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Phase space structure and escape time dynamics in a Van der Waals model for exothermic reactions
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We study the phase space objects that control the transport in a classical Hamiltonian model for a chemical
reaction. This model has been proposed to study the yield of products in an ultracold exothermic reaction. In
this model, two features determine the evolution of the system: a Van der Waals force and a short-range force
associated with the many-body interactions. In the previous work, small random periodic changes in the direction
of the momentum were used to simulate the short-range many-body interactions. In the present work, random
Gaussian bumps have been added to the Van der Waals potential energy to simulate the short-range effects
between the particles in the system. We compare both variants of the model and explain their differences and
similarities from a phase space perspective. To visualize the structures that direct the dynamics in the phase
space, we construct a natural Lagrangian descriptor for Hamiltonian systems based on the Maupertuis action
S0 = ∫ q f

qi
p · dq.
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I. INTRODUCTION

Recent progress in experimental techniques allows the
study of chemistry in certain cold systems [1–3]. A cur-
rent experiment of interest studies the products generated by
the collision complex between two cold potassium-rubidium
dimers,

2KRb → [K2Rb2]� → K2 + Rb2.

Two ultracold dimers KRb meet at 300 nK, interact, and form
a collision complex [K2Rb2]�. The energy of the particles in
this collision complex is around 4000 K. After this stage the
final products, K2 and Rb2, are generated. The final energy of
these products is expected to be around 14 K [1,4–8].

The considerably large difference of energy between the
atoms in the collision complex and the final products is an
important property to consider in the modeling of the system.
A classical model has been proposed in [9] to calculate the
lifetime of the collision complex, or equivalently the yield of
the final product in this cold chemical reaction. The justifica-
tion for this model is based on semiclassical considerations.
This model is an option to avoid the direct quantum calcu-
lations that require a large number of eigenstates to describe
the dynamics of this kind of system with a deep potential well
[10].

The basic idea in the construction of the model is that the
long-range interaction in the system determines the escape
of the particles when the energies are close to the threshold
energy necessary to escape. For energies very close to the
threshold, only the particles with enough momentum in the
radial direction can escape from the potential well, which is
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referred to as the “cauldron” in [9]. The short-range interac-
tions are related to the collisions between molecules in the
collision complex.

In the present work, we study the dynamics of this classical
model from the phase space perspective. The phase space ap-
proach has been developed and applied recently to understand
better the chemical reaction dynamics in different systems
[11–16]. In Sec. II, we describe the two variants of the model
and their basic properties. Section III contains the construction
of the Lagrangian descriptors based on the Maupertuis action
S0. In Sec. IV, we study the phase space of the integrable
and the perturbed systems. Also, we compare the phase space
structures involved in the dynamics of the trajectories that
escape in the two variants of the model: the perturbed system
and the kicked system. This study of the phase space helps us
to understand the escape time of particles from the potential
well in Sec. V. Finally, we present conclusions and remarks.

II. MODEL

In this section, we study the basic features of the 2 degree
of freedom classical model proposed in [9] to estimate the
yield of the final product in the chemical reaction described in
Sec. I. This model is inspired from previous work by Wannier
[17] where the ionization of electrons due to the collision
between electrons in a helium atom is considered. With this
model, Wannier obtained a threshold law for the yield of
ionized electrons as a function of the energy. In both systems,
the justification of the use of a classical approach is based on
a semiclassical WKB analysis [9,17].

An important characteristic of both models is that the total
force in the system has two terms to define the escape process
of the particles to infinity. The first force is a long-range
interaction that determines the asymptotic motion. The second
force has short-range interaction and in combination with the
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FIG. 1. Van der Waals potential energy V0(r). The energy E is in
kelvins. The cauldron is very deep; its minimum is around −4000 K.
Similar potential energy surfaces have been proposed in [18,19] for
barrierless reactions.

first force generates complicated dynamics in the region close
to the origin.

In the model for a cold chemical reaction, the system is
considered as a two-body problem. The force related to the
asymptotic motion is a Van der Waals force. The potential
energy associated with this force is

V0(r) = − C

(β|r|2 + α)3
, (1)

where r = (x, y) is the position from the origin, and the nu-
merical values of the constants in this example are C = 16130
a.u., β = 2.9 a.u., and α = 110 a.u.; see Fig. 1. The potential
energy V0(r) is negative and goes to zero when |r| goes to
infinity. This potential energy has rotational symmetry and
gives rise to integrable dynamics. For negative values of the
total energy E , the phase space is bounded, and the particles
are confined. For E > 0 the phase space is unbounded; some
particles can escape to infinity.

Due to the radial symmetry of the potential V0(r),
there exists an effective potential energy V0e f f (r) (Fig. 2)
parametrized by the z component of the angular momentum,
Lz. The threshold energy of the escape is determined by the
maximum of the effective potential at the critical radius. Re-
lated to this radius exists a circular unstable periodic orbit that
projects to a circle in the configuration space. This periodic

FIG. 2. Van der Waals effective potential energy V0e f f (r). The
maximum of V0e f f (r) determines the radio of the hyperbolic periodic
orbit γ0. The numerical value of the z component of the angular
momentum is Lz � 108 a.u.

FIG. 3. Potential energy for the perturbed system V (r). The val-
ues of A = 0.002 a.u. and B = 10 a.u. have been chosen in this plot
so that the random bumps appreciably break the symmetry. For the
numerical calculations we used A = 0.0001 a.u. and B = 10 a.u.

orbit γ0 is a normally hyperbolic invariant manifold (NHIM):
almost any trajectory close to the orbit moves away from
the orbit at an exponential rate after some time; only the
trajectories in its stable manifold converge to the orbit γ0. In
the following sections, we explain the role of this family of
hyperbolic periodic orbits in the dynamics of the system.

Around the minimum of the potential V0(r), the short-range
force acts. In [9] there are two proposals for the force to break
the rotational symmetry and mimic the many-body interac-
tion. The first proposal consists of adding to the potential
V0(r) some random Gaussian bumps scattered inside the re-
gion with a radius r < 5 a.u. This kind of perturbation has
been used in closed quantum systems to break their rotational
symmetry and generate rich dynamics and quasidegeneracy in
the energy spectrum [20,21]. In this case, the potential energy
for this perturbed variant of the model is

V (r) = V0(r) +
n∑

i=1

Ae−B|r−ri|2 , (2)

where A = 0.0001 a.u., B = 10 a.u. are the coefficients that
define the Gaussian bumps, and ri are the position of their
centers. Figure 3 shows a plot of the potential energy V (r) in
color scale.

The second variant of the short-range force has been
proposed to simplify the numerical calculations of the trajec-
tories. The basic idea is to generate trajectories “similar” to
the trajectories for the perturbed system without the inclusion
of the random bumps in the potential energy that generate
instabilities in the numerical calculations. The alternative ex-
plored in [9] is the use of small periodic random changes in
the direction of the momentum of the particles. These changes
in the momentum are only possible if the particles are in
the same region where the bumps are in the other variant
of the model, r < 5 a.u. These changes in the direction of
momentum preserve the energy of the particle and the numer-
ical calculations of the trajectories are more simple than the
calculations for the trajectories under the perturbed potential
V (r). This method is called random momentum kicks.

Figure 4 shows the trajectories with the same initial con-
ditions for the three cases and their corresponding relative
changes in the energy. The numerical calculations of the tra-
jectories are done with a Taylor polynomial integrator order
21 implemented in the language Julia [22–24]. Using this
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FIG. 4. On the left side, the trajectories in the configuration space
for the three considered cases: integrable, perturbed nonintegrable,
and kicked. On the right side, their corresponding relative changes of
the energy �E

E . The time t is in atomic units (a.u.). Their initial ener-
gies of angular momentum are equal in the three cases, E = 100 K
and Lz � 108 a.u. The green dots on the plot of the trajectory corre-
sponding to the perturbed system indicate the centers of the Gaussian
bumps in the potential V (r). For these values of E and Lz the particle
cannot escape in the integrable case; see V0e f f (r) in Fig. 2. However,
the short-range interactions present in the nonintegrable and kicked
system change the dynamics, and the particle can escape to infinity.

integrator, the relative changes of the energies in the three
cases have a similar order of magnitude. The blue trajec-
tory corresponds to a particle under the influence of the Van
der Waals potential V0(r). This trajectory is bounded and
quasiperiodic. The red trajectory corresponds to a particle
under the perturbed potential V (r). This red trajectory has a
more complicated behavior generated by the Gaussian bumps
before to escape to the asymptotic region. The orange trajec-
tory is obtained with the random kicks method; after some
time close to the origin the particle escapes to infinity.

III. LAGRANGIAN DESCRIPTORS AND THE
MAUPERTUIS ACTION S0

The classical Lagrangian descriptor is based on the arc
length of the trajectories in the phase space [25,26]. In the
present article, we construct a Lagrangian descriptor based
on the classical action S0 to reveal the phase space structures.
The action S0 is an essential quantity in the study of Hamil-
tonian systems and plays a fundamental role in semiclassical
approximations. In this section, we explain why it is possible

to construct a Lagrangian descriptor based on S0. First, let us
consider the definition of the Lagrangian descriptor proposed
in [26] and basic ideas about the phase space structures that
determine the dynamics.

The general definition of the Lagrangian descriptor is as
follows. Consider a system of ordinary differential equations

dx
dt

= v(x), x ∈ Rn, t ∈ R, (3)

where v(x) ∈ Cr (r � 1) in x and continuous in time t . The
definition of Lagrangian descriptor depends on the initial con-
dition x0 = x(t0), on the time interval [t0 + τ−, t0 + τ+], and
takes the form

M(x0, t0, τ+, τ−) = M+(x0, t0, τ+) + M−(x0, t0, τ−)

=
∫ t0+τ+

t0

F (x(t ))dt+
∫ t0

t0+τ−
F (x(t ))dt, (4)

where a F is a positive function on the solutions x(t ), x(t0) =
x0, and τ+ � 0 and τ− � 0 are freely chosen parameters. The
values of τ+ and τ− can change between different initial con-
ditions and allow us to stop the integration once a trajectory
leaves a specific region in the phase space. In this way it is
possible to reveal only the phase space structures contained in
a defined region.

The phase space of a 2 degree of freedom Hamiltonian
system has 4 dimensions. Considering the conservation of
energy, we can represent the dynamics of the system in the
3-dimensional constant energy level set. In this 3-dimensional
manifold, we can visualize the dynamics and identify the
essential phase space structures that direct the dynamics.

The periodic orbits are basic objects for understanding
the dynamics of the system in the constant energy level
set. Around a stable periodic orbit, the Kolmogorov-Arnold-
Moser (KAM) tori confine the trajectories in a bounded region
defined by the tori. In contrast, the dynamics in a neighbor-
hood of an unstable hyperbolic periodic orbit have different
behavior; the trajectories around the orbit diverge from the
orbit after some time. There are two invariant surfaces un-
der the flow associated with a hyperbolic periodic orbit, the
stable and unstable manifold of the hyperbolic periodic orbit.
Its stable and unstable manifolds intersect in the hyperbolic
periodic orbit and direct the trajectories in the neighborhood.
The definition of the stable and unstable manifolds W s/u(γ )
of the hyperbolic periodic orbit γ is the following,

W s/u(γ ) = {x|x(t ) → γ , t → ±∞}. (5)

The stable manifold W s(γ ) is the set of trajectories that con-
verge to the periodic orbit γ as the time t goes to ∞. The
definition of the unstable manifold W u(γ ) is similar. The
unstable manifold is the set of trajectories converging to the
periodic orbit as the time t goes to −∞.

In a 2 degree of freedom Hamiltonian system, the invariant
manifolds W s/u(γ ) are 2-dimensional surfaces. These sur-
faces form impenetrable barriers that direct the dynamics in
the 3-dimensional constant energy level set [27,28]. Another
important property of the stable and unstable manifolds re-
lated to the chaotic dynamics is that, if a stable manifold
and an unstable manifold intersect transversally at one place,
then there are an infinite number of transversal intersections
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between them. The structure generated by the union of the
stable and unstable manifolds is called a tangle. It defines a
set of tubes that direct the dynamics in the constant energy
level set [29,30]. A remarkable property of the dynamics in the
constant energy level set is that the trajectories in a tube never
cross the boundaries of a tube. This fact is a consequence
of the uniqueness of the solutions of the ordinary differential
equations.

The Lagrangian descriptors are appropriate tools to reveal
the phase space structure, especially, to find stable and un-
stable manifolds of periodic orbits [31–33]. To understand
the basic idea that holds up the detection, let us consider
the behavior of the trajectories in a neighborhood of a stable
manifold W s(γ ). All the trajectories in W s(γ ) converge to
the periodic orbit γ , and the trajectories in a small neighbor-
hood of W s(γ ) have similar behavior just for a finite interval
of time. After this interval of time, the trajectories move
apart from the unstable hyperbolic periodic orbit γ following
the unstable manifold W u(γ ). This different behavior of the
trajectories generates the singularities in the Lagrangian de-
scriptors and other chaotic indicators, like scattering functions
[34–36].

The stationary action principle developed by Leibniz,
Euler, and Maupertuis establishes that the action S0 of a
Hamiltonian system defined as

S0 =
∫ q f

qi

p · dq (6)

has an extreme value on the trajectory of the system. The
quantities p and q are the generalized momenta and the gen-
eralized coordinates of the system. It is possible to construct a
natural Lagrangian descriptor for Hamiltonian systems under
the following considerations.

Let us consider a system such that the kinetic energy is a
quadratic function of the generalized velocities q̇. Then

T = dq
dt

· M(q) · dq
dt

, (7)

where M(q) is the mass tensor and it is a function only of the
generalized coordinates q. For such systems there exists an
identity between the kinetic energy, the generalized momenta,
and the generalized velocities,

2T = p · q̇, (8)

provided that the potential energy V (q) is not a function
of q̇. By defining a distance ds in the space of generalized
coordinates

ds2 = dq · M(q) · dq, (9)

one recognizes the mass tensor M(q) as a metric tensor. The
kinetic energy can be written as

T = 1

2

(
ds

dt

)2

(10)

or, equivalently,

2T dt = p · dq =
√

2T ds. (11)

FIG. 5. Lagrangian descriptor MS0 with initial conditions on the
plane y0-py0 at x0 = 0, and px0 > 0 for different values of the energy
E . The value of the integration times is τ+, −τ− = 2 × 106 a.u.

Hence, the action S0 can be expressed as

S0 =
∫ q f

qi

p · dq =
∫ q f

qi

√
2[E − V (q)] ds =

∫ t f

ti

2T dt .

(12)
Therefore, the quantity p · dq and its integral, the action S0,
are positive quantities along any trajectory in the phase space
and can, therefore, be used to construct a Lagrangian de-
scriptor to study the phase space for this type of Hamiltonian
system.

The Lagrangian descriptor MS0 based on the action S0

evaluated at times τ−, τ+ and the point x0 = x(t0) = (q0, p0)
on the trajectory x(t ) = (q(t ), p(t )) is defined as

MS0 (x0, t0, τ+, τ−) = S0+ (x0, t0, τ+) + S0− (x0, t0, τ−)

=
∫ q+

q0

p · dq +
∫ q0

q−
p · dq

=
∫ t0+τ+

t0

2T [x(t )] dt +
∫ t0

t0+τ−
2T [x(t )] dt .

(13)

IV. DYNAMICS AND PHASE SPACE

In order to understand the dynamics of the perturbed and
kicked systems, it is convenient to begin by analyzing the
phase space of the integrable system. The phase space struc-
tures in the integrable system are easy to visualize and serve
as a reference to study the structures in the other two cases.
We use the Lagrangian descriptor based on the action MS0 ,
constructed in Sec. III, and the Poincaré map as tools to visu-
alize the relevant structures in the phase space to understand
the dynamics.

A. Phase space of the integrable system

The integrable system has rotational symmetry. Therefore
a natural choice of initial conditions to analyze the dynamics
is a set that considers this symmetry. Figure 5 shows the
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Lagrangian descriptor MS0 evaluated in the canonical conju-
gate plane y0-py0 at x = 0 and px0 > 0 compatible with the
conservation of the energy. In the Lagrangian descriptor plots
exist two bounded regions with a large value of Lagrangian
descriptor (yellow-green regions) and an unbounded region
around low values of Lagrangian descriptor (dark-blue re-
gion).

The region dark-blue in color with small values of La-
grangian descriptor corresponds to trajectories that escape
to infinity and the regions with large values of Lagrangian
descriptor in yellow-green correspond to trapped trajectories.
To explain this property in the Lagrangian descriptor plots, let
us consider Eq. (13), the conservation of the energy, and only
the positive time direction. Analogous considerations follow
for the negative time direction. For a fixed value of the energy
E > 0, the values of the kinetic energy are smaller in the
asymptotic region than close to the minimum of V0(r). The
kinetic energy of the particles that escape to infinity converge
to its minimum possible value, the total energy E ; see Fig. 1.
The integral of the kinetic energy with respect to the time
is proportional to the action S0. Then, for any large enough
finite interval of time, the Lagrangian descriptor is smaller for
unbounded trajectories than for the trapped trajectories. The
trapped trajectories form integrable islands around the stable
periodic orbit corresponding to the minimum of the V0e f f (r).

In the integrable case, the boundary of the stable islands
is defined by the stable and unstable manifolds of the hyper-
bolic periodic orbit γ0 associated with the maximum in the
effective potential V0e f f (r). The hyperbolic periodic orbit γ0

corresponds to the point with py0 = 0 and the maximal values
of y0 in the green-yellow region. The symmetric point with
respect to the py0 axis corresponds to the analogous periodic
orbit with −Lz; for simplicity we consider only the orbit
γ0 in the following argumentation. At this point, two lines
that extend to the asymptotic region intersect; see Figs. 5(a)
and 10 corresponding to E = 100 K. Those lines, where the
value of the Lagrangian descriptor has a sharp peak, are the
intersections of the stable and unstable manifolds W s/u(γ0)
with the set of initial conditions. These invariant manifolds
have dimension 2 and divide the constant energy level set.

B. Phase space of the perturbed system

Next, we analyze the phase space of the perturbed system
defined by the potential energy V (r). In order to compare the
results with the integrable case, it is convenient to consider the
same kinds of initial conditions. In Fig. 6 there are plots of the
Lagrangian descriptor evaluated in the plane y0–py0 at x = 0
and px0 > 0 compatible with the conservation of the energy.
The values of the energies are the same as those chosen in the
integrable case.

The plots of the Lagrangian descriptors in Fig. 6 show
changes with respect to the plots in Fig. 5 corresponding to the
integrable case. The values of the Lagrangian descriptor are
more irregular in the regions with a large value of Lagrangian
descriptors as a result of the random Gaussian bumps in the
potential energy V (r). However, the blue regions associated
with the trajectories that escape to the asymptotic region are
similar in both cases.

FIG. 6. Lagrangian descriptor MS0 with initial conditions on the
plane y0-py0 and px0 > 0 for different values of the energy E . The
value of the integration times is τ+, −τ− = 2 × 106 a.u.

To appreciate better the details in the Lagrangian descriptor
for the nonintegrable case, Fig. 7 shows magnifications of the
region with y0 > 0 and its corresponding Poincaré maps. The
trajectories to construct Poincaré maps have been trapped in
this region for some time, and only their intersections after this
time are plotted. In the Poincaré maps, there are some KAM
islands. After some time the trajectories outside the KAM
islands escape to the asymptotic region where the motion
is simple. The KAM islands are surrounded by trajectories
with a temporal irregular behavior determined by the tangle
between the stable and unstable manifolds of the external
hyperbolic periodic orbit γ ; see the Lagrangian descriptor
plot in Fig. 8. The orbit γ is the deformation of the original
hyperbolic periodic orbit γ0 generated by the perturbation.

The irregular temporal behavior of the trajectories around
the KAM islands is an example of a phenomenon called tran-
sient chaos [37–39]. This complicated transient behavior is
common in open Hamiltonian systems. Some recent studies of
the phase space structures of open Hamiltonian systems with
two and three degrees of freedom are in [34–36,40,41].

C. Comparison between the dynamics of the perturbed
nonintegrable system and the kicked system

In the nonintegrable system, the Gaussian perturbations
change the dynamics around the origin. The KAM islands
are surrounded by the transient chaotic sea generated by the
homoclinic tangle of the periodic orbit γ . To appreciate more
details about the dynamics around the KAM islands, we con-
sider the Poincaré map of the red trajectory in Fig. 4(c) (see
Fig. 9). The Poincaré map and the Lagrangian descriptor MS0

as a background are in Fig. 7. The Lagrangian descriptor
reveals the complicated structure of the tangle between the
stable and unstable manifolds W s/u(γ ). The size of the lobes
where the trajectories escape to infinity is small compared to
the transient chaotic sea generated by the homoclinic tangle of
the periodic orbit γ . Then, the volume that escapes from the
transient chaotic sea is small in each iteration of the Poincaré
map, and the unbounded trajectories in the transient chaotic
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FIG. 7. Magnification of the Lagrangian descriptor MS0 plots for
the nonintegrable system in Fig. 6 and their corresponding Poincaré
maps. The value of the integration times for the plots is τ+, −τ− =
1 × 106 a.u. Plots on the right side show only the intersections of the
trajectories with the Poincaré plane that remain in the domain after
some time. In this manner, it is easy to distinguish the regions that
escape fast (the external large white region), the transient chaotic
sea generated by the homoclinic tangle of γ (the region where the
intersections form an irregular pattern), and the stable KAM islands
(the region where the iterations form closed curves).

sea intersect the Poincaré section many times before escaping
to the asymptotic region.

As we mentioned before, the trajectory evolution rule in the
kicked system is the combination of evolution under the influ-
ence of potential energy of the integrable system V0(r) and
time-periodic random changes in the direction of the momen-
tum when the trajectory is in the region close to the minimum
of V0(r), r < 5. To visualize the dynamics generated by the
kicks let us consider the Poincaré map associated with the
orange trajectory in Fig. 4(e) and the phase space structures
in the integrable system generated by V0(r) for the same value
of E as a background. Figure 10 shows the Poincaré map of
this orange kicked trajectory, some invariant closed curves
of the integrable system, and the Lagrangian descriptor of
the integrable system. The random change in the momen-
tum direction is in the interval [−π/12, π/12]. The kicked

FIG. 8. Magnification of the Lagrangian descriptor MS0 plot for
the nonintegrable system for E = 100 K in Fig. 7(a). The periodic
orbit γ intersects the plane at the corner of the blue triangle with
low values of MS0 , close to the point (10,0). This periodic orbit is
near to its corresponding hyperbolic orbit γ0 in the integrable system.
The Gaussian perturbations decay very fast, and their contribution
to the potential energy V (r) is small in the neighborhood of the
periodic orbit γ0. However, the stable and unstable manifolds of γ

intersect transversely and form a chaotic homoclinic tangle. These
manifolds determine the entry and exit from the region around the
KAM islands. The size of the exit lobes is small compared with
the transient chaotic sea around the KAM islands. The value of the
integration times for this plot is τ+,−τ− = 2 × 106 a.u.

trajectory intersects with different invariant closed curves in
the Poincaré section due to the changes in the direction of the
momentum and eventually escapes from the integrable island.

Figure 11 shows the intersections with the same Poincaré
section of another kicked trajectory with the same initial con-
ditions but a different set of random changes in the direction of
the momentum. This trajectory jumps between more invariant
closed curves than the trajectory in Fig. 10 and spends more
time in the integrable island. Nevertheless, both trajectories
eventually escape to the asymptotic region.

V. ESCAPE TIMES FROM THE CAULDRON

In systems with unbounded phase space, a relevant quantity
to study is the number of particles that remain in one particular

FIG. 9. Phase space structure of the nonintegrable system for
E = 100 K. The red points are the intersections of the trajectory in
Fig. 4(c) with the Poincaré surface. The corresponding Lagrangian
descriptor MS0 plot for the nonintegrable system is at the background.
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FIG. 10. The orange points are the iterations of the Poincaré map
corresponding to the kicked trajectory with E = 100 K in Fig. 4(e).
This trajectory crosses different closed invariant curves correspond-
ing to the integrable system; the invariant curves are in black. The
corresponding Lagrangian descriptor plot for the integrable system
is in the background.

region of the phase space as a function of time; different ex-
amples with mixed phase space have been studied in [42,43].
In the present work, a natural region to consider is the region
contained inside the radius of the most external hyperbolic
periodic orbit in the phase space.

For the hyperbolic periodic orbits and their generalization
in more dimensions, the NHIMs, there exists a natural surface
to study the transport through bottlenecks in phase space. This
surface is called the dividing surface associated with the pe-
riodic orbit and plays an important role in the transition state
theory in phase space proposed by Wigner for systems with
two dimensions in [44] and extended for systems with more
dimensions in [11]. The algorithm to construct a dividing
surface of periodic orbits is basically the same as for a NHIM.
The procedure consist of three simple steps:

(i) Project the periodic orbit (NHIM) in the configuration
space.

(ii) For each point r in the projection, construct the cir-
cumference (sphere) in the momentum plane (space) using the

FIG. 11. The orange points are the iterations of the Poincaré map
for the kicked trajectory with E = 100 K. This trajectory spends
more time in the region defined by the stable island corresponding
to the integrable system than the trajectory in Fig. 10. The corre-
sponding Lagrangian descriptor plot for the integrable system is in
the background.

equation

∑
i

p2
i

2mi
= E − V (r). (14)

(iii) Take the union of all these circumferences (spheres)
in the phase space to construct the dividing surface.

The dividing surface associated with a periodic orbit
(NHIM) has three important properties to study the transport
in the phase space and the chemical reaction dynamics:

(i) The periodic orbit (NHIM) and its corresponding or-
bit (NHIM) with opposite momentum are contained in their
dividing surface.

(ii) These two periodic orbits (NHIMs) are the boundaries
in the dividing surface between the regions where the trajecto-
ries enter into the phase space region contained by the dividing
surface and trajectories that left the same region.

(iii) The flux through the dividing surface is minimal. That
is, if the dividing surface of the periodic orbit (NHIM) is
deformed, the flux through it increases.

For periodic orbits associated with saddle points in the
potential energy, the corresponding dividing surfaces are
spheres. In the present model, the projection of the hyperbolic
periodic orbits γ0 and γ in the configuration space encircles
the potential well; then their corresponding dividing surfaces
are a torus in the phase space. Another recent example of
a system with torus genus 1 and 2 as dividing surface is in
[19]. The intersection of the dividing surface with the plane
py0-y0 is two vertical segment lines. One segment intersects
the periodic orbit γ , and the other one intersects the periodic
orbit with opposite momentum; see Fig. 9. All the trajectories
that start in the potential well and escape to infinity need to
cross the dividing surface.

Let us denote by R the region in the constant energy level
set delimited by the dividing surface. The intersection of the
region R with the plane py0-y0 is the region between the two
vertical line segments corresponding to the intersection of the
dividing surface with the same plane. The procedure to calcu-
late the number of particles in this region as a function of time
N (t ) is the following. A random homogeneous distribution of
initial conditions with energy E is taken in the region R. Their
corresponding trajectories are calculated until some maximum
time and the number of trajectories that remain in the region
R until the time t is recorded. The numerical results for the
integrable, perturbed nonintegrable, and kicked systems are
in Fig. 12.

The results show that the behavior is very similar for the
three cases at the beginning. This similarity is related with
the blue region shown on the Lagrangian descriptor plots in
Figs. 5 and 6. For the three systems, the dynamics of the
trajectories in the blue regions are very similar, except for
the trajectories in the small lobes in the perturbed noninte-
grable system. However, for larger times, the differences in
the curves for N (t ) are clear. All the trajectories in the kicked
system escape from R and go to infinity; then N (t ) goes to
zero in a finite time in this case. For the integrable and nonin-
tegrable systems N (t ) converge to a constant proportional to
the volume of the islands contained in the region R.
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FIG. 12. Number of particles in the region R as a function of
time N (t ) for different values of the energy E . The time t is in
a.u. The blue, orange, and red lines correspond to the integrable,
nonintegrable, and kicked systems, respectively.

VI. CONCLUSIONS AND REMARKS

In Hamiltonian systems such that the kinetic energy is a
quadratic function of the generalized velocities and potential
energy independent of the velocities, it is possible to construct
a Lagrangian descriptor MS0 based on the classical action
S0. The Lagrangian descriptors are useful tools to reveal the
objects in phase space that determine the dynamics, like KAM
islands and tangles between stable and unstable manifolds of
hyperbolic periodic orbits.

The analysis of the phase space of the variants of this sim-
ple 2 dimensional chemical model allows us to understand the
differences and similarities of their dynamics and the nature
of the escape from the deep potential cauldron that represents
the final part of the chemical reaction. The Lagrangian de-
scriptor plots in Fig. 6 show how the narrow escape region
from the cauldron grows when the energy is increased and
the changes of the homoclinic tangle between the stable and
unstable manifolds of the most external periodic orbit. For
short times the Van der Waals force dominates the motion
of the atoms independently of the nature of the short-range
interactions between them in the potential cauldron. However,
the form of the short interaction is fundamental to explain the
long-time behavior of the formation products N (0) − N (t ) on
the models.

In the symmetric case, the most external periodic orbit γ0 is
associated with the maximum value of the effective potential
V0e f f (r). The hyperbolic periodic orbit γ0 is deformed into
the hyperbolic periodic orbit γ when the potential energy
loses the symmetry, and the system becomes nonintegrable.
The periodic orbit γ encircles the potential well. Then, the
dividing surface for these 2 degree of freedom systems is a

torus. This is a general property of this type of Hamiltonian
system close to a system with rotational symmetry.

In the perturbed nonintegrable version of the model, the
additional Gaussian bump in the potential energy breaks the
rotational symmetry of the system. The dynamics of the parti-
cles with initial conditions in the transient chaotic sea around
the KAM islands is determined by the homoclinic tangle
between the stable and unstable manifolds W s/u(γ ). In this
example, the exit lobes in the nonintegrable perturbed case are
tiny compared with the transient chaotic sea around the KAM
islands. Then, the escape time for particles with initial condi-
tions on the transient chaotic sea is larger than for the other
particles with initial conditions outside the transient chaotic
sea. This scenario is common in open Hamiltonian systems
with 2 degrees of freedom and rotational symmetry when a
small perturbation breaks the symmetry, and the energy is
a little above the threshold energy. The scenario is a con-
sequence of the existence and persistence of the homoclinic
tangles of the hyperbolic periodic orbit γ and KAM stable
islands under perturbations.

The trajectories in the stable islands remain in the KAM
islands all the time for the integrable and perturbed non-
integrable systems. In the case of the kicked system, the
momentum kicks make the trajectories jump from one invari-
ant curve to another one. Then, the particles escape from the
region defined by the invariant tori of the integrable case to
infinity after some finite time. Therefore, the dynamics of the
two variants of the model have very different behavior for long
times.

All the previous considerations on the 2 degree of freedom
model are the basis for considering the 3 degree of freedom
model. In a 3 degree integrable version, the system has an
external NHIM analogous to the most external periodic orbit
γ0. In this case, this NHIM is the union of all the periodic
orbits γ0 for all the possible values of vector angular mo-
mentum; see [36,45,46]. Their stable and unstable manifolds
determine the boundary of the trapped region. The dividing
surface is the union of all the dividing surfaces of the periodic
orbits γ0. When the system is perturbed, and the symmetry
breaks, the system becomes chaotic, and the reduction to a 2
degree of freedom system is not possible. However, the NHIM
is robust under perturbation, and its invariant manifolds play
an important role in the transport. For short intervals of time,
the trajectories in the region close to the NHIM are not signifi-
cantly affected because of the local nature of the perturbations.
The vector field that determines the dynamics is very close to
the unperturbed system vector field. The Van der Waals force
dominates the motion of the particles in the outer region. Fur-
ther studies are needed to know more properties of 3 degree
of freedom model.
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