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Explicit Granger causality in kernel Hilbert spaces
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Granger causality (GC) is undoubtedly the most widely used method to infer cause-effect relations from
observational time series. Several nonlinear alternatives to GC have been proposed based on kernel methods.
We generalize kernel Granger causality by considering the variables’ cross-relations explicitly in Hilbert spaces.
The framework is shown to generalize the linear and kernel GC methods and comes with tighter bounds of
performance based on Rademacher complexity. We successfully evaluate its performance in standard dynamical
systems, as well as to identify the arrow of time in coupled Rössler systems, and it is exploited to disclose the El
Niño–Southern Oscillation phenomenon footprints on soil moisture globally.

DOI: 10.1103/PhysRevE.102.062201

I. INTRODUCTION

Establishing causal relations between random variables
from observational data is perhaps the most important
challenge in today’s science, from Earth sciences [1] and
neurosciences [2] to social sciences [3]. Granger causality
(GC) [4] was introduced as a first attempt to formalize quan-
titatively the causal relation between time series and is the
most widely used method. The intuition behind GC is to test
whether the past of X helps in predicting the future of Y from
its past alone. GC implicitly tells us about the concept of
information using forecasting. Other methods rely on similar
concepts of information flow and predictability: connections
can be established between GC and transfer entropy [5],
directed information [6], convergent cross-mapping [7], and
Liang’s measure of information flow [8] and with the graphi-
cal causal model perspective [9].

Noting the strong linearity assumption in GC [10], non-
linear extensions of GC have been proposed, and many
discussions of the validity of nonparametric test statistics and
nonlinear GC models exist in the literature [11,12]. Several
studies propose replacing the linear autoregressive (AR) mod-
els with neural networks or random forests as forecasting
methods: while improved efficiency and model versatility are
achieved, there is no principled statistical test to assess GC
causality. A solid and mathematically sound approach comes
from the field of kernel methods [13], which allows the de-
velopment of nonlinear models from linear ones, while still
resorting to linear algebra operations. Kernel methods have
been widely used for regression, classification, and dimen-
sionality reduction. GC with kernels was originally introduced
in [14]. The method assumed a particular class of functions
and an additive interaction between them. An alternative
kernel-based test in combination with a filtering approach was
later introduced in [15]. In all these studies, the AR models use
kernel-based regression for stacking the involved variables in
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input spaces. This approach, however, is limited, as it does not
consider nonlinear cross-relations between X and Y explicitly
in Hilbert spaces.

We here introduce explicit feature maps and correspond-
ing kernel functions that account for nonlinear cross-relations
in kernel space [16]. We demonstrate that the cross-kernel
methodology generalizes linear and kernel GC methods,
come with statistical guarantees, and yield enhanced detection
power.

II. NONLINEAR GRANGER CAUSALITY WITH KERNELS

GC first builds univariate and bivariate autoregres-
sive models—(i) yt+1 = ∑P

p=0 apyt−p + ε
y
t and (ii) yt+1 =∑P

p=0 apyt−p + ∑Q
q=0 bqxt−q + ε

y|x
t —and then computes a

GC test as the ratio of model fitting errors, δx→y =
log(V [εy

t ]/V [εy|x
t ]), where the residual errors are defined

for the unrestricted ε
y
t and restricted ε

y|x
t cases separately,

and V represents the variance operator. Time embeddings P
and Q are selected by cross-validation or sensible statistical
criteria. Regressors are defined as yt = [yt , yt−1, . . . , yt−P]ᵀ

and xt = [xt , xt−1, . . . , xt−Q]ᵀ, and vector coefficients a =
[a1, . . . , aP]ᵀ and b = [b1, . . . , bQ]ᵀ are typically estimated
by least squares.

A. Feature maps and kernel functions

The linear GC formulation can be generalized to the non-
linear case using elements of the theory of reproducing kernel
Hilbert spaces (RKHS) [13]. Let us assume the existence of
a Hilbert space H equipped with an inner product where
samples in X are mapped in by means of a feature map
φ : X → H, xi �→ φ(xi ), 1 � i � n. The similarity between
the elements in H can be estimated using its associated dot
product 〈·, ·〉H via RKHS, k : X × X → R, such that pairs
of points (x, x′) �→ k(x, x′). Therefore, one can estimate
similarities in H without the explicit definition of the feature
map φ and, hence, without even having access to the points
in H.
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FIG. 1. Representation of the GC model for the different kernel
functions. Each model encodes explicit relations of past states with
future ones. Note the difference between the regular map ψ ([x, y])
working with the concatenation of time series in the input domain
and the joint map ψ̃ (x, y) working with the concatenation of maps
of x and y in Hilbert spaces.

An important concept in kernel methods is the representer
or Riesz’ representation theorem [17,18]. The representer the-
orem gives us the general form of the solution to the common
loss formed by a cost (loss, energy) term and a regularization
term.

In an RKHS H, there exists a (kernel) function k(·, ·) such
that f (x) = ∑n

i=1 αik(x, xi ), αi ∈ R, α = [α1, . . . , αn]ᵀ ∈
Rn, which is a linear combination of kernel functions. This
property has been widely used to develop kernel methods
for classification, clustering, and regression [13]. Defining
the regularized least squares functional, L(y, ŷ) = ∑n

i=1(yi −
f (xi ))2 + λ‖ f ‖2

H leads to the kernel ridge regression (KRR)
method [13,19], which has a convenient analytic solution,
α = (K + nλI)−1y, where λ is the regularization term, I is
the identity matrix, and K is the kernel matrix with en-
tries k(xi, x j ) ∈ R. The KRR method is the preferred kernel
method for nonlinear GC because of its simplicity (only
one hyperparameter is involved) and good results in prac-
tice [14,15]. In kernel GC, however, an important aspect has
been largely disregarded: the proper definition of the mapping
function that gives rise to the kernel function itself. Next,
we formalize the field of kernel GC by proposing an explicit
definition of the cross-terms between variable X and variable
Y in Hilbert spaces.

1. Stacked kernel

The standard kernel GC (KGC) approach considers a
straightforward approach to AR modeling with kernels
[14,15] [see Fig. 1(a)]. The method essentially defines two
feature maps, φ and ψ, to an RKHS H endorsed with re-
producing kernels k and �, which yt and the concatenation
zt = [yt , xt ] ∈ RP+Q are mapped to, respectively. This leads
to the kernel regression models (i) yt+1 = aT

Hφ(yt ) + ε
y
t and

(ii) yt+1 = bT
Hψ(zt ) + ε

y|x
t , where now aH , bH ∈ RH×1. Now,

by using the representer’s theorems [17,18] on the model
weights defined in RKHS, aH = �ᵀα and bH = �ᵀβ, where
�,� ∈ Rn×H , the AR models can be defined in terms of ker-
nel functions only: yt+1 = αᵀkt + ε

y
t , and yt+1 = βᵀ�t + ε

y|x
t ,

respectively, where kt = [k(y1, yt ), . . . , k(yn, yt )]ᵀ and �t =
[�(z1, zt ), . . . , �(zn, zt )]ᵀ contain all evaluations of the kernel
functions, k and �, at time t , which act as similarity measures
between the input feature vectors. Importantly, note that since

data are mapped to the same Hilbert space H, the same kernel
function and parameters are used for both k and �.

2. Summation kernel

An alternative to the stacked approach builds implicit AR
models in RKHS [14] such that yt+1 = aT

Hφ(yt ) + ε
y
t and

yt+1 = aT
Hφ(yt ) + bT

Hψ(xt ) + ε
y|x
t , which leads to the kernel

AR models yt+1 = αᵀkt + ε
y
t and yt+1 = αᵀkt + βᵀ�t + ε

y|x
t ,

where now �t := [�(x1, xt ), . . . , �(xn, xt )]ᵀ. The summation
kernel is more appropriate when large-time embeddings P and
Q are needed to capture long-term memory processes, since
it avoids constructing large-dimensional feature vectors z by
concatenation [cf. Fig. 1(b)]. However, the cross-information
between X and Y is missing [16].

3. Explicit cross-kernel

In order to account for cross-correlations in Hilbert space,
we explicitly define two feature maps: the standard individual
map φ and the joint feature mapping ψ for the second AR
model, yt+1 = aT

Hφ(yt ) + ε
y
t and yt+1 = bT

Hψ(xt , yt ) + ε
y|x
t ,

where the joint map is defined by construction as ψ̃(xt , yt ) :=
[A1ϕ(yt ), A2ϕ(xt ), A3(ϕ(yt ) + ϕ(xt ))]ᵀ, where ϕ is a nonlin-
ear feature map into an RKHS H, and Ai, i = 1, 2, 3, are three
linear transformations from H to Hi. The induced joint kernel
function readily becomes

n((xt , yt ), (x′
t , y′

t )) = ψ̃(xt , yt )
ᵀψ̃(x′

t , y′
t )

= ϕ(yt )
ᵀR1ϕ(y′

t ) + ϕ(xt )
ᵀR2ϕ(x′

t )

+ ϕ(yt )
ᵀR3ϕ(x′

t ) + ϕ(xt )
ᵀR3ϕ(y′

t )

= n1(yt , y′
t ) + n2(xt , x′

t ) + n3(yt , x′
t )

+ n4(xt , y′
t ),

where R1 = Aᵀ
1 A1 + Aᵀ

3 A3, R2 = Aᵀ
2 A2 + Aᵀ

3 A3, and R3 =
Aᵀ

3 A3. Note that the new kernel function considers cross-term
relations between the time series through kernels n3 and n4

and still works with the original time embeddings. Besides,
there is no need to explicitly use the same kernel function or
parameters. We now show that the cross-kernel GC (XKGC)
method generalizes previous KGC methods and comes with
statistical guarantees [see Fig. 1(c)].

B. Statistical characterization with Rademacher complexity

Let us now characterize the generalization capabilities of
the proposed cross-kernel using the notion of Rademacher
complexity, which is perhaps the most useful measure used
in the theoretical analysis and design of kernel algorithms
[20,21]. Rademacher complexity roughly states that one can
infer (measure) an upper bound on the generalization perfor-
mance of a given class by its ability to fit random data. The
theory makes use of the Rademacher variables and produces
a measure of capacity called the Rademacher complexity.

In what follows we give a bound of performance for the
general case of compositions of kernels as in our proposed
framework. Generalization bounds based on Rademacher
complexity [22,23] provide a strong theoretical foundation
for a family of learning kernel algorithms based on convex
combinations of base kernels, as in our case. Let us define
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a sample S = {(xi, yi )}n
i=1 ∈ X × Y generated by a distribu-

tion D on a set X , a family of functions H = {h : X → R},
and a loss function L : X × X → R+. The goal is to find
the h hypothesis in H with a small generalization error with
respect to the target f (x), RD(h) = Ex∼D[L(h(x), f (x))], em-
pirically estimated as RD(h) = 1

n

∑n
i=1 L(h(xi ), yi )), e.g., the

least squares L(y, ŷ) = (y − ŷ)2.
Theorem 1: Generalization bound with finite H. Assuming

a finite hypothesis set, H, and that L is bounded by ε, then for
any δ > 0, with probability at least 1 − δ,

R(h) � R̂(h) + ε

√
log |H| + log(2/δ)

2n
,

which can be particularized for the squared loss.
Theorem 2: Least-squares kernel regression bound. Let

k : X × X → R be a positive definite kernel and φ : X → H
be a feature map associated with k. Let the class of functions
H = {x �→ w
φ(x) : ‖w‖ � 
}. Assume that both the kernel
and the function are bounded; k(x, x) � M2 and | f (x)| �

M for all x ∈ X . The generalization risk R is bounded by
the empirical risk R̂ as follows. For δ > 0, with probability
at least 1 − δ over random draws of samples of size n, in the
sample S for every h ∈ H satisfies

R(h) � R̂(h) + 8M2
2

√
n

(
1 + 1

2

√
log(1/δ)

2

)
,

and for every h ∈ H

R(h) � R̂(h) + 8M2
2

√
n

(√
Tr[K]

nM2
+ 3

4

√
log(2/δ)

2

)
.

This follows from the generalization bound with a finite H and
the bound on the Rademacher complexity of kernel hypothe-
ses [20,23]. Let us particularize this result for the cross-kernel
and assess its generality.

Theorem 3: Cross-kernel Rademacher complexity bounds.
The KRR function class h uses the squared loss for R̂(h).
Let us assume a radial basis function kernel, k(xi, x j ) =
exp(−‖xi − x j‖2/(2σ 2)) so k(x, x) = 1, and let γ ∈ [0, 1]
and β ∈ [γ , 1]. The Rademacher complexity regression mini-
mum bound for the cross-kernel is

Rcross(h) � R̂(h) + 8‖h‖2

√
n

(√
1 + γ

1 + β
+ 3

4

√
log(2/δ)

2

)
.

Proof. The Rademacher complexity for a sum of N kernels
Ki can be easily bounded as R̂(h) = √

NR̂(hi ), i = 1, . . . , N .
It is easy to see that M2 = 2(1 + β ) and the Tr[K] = 2n(1 +
γ ) for the cross-kernel. The result follows from substituting
them in Theorem 1. Since for the stacked kernel, M2 = 1 and
Tr[K] = n, and for the summation M2 = 2 and Tr[K] = 2n,
it follows that Rcross(h) � Rsum(h) = Rstacked. Note that for
γ = β, i.e., when X and Y convey correlated information,
the cross-kernel bound converges to the stacked and the sum-
mation bounds. Interestingly, since γ � β, the cross-kernel
bound will always be tighter than the stacked and summation
bounds, which are confirmed experimentally (see Table I).

TABLE I. Complexity terms for logistic maps.

Stacked Summation Cross-kernel

R 0.4390 0.4361 0.4352
R̂ 0.6283 0.5001 0.4992

III. EXPERIMENTS

In all our experiments, we used the radial basis function
kernel function and the KRR method. Hyperparameters (reg-
ularization term λ and kernel length scale σ ) were selected by
cross-validation. The statistical test of robustness was com-
puted as in KGC [15], and the threshold was set to the highest
causal strength estimated from 100 surrogate time series [24].
For the sake of reproducibility, code snippets and demos are
provided in XKGC [25]. We compare GC, KGC (stacked
and summation kernels are theoretically identical and deemed
similar in practice in low-dimensional settings), and XKGC in
all experiments.

A. Nonlinear coupled system

Let us first consider a bivariate system with strongly
coupled, nonlinear, and autoregressive relations defined
as xt+1 = 3.4xt (1 − x2

t ) exp(−x2
t ) + εx

t and yt+1 = 3.4yt (1 −
y2

t ) exp(−y2
t ) + xt yt

2 + ε
y
t , where ε is white Gaussian noise

with mean 0 and variance 0.4. The causal direction is x → y,
the opposite direction being anticausal. Standard GC, KGC,
and XKGC were run on a set of n = 4000 samples and re-
peated 10 000 times. Figure 2 shows the histogram of the
estimated causality index. Results reveals the insensitivity of
linear GC to the causal direction and the high false-positive
rate of KGC, while XKGC shows a higher detection power
and lower rates of false positives and true negatives.

B. Logistic maps

The second example considers the standard system of two
logistic maps, defined as xt+1 = 1 − 1.8x2

t and yt+1 = (1 −
α)(1 − 1.8y2

t ) + α(1 − 1.8x2
t ), where α ∈ [0, 1] controls the

coupling strength. The causal relationship implemented is
X → Y , and the challenge is to assess the detection power of
methods without introducing any external variable, just using
X and Y . We analyze segments of length n = 2000 and fixed

FIG. 2. Significance of the positive and negative cases detected
for the coupled AR system. Histogram of the difference between the
estimated causality index δ and the associated threshold δthreshold are
shown for each method and direction.
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FIG. 3. Causality index δ estimated for each method (solid lines)
and their associated thresholds (dashed lines) for the coupled logistic
maps as a function of the coupling parameter α.

p = 2. Figure 3 shows the prediction skills for varying α. Note
that the system is completely synchronized at α = 0.37. The
XKGC method shows improved detection power in the whole
solution range.

We confirmed empirically the theoretical results in
Sec. II B for the system of two logistic maps with α = 0.1.
Empirical results of the Rademacher complexity bounds are
provided in Table I, where the cross-kernel achieves tighter
bounds.

C. The arrow of time

Let us now exemplify the performance of the proposed
methods in the challenging problem of detecting the arrow
of time from bivariate time series. This is a mostly academic
question that has captured attention in the physics literature
[26], where both theoretical [27] and experimental [28] results
have recently confirmed identifiability.

We study the coupled Rössler system, which encompasses
the prediction of the causal direction between two variables
as well as the identification of the direction of time. The
Rössler systems were originally introduced in the 1970s as
prototype equations for the study of continuous-time chaos.
The bivariate system studied in our paper was extracted from
[29]. The unidirectional bivariate coupled Rössler system was
tested for a coupling parameter of ε = 0.07, delay parameter
δ = 0, and 6000 samples. Characteristic parameters for each
system and initial conditions remain as in the original work.
We estimated the detection power in both forward and back-
ward propagation by just flipping the time series.

Figure 4 shows that the physical nature of the coupling
system emerges as a forward propagation and with X → Y .

FIG. 4. Arrow of time and the causal direction for a coupled
Rössler system. Causal strength estimated for each method (solid
lines) and associated thresholds (dashed lines) for forward and back-
ward propagation directions versus the time delay τ .

XKGC is the only method that can reconstruct the causal
direction over the time delay order τ properly. This suggests
that the proposal captures an extra variability of the coupled
system, which in turn helps causal inference.

IV. CAUSAL FOOTPRINTS OF EL NIÑO
ON SOIL MOISTURE

Causal discovery in Earth and climate sciences is a funda-
mental topic of research, as it allows systematic hypothesis
testing, model-data intercomparison, and discovery of pat-
terns and causal links in observational data [1]. The challenges
are multifaceted: Earth data show spatiotemporal dimen-
sions, complex nonlinear dynamics, and teleconnections. We
here tackle the problem of inferring causal links between El
Niño–Southern Oscillation (ENSO) and soil moisture (SM)
globally. ENSO is a coupled ocean-atmosphere phenomenon,
which manifests as a quasiperiodic fluctuation in sea sur-
face temperature and air pressure in the equatorial Pacific
Ocean. Although the exact causes initiating warm or cool
ENSO events are not fully understood, the two compo-
nents of ENSO—sea surface temperature and atmospheric
pressure—are strongly related [30]. During the ENSO event,
the atmospheric current of equatorial Walker circulation stops
and changes its westward propagation for a more eastward
direction. This transition occurs between 3 and 4 months
before the rise in the sea surface temperature and is related
to the ocean kelvin wave delay [31]. This disruption in the
normal ocean-atmosphere coupling affects the propagation of
the low-pressure centers over the tropical regions, influencing
temperature and precipitation across the globe. ENSO is hence
strongly connected with global dry-wet anomalies, mostly
over the tropics [32], but also over supratropical regions [33].
ENSO and SM are connected by the atmospheric current and
their causal relation is interrupted by its variations.

Our causal analysis aims to uncover (spatially explicit)
dry and wet patterns and identify footprints of ENSO on SM
using satellite-based measurements. We use global SM maps
from the ESA [34] Soil Moisture and Ocean Salinity (SMOS)
mission and time series of the ENSO4 [35] climate index for
the period 2010–2017. The information for the data set we use
here is introduced in Appendix A. Our analysis focuses on the
2015–2016 ENSO event, which had a strong impact on the
atmosphere circulation [36], being one of the three strongest
El Niño events on record and the one of the longest duration
[37]. ENSO events can emerge with different spatial patterns
(called flavors as well) [38], which dominate the evolution of
the ocean-atmosphere feedbacks and therefore the teleconnec-
tion patterns [39].

Previous studies have shown that interannual variability in
SM reflected known ENSO teleconnection patterns [40,41].
However, these works focused only on association (correla-
tion), not on predictability (Granger causality). In this work,
we are concerned with two important questions of the ENSO-
SM coupled system: (1) Can we identify the different phases
of the ENSO event and its transitions from the neutral state
from purely observational data? and (2) What part of the SM
interannual signal is Granger caused by ENSO? Answering
these two questions allows us to revisit the ENSO-SM tele-
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FIG. 5. Top left: ENSO4 (red) and estimated SM interannual complex components (blue and black) studied. Right panel: GC analysis of
ENSO and SM. Left plots show δ (red line) with (a) GC, (b) KGC, and (c) XKGC estimated with a 2-year moving window, its variability
(shaded), and highlight the three phases in the 2016 ENSO event. CP, Central Pacific; EP, East Pacific; Mix, mixture of both cases). Right plots
show the distribution (gray) and averages (red) of δ and thresholds (black) for lag τ and 100 runs. Bottom left: Spatial distribution of causal
footprints of ENSO on SM obtained by XKGC.

connection map, to find unreported footprints of ENSO on SM
globally.

The information in the global data cubes of SM needs to
be summarized in the so-called ‘modes of variability,’ i.e.,
spatially and temporally intrinsic components describing re-
gional subprocess interactions. This is typically done with
dimensionality reduction methods, such as the principal com-
ponent analysis (PCA)–empirical orthogonal function. PCA
can only achieve a linear and orthogonal feature representa-
tion, which is not appropriate to deal with the highly nonlinear
and interdependent nature of Earth observational data. As an
alternative, a complex-valued nonlinear PCA was applied here
to extract the dominant modes of global SM variability for the
study period [42]. The method allows us to extract nonlinear
features that have independent spatial and temporal compo-
nents in the complex domain. The so-called ROCK (rotated
complex kernel)-PCA method performs the eigendecomposi-
tion of a kernel matrix using data in the complex domain after
applying the Hilbert transform [43] and further rotating with
a Promax transform [44]. Complex-valued processes return
us more useful components, for example, the interpretation
of phase-modulation decomposition versus only the real part
returned by regular PCA. In addition, the nonlinear nature of
ROCK-PCA allows us to better capture feature relations. We
provide source code of the method in ROCK-PCA [42,45].

In our experiments, we focus on the extracted interannual
component of the global soil moisture satellite data, which
represents 10.2% of the total variance. We use the temporal
feature to estimate the link with ENSO and its spatial repre-
sentation to identify the regions where the mode is relevant,
i.e., its spatial amplitude is higher than the median of the
spatial amplitudes with one positive standard deviation. The
interannual SM component is lag-correlated (80 days) with
ENSO4, ρ ∼ 0.8, and cointegrated [see Fig. 5(a)]. A map of

the ENSO-SM causality index and details on its spatialization
are provided in Appendix B.

We analyzed the causal relation over a 2-year moving
window to deal with nonstationarity [46] and studied the
model’s δ sensitivity following [47]. We studied the model’s
sensitivity by jittering parameters for each trained model re-
sulting from a different combination of window and time
embedding [47]. The model was also trained for several time
embeddings to find the optimum time delay of the variability
shared between the signals. For each trained model (window
and time embeding) we have also estimated the sensibility of
the causal index introducing a slight perturbation of the model
parameters [47]. Results in Fig. 5 (right panel) reveal clear
differences between the linear and the nonlinear δENSO→SM

both across time and per time embedding. KGC and XKGC
yield similar results yet differ in the magnitude of the captured
variability. Note that XKGC more clearly differentiates the
three phases and the atmospheric disruption before ENSO
rises. The impact of ENSO on the spatial distribution of the
SM interannual trend is analyzed in Fig. 5 (bottom left). On
average, XKGC results indicate that about 50% of the SM
interannual variability is caused by ENSO. Regions where
the SM interannual variability can be predicted by ENSO
reproduce the well-known ENSO-induced precipitation pat-
terns and teleconnections [48–51], While some regions are
clearly dominated by ENSO (e.g., Australia), others can only
partially be explained by it (e.g., Gulf of Mexico, Southeast
Asia), probably due to the influence of other atmospheric
hydroclimatic patterns such as the Madden-Julian Oscillation
[52]. Notably, XKGC uncovers the impact of ENSO in yet
unreported areas (e.g., northwestern Europe). Investigating
additional causes dominating SM interannual variability and
the emergence of potential new teleconnection patterns is
recommended for future research.
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FIG. 6. Dependence of δENSO4→SM on the phase. Note that all
methods preserve the noncausal phase dependence. The causality
index-phase relation is cyclic with the π period.

V. CONCLUSIONS

We have considered the problem of Granger causality and
proposed a kernel-based framework that generalizes linear GC
and KGC approaches. The theory of reproducing kernel func-
tions allows us to derive different nonlinear algorithms while
still resorting to linear algebra operations. The methodology
copes with nonlinear relationships more efficiently and comes
with statistical guarantees.

The methodology outperformed linear and nonlinear coun-
terparts in standard dynamical systems, the arrow of time
problem, and a real Earth system science problem. We ex-
pect that the generalized kernel Granger causality framework
introduced here paves the way to enhanced models through
the appropriate definition of kernel functions that account
for signal characteristics explicitly, from correlated noise to
complex-valued signals and spatiotemporal structures, just
to name a few of the pressing challenges in many fields of
science.
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APPENDIX A: SMOS AND ENSO DATA SETS

We use global soil moisture maps from the ESA SMOS
mission [available at Barcelona Expert Center (BEC)]; [34].
Since its launch in 2010, SMOS provides global maps of
the Earth’s surface soil moisture (top 5 cm) every 3 days
with a spatial resolution of ∼50 km and a target accuracy of
0.04 m3 · m−3. We selected the first 7 years of SMOS observa-

FIG. 7. Global distribution of the ENSO-SM causality index
δENSO4→SM. A greater δ indicates that a higher percentage of SM
interannual variability can be explained by ENSO.

tions, after its commissioning phase (from May 2010 to May
2017) and focus on the transition of the 2016 ENSO event.
As suggested in [41], ascending and descending daily orbits
were temporally averaged and 5-day bins were constructed
to ensure enough coverage and smooth spatiotemporal tran-
sitions; pixels with less than 30% temporal coverage and
latitudes higher than 60◦ were not considered. Alongside the
SM data, we use time series of the ENSO4 climate index
from The Royal Netherlands Meteorological Institute (KNMI;
[35]), which is calculated daily based on sea surface temper-
ature (SST) anomalies averaged across the central equatorial
Pacific Ocean (5N-5S, 160E-150W). ENSO4 time series were
temporally averaged into 5-day bins for this study.

APPENDIX B: SPATIALIZATION OF THE
CAUSALITY INDEX

The ROCK-PCA method extracts time series and spatial
components in the complex domain, which can be connected
in the phase space, i.e., the phase of the spatial component is
the phase of the time series for each pixel. Hence, searching
for the dependence of δ on the phase (mixture of real and
imaginary time-series components as shown in Fig. 6), we can
spatialize our results. This phase dependence is the temporal
mean for each moving window δ estimation.

The relation between δ and each pixel using the transfor-
mation of the curve in Fig. 6 allows us to obtain the spatial
map of δ, which is shown in Fig. 7 for the XKGC method.
Regions with causal representation but without SM variability
(e.g., deserts) are masked in Fig. 7. Interestingly, regions
with clearly differentiated δ levels emerge. This map can be
interpreted as a forecast skill, where differences in skill are
caused by the different underlying mechanisms involved in
the ENSO and SM relation in each region. Most of the causal
regions are represented over the tropics as we expect, but other
supratropical regions, such as Northwest Europe, emerge.
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