated complex changes with rising temperature.
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I. INTRODUCTION

In order to predict the rate of chemical reactions, transition
state theory (TST) [1–15] utilizes a dividing surface (DS)
in phase space [16,17] to determine when reactants decay
into products under quasiequilibrium conditions [18]. We and
others [10–15,19–24] have extended the use of TST to address
reactions far out of equilibrium, leading to rates, the reso-
lution of the reactive geometry, or the reaction paths. Such
conditions can arise when the reactants respond to external
stimuli, e.g., under driven conditions or collective effects of
the reacting environment.

The accuracy of the TST rate depends on the accuracy
of the DS to truly divide the space between reactants and
products. That is, it must satisfy the condition that no reacting
particle crosses it more than once. Unfortunately, in a driven
system, it is often not enough to classify molecules based
only on their spatial configuration, in large part because the
structure of the reaction geometry is itself time dependent.
The DS must then be extended to the full phase space of the
system in a time-dependent frame to ensure that it is free of
recrossings [19,20,25,26].

An additional complexity arises in activated processes
which must either explicitly address a solvent by extending
the number of degrees to a macroscopic degree or implicitly
address it by including them through a formalism such as
that of Brownian motion [27–29]. In either case, the coupling
between the reactants and the solvent can be surmised through
an effective friction. Activated processes have been seen to
undergo a Kramers turnover [28,29] in the rate as they are
solvated from low to high friction [30–34], and hence, the
exact value of the friction is important in determining the rate.

*Corresponding author: r.hernandez@jhu.edu

In general, the activated complex is a collection of unstable
configurations located near the energy barrier between the
reactants and products. In the modern language of differen-
tial geometry, this has become associated with the so-called
normally hyperbolic invariant manifold (NHIM) [35–40]. It
is a codimension 2 manifold in the phase space of the sys-
tem, which is characterized by the condition that trajectories
started on that manifold stay there when propagated forward
or backward in time.

The DS (or NHIM) is complementary to the brute force
calculation of reaction rates using trajectories that start from
the reactant region. Such trajectories count only if they cross
to products and are rare in activated processes. Neverthe-
less, the few that are reactive cross an exact DS once and
only once. Avoiding the work of determining the nonreac-
tive trajectories from the reactant region, one thus typically
focuses on the rate of trajectories leaving from the DS, which,
when exact—because of the nonrecrossing condition—gives
the flux-over-population rate [41–44]. Either because of time
dependence or dimensionality, the NHIM itself can generally
accommodate a set of trajectories that neither enter nor leave
it. In recent work, we have explored the stability of this class
of trajectories as we have conjectured that their decay is con-
nected to the decay of the reactive trajectories [20,40,45]. In
dissipative driven systems, due to the properties of the NHIM,
trajectories within it converge toward a single transition state
(TS) trajectory after a sufficiently long time in the saddle
region. Those trajectories near it will also be trapped toward a
single trajectory of the NHIM [12,23,46]. Obtaining the decay
rate of the trajectories within the NHIM and a determination
of how the thermal environment affects them are the primary
contributions of this work.

Using the system and methods described in Sec. II, we
can use the geometric structure obtained directly to deter-
mine rates in driven chemical reactions that are not isolated,
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but rather coupled to a dissipative environment. This is a
necessary advance for the use of the nonrecrossing divid-
ing surfaces—viz., the time-dependent DS attached to the
NHIM—that we and others [12,20,23,40,45–47] have been
developing because many chemical reactions of interest occur
in a solvent. The results presented in Sec. III provide a demon-
stration of the stochastic time-dependent motion of the NHIM
at fixed orthogonal modes (Sec. III A) and the collapse of the
transition states under dissipation toward a single trajectory
on the NHIM (Sec. III B). The time dependence of the instan-
taneous reactant decay rate and the temperature dependence
of the average decay rate of the activated complex over long
times are shown in Sec. III C. The temperature-dependent
behavior of the average decay rate is linked to the phase space
resolved average decay rate of the nonthermal system. We also
find that the temperature dependence of the decay rate can be
influenced by changing the oscillation of the periodic driving.

II. SYSTEM AND METHODS

In this section, we first recapitulate the representation of a
chemical reaction [20,40,48]. As in earlier work, we impose
Langevin dynamics to represent the influence of the bath and
use a driven saddle potential to reveal the decay rates of
trajectories within the NHIM. The specifics of the system and
the associated equation of motion (EOM) are summarized in
Sec. II A. The unstable transition states—i.e., the trajectories
on the NHIM—can then be constructed using the approach
described in Sec. II C [45,49]. The instantaneous decay rates
at coordinates of the NHIM and the average decay rates along
a transition state can then be constructed as summarized in
Sec. II D.

A. Model chemical reaction

The dynamics of the system under investigation is given by
the Langevin equation,

v̇ = −γ v + ξ(t ) − ∇V (x, t ) , (1a)

ẋ = v , (1b)

where x is the coordinate vector of the system, v are the
corresponding velocities, t is the time, and γ is the friction
coefficient. The vector ξ(t ) represents the fluctuations around
the time-dependent mean-force potential V (x, t ). Here, we
represent each component as white noise, which satisfies the
fluctuation-dissipation theorem [50–52] with respect to the
specified friction,

〈ξi(t )〉 = 0 , (2)

〈ξi(t )ξ j (t
′)〉 = 2γ T δi jδ(t − t ′) , (3)

where δi j and δ(t − t ′) represent the Kronecker delta and
Dirac delta distribution, respectively. The temperature T is
given in units in which the Boltzmann constant kB is set to
1 to give it the same units as energy. Note that the same noise
sequence is used for all trajectories.

The specific potential investigated here has been used many
times before in previous work [19,20,40,45,48,49,53,54]. It is
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FIG. 1. Phase space coordinates (x, y, vx, vy ) of two trajectories
arbitrarily selected from the ensemble of TS trajectories on the
NHIM at T = 0 and T = 1.0. The nonthermal trajectory (T = 0,
γ = 0) is periodic with the driving frequency ω = π of the potential,
as can be readily seen. The thermal trajectory (T = 1.0, γ = 0.7), in
contrast, exhibits fluctuations characteristic of the stochastic driving,
and it spreads out of sync with the periodic driving.

a two-dimensional rank-1 saddle potential of the form

V (x, y, t ) = 2 exp
{−[x − 0.4 sin (ωt )]2

}

+ 2

[
y − 2

π
arctan (2x)

]2

. (4)

This potential models a reaction over an energy barrier os-
cillating with frequency ω and provides a nonlinear coupling
between the reaction coordinate and orthogonal mode along
the reaction path. By construction, the coordinate component
x approximates the reaction coordinate—i.e., the unstable di-
rection of the saddle potential. Likewise, the y component
approximates the orthogonal modes. These coordinates x =
(x, y), together with their velocities ẋ = vx, ẏ = vy, form the
phase space of the system.

The effect of the Langevin dynamics on the trajectories
of the system is illustrated in Fig. 1. The phase space co-
ordinates of two arbitrary TS trajectories on the NHIM are
shown. In the nonthermal case we can see that the trajectory
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follows a smooth path in phase space and it is periodic in sync
with the deterministic driving. In contrast, the trajectory of
the thermal system fluctuates significantly, especially in the
velocities. The stochastic and aperiodic motion of the thermal
trajectories presents a new challenge for our earlier methods
on nonthermal systems [20,40,45,49] addressed here.

B. Identification of the NHIM

The NHIM, barring any general definition and here limited
only to a rank-1 saddle potential, is the set of all trajectories
in phase space bound forever to the saddle region in both
forward and backward in time directions. It is a manifold of
codimension 2 in phase space. It is also associated with a pair
of stable and unstable manifolds of codimension 1, whose clo-
sures intersect at the NHIM. For our model chemical reaction
[Eq. (4)], the position (x, vx )NHIM(y, vy) of the NHIM can be
parameterized as a function of the stable orthogonal modes y
and vy at a specific time t .

The motion of individual trajectories in a close neighbor-
hood of the NHIM is stochastic for a thermal system, as
illustrated in Fig. 1. Nevertheless, the corresponding stable
and unstable manifolds in Fig. 2(a) remain smooth and gen-
erally so. Thus, even for a thermal system, the phase space in
a local neighborhood looks similar to a nonthermal system,
as also observed in Refs. [20,40,45,49]. Hence, the typical
crosslike intersection of the stable and unstable manifolds
is preserved, and the position of the NHIM can be directly
obtained from the intersection of the stable and the unsta-
ble manifolds. In a thermal system, however, the intersection
(x, vx )NHIM(y, vy) will depend not only on the specific choice
of the orthogonal modes (y, vy) but also on the parameters γ

and T . This finding is illustrated in Fig. 2(a) for the paradig-
matic system used throughout this work.

The stable and unstable manifolds have the characteristic
property that any trajectory near them is propagated toward
and away from the NHIM, respectively. Only at the inter-
section of their closures—viz., the NHIM—are trajectories
unstably bound to the saddle region. As the stable and unstable
manifolds are themselves invariant manifolds, they cannot be
crossed by any trajectory of the system. This effectively sepa-
rates the phase space in the close neighborhood of the NHIM
into four distinct regions demarcated by these manifolds [see
Fig. 2(b)]. For a chosen saddle region x ∈ [xmin, xmax] with
appropriately chosen boundaries xmin and xmax, the dynamics
of trajectories is characteristic for any of these regions, as
indicated by the black arrows in Fig. 2(b). In region I, non-
reactive trajectories originate from the reactant side x < xmin

in the past and fall back to the reactant side in the future.
The same is true for region III, which contains all trajectories
that originate from the product side x > xmax and also fall
back to the product side. Regions II and IV hold the reactive
trajectories from the reactant to the product side or vice versa.

We use the binary contraction method (BCM) [49] to nu-
merically find the NHIM at a given time t for a given set
(y, vy) of orthogonal modes. The procedure of the BCM is
initiated with a quadrangle having its four vertices [blue dots
in Fig. 2(b)] in each of the four reactive and nonreactive
regions in a close neighborhood of the NHIM. In successive
steps, the midpoint between pairs of nearby points of the

FIG. 2. (a) Stable and unstable manifold at orthogonal modes
y = vy = 0 for nonthermal and thermal systems with driving fre-
quency ω = π . The intersection of these manifolds marks the x
and vx coordinates of the NHIM for these orthogonal modes.
Crosses such as these can be obtained for any orthogonal modes
(y, vy ) and time t . Thus, one can express the reaction coordinates
(x, vx )NHIM(y, vy, t ) of the NHIM as functions of initial time and
orthogonal modes. (b) Sketch of the stable and unstable manifold.
The arrowheads indicate the projected path trajectories take within
the four separated regions. A quadrangle with a vertex in each of the
four regions illustrates the binary contraction method, an iterative
routine to find the NHIM at the intersection of the manifolds (see
Sec. II B).

quadrangle is propagated to determine which region it belongs
to and then replaces the corresponding point. The area of
the quadrangle thus shrinks, and its center converges to the
intersection (x, vx )NHIM(y, vy) of the manifold. The resulting
(y, vy) corresponds to the position (x, vx ) of the NHIM. This
convergence is exponentially fast, and therefore, the BCM is
very efficient in finding the NHIM for a given set of orthogo-
nal modes. For the technical details of the BCM, we refer the
reader to Ref. [49].

C. Trajectories on the NHIM

Due to the hyperbolic nature of the NHIM, trajectories
on the NHIM are unstable. Small deviations from the NHIM
will grow exponentially in time until the trajectory leaves its
immediate vicinity. Thus, any deviation in a point relative to
the NHIM, no matter how small, will lead its subsequent prop-
agation to fall off of it eventually. This presents a challenge to
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the propagation of trajectories on the NHIM using numerical
simulations.

These numerical deviations can be suppressed through a
machine-learning representation of the NHIM projecting them
back onto the NHIM, as was done in Ref. [45]. Here, we em-
ploy this approach leveraging the numerically accurate BCM
presented in Ref. [49]. Given the system and bath parame-
ters, the reaction coordinate and corresponding velocity of
the NHIM can be integrated in time as a function of the re-
maining orthogonal modes in the usual way. By subsequently
projecting the trajectory back onto the NHIM it is effectively
propagated in a system with reduced dimensions which is
spanned by the orthogonal modes. The result is a trajectory
that remains on the NHIM.

D. Decay rates of reactant population

The relative stability of the NHIM can be characterized
through the instantaneous decay rates k(y, vy, t ) of the reactant
population for the specific orthogonal modes (y, vy) in its
close neighborhood at each time t . These decay rates can
be obtained directly by propagating ensembles of reactive
trajectories, but this can become cumbersome and numerically
expensive. The local manifold analysis (LMA) was introduced
in Ref. [40] to overcome this problem by leveraging the linear
dynamics near the NHIM.

Since the dynamics relative to the transition state is linear,
it is possible to propagate trajectories using a linear map, the
fundamental matrix M, obtained via

Ṁ = J(t )M, (5)

with the initial condition of M(t0) = 1, and a Jacobian

J(t ) = ∂ (ẋ, v̇)

∂ (x, v)
=

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1

− ∂2V
∂x2 − ∂2V

∂x∂y −γ 0

− ∂2V
∂x∂y − ∂2V

∂y2 0 −γ

⎞
⎟⎟⎟⎠ (6)

parameterized in time along a specific trajectory of the tran-
sition state. The stochastic force ξ(t ) does not contribute to
any component of the Jacobian in Eq. (6) as it is purely time
dependent. However, this does not mean that it is neglected
in the Langevin dynamics. The Jacobian (6) describes the
motion relative to a transition state whose trajectory fluctuates
under the influence of the stochastic force. That means that
although the dynamics relative to the close vicinity of the
transition state might not be fluctuating, the total dynamics
still does. Using the linear dynamics near the transition state
according to Eq. (5), we can extract the instantaneous motion
of a particle ensemble near that state from the Jacobian.

The LMA models the presence of such a uniform particle
ensemble in the close neighborhood of the NHIM. For the
system of Eqs. (1) and (4) at specific orthogonal modes (y, vy)
and time t , we can obtain a local instantaneous decay rate

k(y, vy, t ) = �vu
x

�xu
(y, vy, t ) − �vs

x

�xs
(y, vy, t ), (7)

where �vs,u
x /�xs,u represents the slopes of the stable and

unstable manifolds in the corresponding (x, vx ) cross section
of the full phase space near the transition state. Determining
these slopes, or, rather, the instantaneous decay rate as the

difference of these slopes, is the main objective of the numer-
ical implementation of the LMA. A derivation of the LMA
can be found in Ref. [40], and the additional corrections that
would be necessary for more general cases can be found in the
supplementary material of Ref. [55].

An average rate for the decay relative to trajectories on
the NHIM is obtained by computing the time average of the
instantaneous decay rates for a sufficiently long time to obtain
convergence. For a trajectory that is initialized at time t0 and
position (y0, vy0) on the NHIM and parameterized by the
orthogonal modes y(t ) and vy(t ), this average yields

k̄(y0, vy0, t0) = lim
τ→∞

1

τ

∫ t0+τ

t0

k(y(t ′), vy(t ′), t ′) dt ′ . (8)

In the special case of T = 0, we find that the trajectories are
periodic or quasiperiodic, and it suffices to integrate for the
period or quasiperiod. An alternative approach to obtain mean
decay rates is provided by a Floquet analysis of said trajectory
[40,56],

k̄(y0, vy0, t0) = lim
τ→∞

1

τ
[ln |ml (τ )| − ln |ms(τ )|], (9)

where ml,s(t ) are the eigenvalues of the fundamental matrix
M. It reduces to the monodromy matrix when the trajectory is
periodic. Here, the subscripts l and s denote the eigenvalues
with the largest and smallest absolute values, respectively
[40,56].

III. RESULTS AND DISCUSSION

A. Stochastic motion of the NHIM under noise

The time-dependent NHIM and the associated decay rates
in a driven chemical reaction are resolved here for the model
system of Eq. (1). If the dissipative and stochastic terms are
excluded, the result is a smooth oscillating motion with the
same period as that of the oscillating potential [55]. However,
when the system is subject to the Langevin terms—viz., fric-
tion and thermal noise—the motion of the NHIM becomes
stochastic, as illustrated in Fig. 3. Here, the expected behavior
in the time dependence of xNHIM for a specific set of coordi-
nates (y, vy) in the dynamics without and with the Langevin
terms is apparent. The latter case now exhibits stochastic
fluctuations in both position (as shown) and momentum (not
shown) spaces. They are in response to the combination of the
collective stochastic thermal driving and the periodic driving
terms. Such fluctuations were not seen in the position space of
the TS trajectories shown in Fig. 1 because in this relatively
weak friction regime, the high-frequency fluctuations are very
small. However, in Fig. 3, the NHIM does exhibit short-time
fluctuations in the position space as a manifestation of the
overall phase space motion. Nevertheless, the DS is recrossing
free as it incorporates the noise.

B. Dissipative dynamics on the NHIM

Although we have seen that the dynamics of the system in
the general case of Eq. (1) for the potential in (4) is not peri-
odic, it is nevertheless instructive to examine the stroboscopic
Poincaré surface of section (PSOS) of its trajectories. Similar
to the approach used in Refs. [40,48], we record the position
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FIG. 3. Position xNHIM of the NHIM for fixed y = vy = 0 and
ω = π as a function of time. Without the Langevin terms, the NHIM
(dashed curve) oscillates periodically, as one would expect from
the periodically driven saddle potential. With the Langevin terms,
however, the NHIM (solid curve) moves stochastically. Compared
to a trajectory on the NHIM for the same parameters, the reaction
coordinate x does not fluctuate as much as the NHIM in phase space
(see Fig. 1).

of trajectories in the (y, vy) section in phase space at time steps
equal to the period of the driving. As we start with a point on
the NHIM, it necessarily must stay on the NHIM. Thus, the
coordinates in the PSOS remain projected onto the NHIM as
exhibited in Fig. 4.

The PSOSs of Fig. 4 show the contrast in the dynamics
upon the introduction of friction. In Fig. 4(a), the dynamics
on the NHIM is regular. It gives rise to the expected stable
concentric tori and an elliptic fixed point. In Fig. 4(b), as a
result of the friction, the would-be tori now spiral toward a
fixed point in the stroboscopic projection. This fixed point
refers to a time-periodic trajectory in phase space which acts
as an attractor for particles on the NHIM.

C. Thermal decay rates

The collapse of the NHIM to a single periodic trajectory
in dissipative regimes with temperature T = 0 observed in
Sec. III B can be used to our advantage for temperatures above
zero. Even when noise is in play, the fluctuating trajectories
on the NHIM will approach a single fluctuating trajectory over
long times, which we will refer to as the equilibrium trajectory
on the NHIM. It can be determined numerically by propagat-
ing an arbitrary point on the NHIM for a sufficiently long
time until the equilibrium is reached. The initial buildup is
discarded when calculating rates. In the infinite time limit, use
of the equilibrium trajectory to obtain the average decay rate k̄
eliminates its dependence on the initial conditions (y0, vy0, t0)
in Eqs. (8) and (9). That is, all contributions to the average
decay rate that would depend on the initial conditions are
dwarfed by the contributions of the equilibrium trajectory.

Assuming that the long-term behavior is independent of
the initial time t0, the equilibrium trajectory can be used to
construct the expected value 〈k〉(T, γ ) of the reactant decay
rate as a function of the temperature T and friction γ ,

〈k〉(T, γ ) = k̄(y0, vy0, t0; T, γ ), (10)
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FIG. 4. The PSOSs of the system defined by Eqs. (1) and (4) for
varying friction at temperature T = 0 and saddle frequency ω = π .
The nonthermal system with friction γ = 0 and the thermal system
with γ = 0.2 are shown in (a) and (b), respectively. In (a), the
regularity of the system is demonstrated by the elliptic fixed point
at the center and the surrounding tori. In (b), for trajectories with
initial conditions similar to those in (a), the stroboscopic dynamics
on the NHIM collapses to a fixed point in the dissipative case.

which, due to the fact that the initial conditions will be for-
gotten by the dynamics over time, is the same for any set of
initial conditions (y0, vy0, t0).

1. Instantaneous decay rates

The influence of the noise on the average decay rate is
revealed by the time evolution of the instantaneous decay
rate. The rates shown in Fig. 5(a) are plotted over five saddle
oscillations. Despite the stochastic nature of the NHIM at
fixed orthogonal modes (y, vy), we find that the instantaneous
rate of the thermal trajectory on the NHIM is smooth and still
roughly follows the regular oscillation we find for zero tem-
perature. This can be attributed to the fact that the trajectories,
as integrated values over a noisy acceleration, have a smooth
time evolution. Despite the instant decay in the time cor-
relation of the stochastic force in the fluctuation-dissipation
relation [Eq. (3)], these trajectories have a finite memory of
their previous positions [57]. However, over sufficiently long
timescales, it is possible to obtain a time evolution of the in-
stantaneous reactant decay rate that resembles an uncorrelated
fluctuation, as can be seen in Fig. 5(b).
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FIG. 5. (a) Comparison of instantaneous decay rates of the equi-
librium trajectory on the NHIM as defined in Sec. III C for friction
γ = 0.2 and temperatures T = 0.2 and 0. The driving frequency in
both cases is ω = π . The instantaneous rate of the thermal complex
roughly follows the oscillations of the nonthermal trajectory but
exhibits fluctuations to a certain degree. (b) Instantaneous rate of
the thermal activated complex over a longer time interval. Stochastic
fluctuations of the rate become more evident over hundreds of saddle
oscillation periods. The dashed line highlights the time average of
the rate.

2. Temperature dependence of average decay rates

The averaged rate has to be determined over several
hundred—sometimes even a few thousand—saddle oscilla-
tions to obtain a statistically sound converged average. This is
a consequence of the need to achieve the limiting equilibrium
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FIG. 6. Temperature-dependent time average of the instanta-
neous decay rate for the activated complex of the model system at
two different driving frequencies, ω = 0.6π and 1.0π . The dashed
vertical line highlights the average rates at T = 0.2 corresponding to
the data in Figs. 5 and 7.
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FIG. 7. Stroboscopic projections of a typical trajectory on the
NHIM for each of the saddle driving frequencies, (a) ω = π and
(b) ω = 0.6π , in the dissipated thermal case, γ = 0.2 and T = 0.2,
are shown as white circles. Refer to Fig. 6 for the corresponding
average rates where the vertical dashed line crosses the curves. The
color maps show the time-averaged decay rates 〈k〉 of a nonthermal
activated complex on the NHIM for the initial conditions (y, vy ) at
time t0 = 0. For reference, the fixed points of the stroboscopic maps
in the nonthermal case are indicated by a cross.

trajectory observed in Sec. III C 1. The resulting temperature
dependence of the averaged decay rate for two sets of parame-
ters is shown in Fig. 6. These parameters were chosen because
they give rise to two very different regimes in the shape of
the rate from concave to convex. With a driving frequency
of ω = 0.6π , we obtain a rate that monotonically rises as
temperature rises. However, at a driving frequency of ω = π ,
we obtain a rate that at first decreases, before it increases with
rising temperature.

The change in behavior of the rate curves may seem
counterintuitive at first. One might expect that a higher
temperature—i.e., a higher average energy—would cause the
reaction to surmount an energy barrier at a higher rate. This
expectation is not contradicted by the present results. The
decay rate computed here is the decay rate of the reactant
population close to the transition state after it has reached
the energy barrier. Such a rate does not include the increased
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population of activated reactants that would arise from a
higher temperature and consequently does not have to increase
accordingly.

We find that strong noise causes the activated complex to
fluctuate strongly near the NHIM, as seen in Fig. 7. When
comparing these coordinate fluctuations with the phase space
resolved decay rates of the nonthermal system according to
Fig. 7 or additional examples in the Supplemental Material
[58], we can also see how a thermal activated complex ex-
plores several transition states of the nonthermal system. This
further suggests that the decay of the thermal activated com-
plex into reactants or products is related to the distribution of
the explored, nonthermal transition states. This interpretation
is consistent with the observation made in Sec. II D that noise
affects only the average decay rate by the trajectory that is
used to obtain it. This analogy is not formally exact since the
Jacobian J according to Eq. (6) contains the friction coeffi-
cient γ which is not zero in the thermal case. Nevertheless,
the conjectured interpretation appears to hold for the low-
temperature thermal case discussed in Figs. 6 and 7.

A heuristic argument in support of the conjecture is as
follows. As temperature rises, the activated complex deviates
further from the corresponding periodic trajectory at T = 0.
This in turn causes the activated complex to explore tran-
sition states that are further from said trajectory. Moreover,
the distribution of explored transition states expands into a
region with shrinking decay rates as temperature rises. The
equilibrium trajectory now resides in a local maximum of
decay rates, as is the case for ω = 0.6π , and hence, the decay
of the activated complex decreases with rising temperature.

IV. SUMMARY AND CONCLUSION

We have characterized the geometric structure of a model
chemical reaction, thereby taking into account both external
driving and noise and friction described by the Langevin

terms. We have shown that the temperature dependence of the
activated complex decay in this thermal system is linked to
the distribution of the phase space resolved decay rates on
the NHIM in the nondissipative case. The decay rate of the
activated complex depends on the external driving and the
temperature, and these dependencies can be used to control
the reaction.

In this paper we have investigated the thermal decay rates
of trajectories very close to the NHIM based on equilibrium
trajectories located exactly on the NHIM. In future work it
will be necessary to also study trajectories out of the NHIM.
An important question is whether one can define a thermal
equilibrium or at least a stationary distribution on the DS in
these nonequilibrium systems with which one can obtain the
reaction rate.

Recently, we investigated the influence of external driving
on decays in the geometry of the LiCN isomerization without
considering noise and friction [55]. Meanwhile, the dissipa-
tion arising from an argon bath on that reaction was seen
to be representable by the Langevin terms [34]. Thus, the
methods presented here open up the possibility of considering
the thermal effects in a driven LiCN isomerization reaction
and other chemical reactions of interest.
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