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Constraint relaxation leads to jamming
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Adding transitions to an equilibrium system increases the activity. Naively, one would expect this to hold
also in out-of-equilibrium systems. We demonstrate, using relatively simple models, how adding transitions
to an out of equilibrium system may in fact reduce the activity and even cause it to vanish. This surprising
effect is caused by adding heretofore forbidden transitions into less and less active states. We investigate six
related kinetically constrained lattice gas models, some of which behave as naively expected while others exhibit
this nonintuitive behavior. These models exhibit an absorbing state phase transition, which is also affected
by the added transitions. We introduce a semi-mean-field approximation describing the models, which agrees
qualitatively with our numerical simulation.
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I. INTRODUCTION

For an equilibrium system, adding more transitions to its
state space increases the activity. More generally, this holds
for any system in which the steady-state distribution is not
affected by the added transitions. In contrast, adding transi-
tions in systems that are out of equilibrium may either increase
or decrease the activity. Consider, for example, the directed
percolation model [1] with additional dynamics that allow
removal or addition of active sites. Adding such a transition
decreases (for removal) or increases (for addition) the ac-
tivity, and this change is predicted even on the mean-field
(MF) level. Naively, one would expect that the MF prediction
holds qualitatively, i.e., whether the activity is increased or
decreased by the additional transition. However, as we show
here, adding transitions that increase the activity at the MF
level may in fact decrease the overall activity of the sys-
tem, and in extreme cases may even attract the system to
an absorbing state which was inaccessible before adding the
transitions. Conceptually, this is similar to several phenomena
seen in many-particle out-of-equilibrium systems, such as the
faster-is-slower effect [2–6], slower-is-faster effect [7,8], and
motility-induced phase separation [9–16], in which the total
activity decreases as the activity of the individual particles
increases.

Consider for example an ergodic system in equilibrium,
depicted in Fig. 1(a). A concrete example of such a system
is the symmetric exclusion process [17], which is a lattice gas
in which each particle may hop to a neighboring site if the
target site is vacant. Removing transitions and their reciprocal
transition keeps the system in equilibrium [Fig. 1(b)], but may
cause it to become nonergodic [Fig. 1(c)]. A class of mod-
els which demonstrate this is kinetically constrained models
(KCMs) [18–28], in which a particle may hop to a neigh-
boring site if the target site is vacant, and the neighborhood
of the particle satisfies some model-dependent rule, both be-
fore and after the move. These models obey detailed balance,
since by construction if a transition is allowed, its reverse is

also allowed at the same rate. Essentially, adding this kinetic
constraint removes some of the bonds from the transition
graph of Fig. 1(a) and transforms the system into the one
schematically illustrated in Fig. 1(b). At high enough particle
density, these models become nonergodic, as schematically
depicted in Fig. 1(c). KCMs were originally introduced in
order to explain the kinetic origins of the glass or jamming
transitions [19,29]. However, more recently, they have been
demonstrated to be interesting on their own right as statistical
mechanics models for nonequilibrium situations [30–32].

When one-way transitions are added to the system, it is
driven out of equilibrium, as shown for instance in going
from Figs. 1(b) to 1(d). In KCMs, this corresponds to allow-
ing some of the moves which are prohibited by the kinetic
constraint, but not their reverse moves. If the original KCM
is ergodic, these additional one-way transitions increase the
activity in the system, as is the case in going from Figs. 1(b)
to 1(d). However, if the original KCM is nonergodic, these ad-
ditional one-way transitions may create a path into absorbing
states and decrease the long time activity in the system, as is
the case when going from Figs. 1(c) to 1(e). In less extreme
cases, these additional transitions may lead the system into
a region in state space which contains less active states, and
thus reduce the activity without reaching an absorbing state.
Another way to add transitions is connecting the system to
external reservoirs [30,32–36]. Such a system with a finite
number of states will eventually reach one of the absorbing
states, and thus its steady state contains only the absorbing
states, and so its activity is zero. However, in the infinite-size
limit an absorbing-state phase transition appears [37–39] as
a function of some control parameter, such as the density
of particles. As the system size increases, below the critical
density the time to reach the absorbing states becomes expo-
nentially large in the system size, such that in the infinite-size
limit the steady state contains nonabsorbing states and the
activity is finite. Above the critical density, the time to reach
an absorbing state is finite even in the infinite-size limit, and
thus the steady-state activity is zero. It is possible that the time
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FIG. 1. A sketch of discrete dynamical systems and the tran-
sitions between their states: (a), (b) Ergodic equilibrium systems,
(c) a system which obeys detailed balance but is not ergodic, (d)–
(h) nonequilibrium systems violating detailed balance. The big red
arrows between systems represent a removal of transitions, and the
big green arrows represent an addition of transitions. In each system,
absorbing states are denoted by a red circle, two way transitions by a
blue double-sided arrow, and one-way transitions by an orange arrow.

to reach the steady state becomes algebraically large as the
system size increases, and in this case it is possible that in
the infinite-size limit the system never reaches the absorbing
state, but also does not reach any other steady state. A trivial
example is a simple random walker with absorbing boundary
conditions.

Another way to drive dynamical systems out of equilibrium
is to make all transitions one-way only, as shown in going
from Figs. 1(b) to 1(f). This transformation might turn the
long time activity to zero, but not necessarily. In lattice gases,
this can be achieved by allowing the particles to move only
in one direction [17,40]. Adding one-way transitions to this
system may increase the activity [Fig. 1(g)] or decrease it
[Fig. 1(h)]. In extreme cases, either adding or removing tran-
sitions may cause some states to become absorbing and jam
the system, i.e., cause the long-time activity to become zero,
or cause some absorbing states to become nonabsorbing and
unjam the system, i.e., increase the long-time activity from
zero to a finite value. In this paper we investigate such extreme
behavior and provide concrete examples for this nonintuitive
result. A less extreme method is to break detailed balance by
biasing the particles to move in a certain direction [41–48].

We consider six related modified KCMs, one of which is
the equilibrium Kob-Andersen (KA) model [49], and the oth-
ers are out of equilibrium variants of it, which add or remove
one-way transitions. By investigating these models numeri-
cally, we demonstrate how in some cases adding transitions
that increase the activity at the MF level also increases the
activity in the system, while in other cases it counterintuitively
decreases the activity and may even jam the system. We also
derive a semi-mean-field (SMF) analytical approximation for
the activity, and we demonstrate how it qualitatively captures
the behavior that we observe numerically for the different
models. Although the models we consider here are relatively
simple, our results can be generalized to other, more compli-
cated systems driven out of equilibrium by adding transitions.
The models are described in Sec. II, and their activity is

KA/DKA BKA/DBKA AKA/DAKA 

FIG. 2. An illustration of the kinetic constraints for a particle
(green circle) moving to one of its nearest neighbors. The three sites
marked by a purple × are the Before group, and the three sites
marked by a blue � are the After group. In the KA and DKA models
at least one of the sites in the Before group and at least one of the
sites in the After group need to be vacant in order for the particle
to move. In the BKA and DBKA models only the Before group is
checked, while in the AKA and DAKA models only the After group
is checked.

investigated in Sec. III. Section IV concludes the paper. The
technical derivations of our results are presented in the Ap-
pendixes.

II. THE MODELS

In this paper we consider six related models. The first
model, from which all the others are derived, is the KA KCM
on a 2D square lattice. In this model, a particle can hop to
one of its four neighboring sites if that site is vacant and if
both before and after the move at least two of the particle’s
four neighbors are vacant; see Fig. 2(a). This model obeys
detailed balance with respect to a trivial Hamiltonian; for each
allowed move, also the reverse move is allowed and at the
same rate. In the steady state, the occupancy of all states is
equal and there are no probability currents between the states
of the system. In the infinite-size limit the KA model is always
ergodic, while in finite systems it jams at some size-dependent
density due to finite-size effects [50–53]. In a system of
size L × L, the critical density in the KA model is given
by ρKA

c (L) = 1 − λ(L)/ ln L, where λ(L) depends weakly on
L, converges to π2/18 ≈ 0.55 in the L → ∞ limit, and is
approximately λ(L) ≈ 0.25 for all system sizes considered in
this paper [53,54].

A system is jammed when it contains particles that will
never be able to move, while an unjammed system does not.
Note that if a particle cannot move at the current configura-
tion, but will be able to move if some other particles move,
then the system is not jammed. For example, the particles
marked by an empty circle in Fig. 3 will never be able to move
no matter how the three particles marked with a green circle
and a purple × move, and therefore the system depicted there
is jammed. We define the activity as the number of moves per
unit time, and thus a jammed system may still be active if
some of the particles in it can move.

We now define two variants of the KA model, namely, the
After-KA (AKA) and the Before-KA (BKA) models. In the
AKA (BKA) model, a particle can hop to an adjacent vacant
site if after (before) the hop at least two of its four neighbors
are vacant; see Figs. 2(b) and 2(c). As opposed to the KA
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FIG. 3. An illustration of rattlers trapped inside a cage in the
KA or BKA models. The particles on the edges (empty circles) are
permanently frozen since at least three of their nearest neighbors
are occupied by other permanently frozen particles. Although the ×
particle cannot currently move, it will be able to after the particles
marked with a solid green circle move.

model, the AKA (BKA) model allows a particle to move
regardless of the occupancy of the neighbors before (after) the
move. Hence these two models both allow all the moves of the
KA model as well as additional moves. These two models are
out of equilibrium, since some transitions, namely, some of
those that are prohibited in the KA model, are allowed here
but their inverse transitions and not.

The last three models we consider are the driven variants
of the three aforementioned models, which we call the DKA,
DAKA, and DBKA models, where the D stands for driven. In
these driven models all particles can move only along one of
the four directions, which we designate as down. For such a
move to occur the same kinetic constraints are required to hold
as in the KA, AKA, and BKA models, respectively. The DKA
model was recently investigated numerically [31], and it was
found that this model has an absorbing state phase transition
such that the steady-state current vanishes beyond a certain
nontrivial critical density. Similar results were found for a
variant of the KA model in which the particles can move in all
four directions, but are biased in a particular direction [46,48].

III. ACTIVITY

A. Definition and mean-field approximation

In this section we investigate the activity in the system after
it had reached the steady state. We define the activity, K , as the
number of moves per unit time per lattice site. In the driven
models it is equal to the current, and it may be written as
K = ρPF, where ρ is the fraction of occupied sites and PF is
the probability that a given particle can move downwards. In
general the activity is equal to

K = ρ

d

4∑
n=1

nPF,n, (1)

where PF,n is the fraction of particles that can move in n of
the four directions, and d is the number of allowed directions
for motion, with d = 1 in the driven models and d = 4 in
the undriven models. Note that while an undriven system
may be jammed, i.e., that a finite fraction of the particles are
permanently frozen and will never be able to move whatever

the future dynamics of the system may be, there could still be
rattlers, which are particles able to move back and forth inside
a confined space, and thus the activity does not vanish in those
cases. See Fig. 3 for an illustration of such a case.

We start by considering a mean-field (MF) approximation
of the activity, in which we ignore all correlations between
occupancies of neighboring sites. This approximation is exact
in the KA model, for which there are no correlations [49]. The
MF approximation for the activity in the various models is

KKA
MF = KDKA

MF = ρ(1 − ρ)(1 − ρ3)2,

KAKA
MF = KBKA

MF = KDAKA
MF = KDBKA

MF

= ρ(1 − ρ)(1 − ρ3). (2)

For the KA and DKA models, the terms on the right-hand
side correspond respectively to the probabilities that a site is
occupied, that its neighbor in the chosen direction of motion
is vacant, and that at least one of the three sites both in the
Before and the After group is vacant. In the BKA and DBKA
(AKA and DAKA) models, the last term correspond to the
probability that at least one of the three sites in the Before
(After) group is vacant. Note that under the MF approximation
there is no difference between the driven and undriven models,
and furthermore the AKA and BKA have the exact same MF
behavior. Also note that the MF activity in the KA model is
lower than the MF activity for the AKA and BKA models,
due to the extra constraint in the KA model. The MF activity
is finite for all densities and vanishes only either when ρ = 0
and there are no particles that can move and contribute to the
activity, or when ρ = 1 and the system is fully occupied such
that there are no vacant sites that particles can move into.

However, as we will show below numerically and semian-
alytically, each of the five nonequilibrium models exhibits an
absorbing state phase transition with a finite, nontrivial critical
density above which the activity in the steady state vanishes.
We now derive a SMF approximation for the activity, which
considers some of the correlations in the system, and then we
will compare it to simulation results. Our SMF approximation
predicts a finite, nontrivial value for the critical density at
which the activity vanishes and thus qualitatively captures the
simulation results. However, the SMF approximation does not
capture the numerical values of the critical densities in the
different models.

B. Semi-mean-field approximation

We describe here a sketch of the SMF approximation for
the driven models, with the full details given in the Ap-
pendixes. It is straightforward, yet more lengthy to follow the
same steps and obtain the SMF approximation also for the
undriven models. In the SMF approximation for the driven
models, at any moment in time we divide all particles into
three groups: free (F), jammed (J), and blocked (B). The par-
ticles in the free group are those that can move. The particles
in the jammed group are those that have a vacancy in the site
below them, but cannot move in their next step solely due to
the kinetic constraint. The particles in the blocked group are
those whose neighboring site in the direction of the flow is
occupied and therefore cannot move regardless of the kinetic
constraint. We denote the fractions of particles in the free,
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FIG. 4. An illustration of the transition from a blocked state to a
free state in the DBKA model. The main particle whose state changes
in marked by a full green circle, and the blocking particle by an
empty circle. At least one of the × sites needs to be vacant in order
for the blocking particle to move, and at least one of the � sites needs
to be vacant in order for the main particle to be free after the blocking
particle moves.

jammed, and blocked groups by PF, PJ, and PB, respectively,
where by construction

PF + PJ + PB = 1. (3)

Now we write a master equation for the rates for each
particle to change its type

∂Pα

∂t
=

∑
β �=α

rβ,αPβ −
∑
β �=α

rα,βPα, (4)

where α, β = F, J, B and rα,β is the rate in which a particle of
type α changes into a particle of type β. The rates themselves
depend on PF such that Eq. (4) represents a set of three coupled
nonlinear equations, which may be reduced to two equations
using Eq. (3). In order to find an approximation for the rates,
we assume that each site not accounted for in the type of
the state before the transition is occupied with probability
ρ, and that within each group the probability to be in each
of the microscopic states is proportional to its uncorrelated
probability.

For example, consider the rate rB,F in the DBKA model
illustrated in Fig. 4. The configuration before the transition
consists of the blocked particle and the blocking particle be-

low it. In order for the blocked particle to change its type to a
free particle, two independent conditions should be satisfied.
First, the blocking particle needs to move. The blocking parti-
cle can move only if it is free itself. The kinetic constraint for
the blocking particle to be free is that at least one of the three
adjacent sites, except the site below it, is vacant. Since the
site above it is occupied by the blocked particle, we approx-
imate the probability that the blocked particle is free given
that the site above it is occupied by the uncorrelated fraction
of free sites with one of the three neighbors occupied, i.e.,
(1 − ρ2)/(1 − ρ3). Note that if the blocking particle is free,
the site below it must be vacant, and therefore the probability
that it is vacant is already included in the probability that the
blocking particle is free. The second condition for the blocked
particle to change its type to a free particle is that at least
one of its three other neighbors is vacant, the probability of
which we approximate by 1 − ρ3. Altogether, the rate rB,F in
the DBKA model is given by

rB,F = PF
1 − ρ2

1 − ρ3
(1 − ρ3) = (1 − ρ2)PF. (5)

The other rates are generated in a similar fashion for the three
driven models, as detailed in Appendix A.

For all six models, the rates rB,α and rJ,α are proportional
to PF since they involve the movement of a particle besides
the blocked or jammed main particle, and the rates rF,α are
linear in PF, since they contain terms which correspond to
the movement of the main particle and to movement of other
particles. Therefore, we may write the rates as

rB,α = ωB,αPF,

rJ,α = ωJ,αPF,

rF,α = 	F,α + ωF,αPF, (6)

with ωα,β and 	α,β depending only on the density, and obvi-
ously different for the six different models.

We now look for stationary solutions of Eq. (4) under the
condition 0 � PF, PJ, PB � 1. The solution PF = 0 is always a
stationary solution. We analytically find that if there is another
stationary solution with PF > 0, then it is unique and given by

PF = (	F,B + ωJ,B)(ωB,F − ωJ,F) − (ωB,F + ωB,J + ωJ,B)(	F,B + 	F,J − ωJ,F)

(ωF,B + ωF,J )(ωB,J + ωJ,B) + (ωB,J + ωF,B)ωJ,F + ωB,F(ωF,J + ωJ,B + ωJ,F)
. (7)

In Appendix B we derive Eq. (7) and analytically show that
if this solution exists, it is also stable. In Appendix C we
analytically investigate the stability of the PF = 0 state under
the SMF approximation, and find that for large enough PB, the
solution is stable.

For the three driven models, as well as for the BKA model,
we numerically find that within the SMF approximation there
is some finite, model-dependent critical density 0 < ρc < 1
such that for densities higher than the critical density ρ > ρc,
solving Eq. (7) yields a negative PF and thus it does not exist,
while for ρ < ρc we find that PF > 0. Therefore, the critical
density is defined as the solution to Eq. (7) with PF = 0. The
critical densities we get from this SMF approximation are

ρSMF
DKA = 0.792, ρSM

DAKA = 0.933, ρSMF
DBKA = 0.679, and ρSMF

BKA =
0.858.

In the driven models, the SMF approximation involves
three different states. In the undriven models, we need to
account for whether in each of the four directions the particle
is free to move, blocked or jammed, which gives a total of
34 = 81 states, which reduce to 20 by rotational and inversion
symmetry. In the BKA model, however, the number of states is
reduced to six, since a particle is jammed in a certain direction
only if it is blocked in the other three directions. We therefore
present in Appendix D also the analytical derivation of the
SMF activity in the BKA model. We leave the derivation
of the AKA and KA models, which are straightforward but
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FIG. 5. Activity as a function of density for the three driven
models (a) and the three undriven models (b), both from simu-
lations results (continuous lines) and under the MF (dotted) and
SMF (dashed) approximations. Note that the MF approximation is
identical for the AKA/BKA/DAKA/DBKA models.

cumbersome, to future publications. However, we expect that
the SMF approximation in the KA model would yield the
exact same result as the MF approximation for that model
since by construction it has no correlations. Thus, it would
only be interesting to develop the SMF approximation for the
AKA model.

C. Numerical results

We simulated the six models on a 30 × 30 lattice with
periodic boundary conditions. For each density we averaged
over 100 realizations, which start from different random initial
conditions. We also performed simulations on larger systems
up to 100 × 100 (not shown) and found very small devia-
tions due to finite-size effects [50–53]. Figure 5 compares
the steady-state activity evaluated from the simulations, the
MF approximation and the SMF approximation. The SMF
approximation overestimates the activity in the simulations
for all six models. While the KA, DKA, AKA and DAKA
models numerically converge to the steady state rather rapidly,
the BKA and DBKA models converge very slowly for an in-
termediate range of densities (0.37 < ρ < 0.43 for the DBKA
model and 0.50 < ρ < 0.81 for the BKA model), as shown in
Fig. 6.

We also measure in the simulations a lower bound on the
fraction of frozen particles, PZ, i.e., those that will never be
able to move. For a given configuration, we do this by an
iterative culling procedure [23,55]. This procedure starts by
removing all mobile particles. In this new configuration, some
particles which could not move before can now move, and
we remove them too. We continue this procedure until all the
remaining particles, if any, cannot be removed. This procedure
gives a lower bound, since any particle which remains after
this process is necessarily a frozen particle, but it is possible
that some frozen particles have been removed [55]. Note that
this procedure is not done during the dynamics, but on a snap-
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FIG. 6. Activity K as a function of time for the BKA and
DBKA models for different densities, as obtained from numerical
simulations.

shot of the system after it reaches the steady state. Except for
the BKA model which did not reach the steady state at inter-
mediate densities (0.5 < ρ < 0.81), we numerically find from
Fig. 7 that PZ jumps from 0 to 1 at some critical density. This
critical density is the same one at which the activity vanishes,
since zero activity implies PZ = 1. Technically, since these are
finite-size systems, the real steady state of the system is an
absorbing state with zero activity, while the steady state we
see in the simulations is a long-lived metastable state that will
eventually reach the absorbing state. However, the lifetime of
this metastable state grows with the system size, such that we
expect that in the infinite-size limit it would be infinite, and
the steady-state activity of the system would be finite. We
conjecture that in the AKA, DKA, and DAKA models the
life time of the metastable state increases exponentially with
system size below the critical density, while in the BKA and
DBKA models there is a range of densities for which the life
time of the metastable state increases with the system size, but
slower than exponentially, such that the activity in the system
will decrease continuously but never vanish.

Note that the critical density of the KA model in a system
of size 30 × 30 is ρKA

c (30) ≈ 0.93 [53], much higher than the
numerically obtained critical densities of the other five models
studied here. This is in contrast to the MF approximation,
which predicts ρKA

c = 1. However, as stated above, the finite
value of the critical density in the KA model is strictly a well
understood finite-size effect, unrelated to the dynamically un-
reachable absorbing state, which does not affect significantly
the critical densities of the other five models. In order to better
understand the behavior of the different models, we present
in Fig. 8 typical configurations of a 50 × 50 system after a
very long time, as obtained from numerical simulations. In

KA
DKA
AKA
DAKA
BKA
DBKA

0.2 0.4 0.6 0.8 1.0
Ρ0.0

0.2

0.4

0.6

0.8

1.0
PZ

FIG. 7. Lower bound on the fraction of frozen particles, PZ, as
a function of density ρ after a very long time, as obtained from
numerical simulations. Note that in the BKA model in the density
range 0.5 < ρ < 0.81, the system did not yet reach the steady state.

062155-5



EIAL TEOMY AND YAIR SHOKEF PHYSICAL REVIEW E 102, 062155 (2020)

FIG. 8. A snapshot of 50 × 50 systems obtained from numerical simulations after a long time at density ρ = 0.6 (top) and ρ = 0.8
(bottom), for six models.

the KA, DKA, AKA, DAKA, and DBKA models the system
has reached the steady state, while in the BKA it has not.

In the KA model, the system is always in equilibrium and
there are no correlations between the occupancies of the sites.
In the DKA model, the system is jammed at ρ = 0.8 and
there are scattered structures of vacancies. At ρ = 0.6 the
system is not jammed, but these structures can still be seen.
These structures have been investigated in Refs. [31,48]. The
AKA and DAKA models appear very similar. At ρ = 0.8
the system is jammed, and the vacancies tend to be arranged
in a checkerboard pattern. At ρ = 0.6 the system is not
jammed, but there are jammed regions with a checkerboard
pattern. These checkerboard patterns are the sparsest locally
jammed structures in the AKA and DAKA models, and due to
their symmetry may be extended indefinitely. Hence, once a
checkerboard pattern appears it is unstable only at its bound-
ary. However, above the critical density the accumulation of
particles at its boundary does not allow the pattern to break,
but rather causes it to grow.

The behavior of the BKA model and the DBKA model is
more interesting. Before investigating the configurations, we
note that any particle that is part of two consecutive full rows
is permanently frozen, since it is blocked in three directions
and jammed in the other direction. In the KA, DKA, AKA,
and DAKA models such a configuration cannot be generated
dynamically, since a particle is prohibited from completing
the second row. However, in the BKA and DBKA models
such a configuration can be generated dynamically. At high
densities in the DBKA model the system is jammed, and there
are structures of vacancies reminiscent of those in the DKA
model. At lower densities a front develops, which after some
time settles into two full consecutive rows. At that point, these
two rows cannot move, and thus the system becomes jammed
after all the remaining particles drop onto these rows. The
two consecutive rows always form in the direction normal to
the driving. A snapshot of a 100 × 100 system in the DBKA
model at ρ = 0.6 before the onset of jamming is shown in
Fig. 9. The spontaneous formation of these jammed structures
is the cause for the slow relaxation in the DBKA model, since
it generally takes a very long time for this event to occur. Since
the jammed structure in the DBKA model is one-dimensional,

while in the other models it is two-dimensional, it requires
much less time to form. Moreover, as the system size in-
creases, the time for it to form, and therefore also the time
for the system to reach the absorbing state, increases with the
linear dimension L of the system, and not with the system
size itself L2. Hence, it is possible that in the infinite-size
limit the formation of increasingly larger walls slows down the
dynamics without letting the system ever reach the absorbing
steady state.

In the BKA model at low densities two consecutive full
rows or columns can be generated dynamically, which then
behave as an unmovable wall inside the system. This wall can
grow thicker as other particles form full rows or columns ad-
jacent to it. However, outside the wall, the remaining particles
are still active. These walls spontaneously form in either of the
two axes. As the density increases the system becomes divided
into rectangles with rattlers, which may be thought of as
enclosures between two orthogonal pairs of parallel walls. If
there are enough rattlers inside a rectangle, they can decrease
the size of the rectangle by forming a full row or column
adjacent to the rectangle’s edge. If there are not enough rattlers
to form a full row or column, they will continue rattling inside
the rectangle forever. We hypothesize that in the infinite-size
limit, the density of indefinitely rattling particles goes to zero.

FIG. 9. A snapshot of a 100 × 100 system obtained from numer-
ical simulation of the DBKA model at ρ = 0.6.
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Ρ

0.06
0.05
0.04
0.03
0.02
0.01
0.00
K t 0

FIG. 10. The rate of change of the activity, ∂K/∂t at t = 0 from
the simulations (symbols) and the SMF approximation (continuous
lines). The numerical results are averages over 105 runs of 100 × 100
systems.

The slow relaxation in the BKA model is due to the rare
events of rattlers forming a full row or column and decreasing
the size of the rectangle. Since the formation of the wall is
a collective effect of O(L) particles, the relaxation timescale
increases with system size.

D. Temporal behavior of the activity

The SMF approximation can also be used to describe the
temporal behavior of the activity. Starting from a random,
uncorrelated initial condition, the SMF approximation can
give insight into the short time dynamics, namely the temporal
derivative of the activity at time t = 0, before correlations
start developing in the system. Since at t = 0 the sites are
uncorrelated, the exact activity at time t = 0 is equal to the
MF prediction.

Since correlations haven’t developed yet, the temporal
derivative of the activity at time t = 0, ∂K/∂t |t=0, is exactly
equal to that given by the SMF approximation with the prob-
abilities Pα given by their MF values. Using Eq. (4), we find
that for the driven models

∂KDKA

∂t

∣∣∣∣
t=0

= −ρ4(1 − ρ)3(1 + 2ρ − ρ3 + 2ρ4

+ 3ρ5 + ρ6 + ρ7),

∂KDAKA

∂t

∣∣∣∣
t=0

= −ρ5(1 − ρ)2(1 + 3ρ + ρ2),

∂KDBKA

∂t

∣∣∣∣
t=0

= −ρ4(1 − ρ)2(2 + ρ + ρ2 − ρ3). (8)

For the BKA model we find that

∂KBKA

∂t

∣∣∣∣
t=0

= −1

4
ρ4(1 − ρ2)2(7 + ρ + 6ρ2 − 4ρ3). (9)

In these four models, ∂K/∂t at t = 0 is negative for all
densities. Figure 10 shows the excellent agreement between
the simulations and the analytically exact results. In the KA
model, ∂KKA/∂t = 0 at all times and for all densities, since
correlations never develop there.

Numerically, we see in Fig. 11 that in the DKA, BKA
and DBKA models, the activity decreases monotonically with
time, while in Fig. 12 we see that in the AKA and DAKA
models, the activity is not monotonic with time for ρ < ρm,
with ρAKA

m ≈ 0.66 and ρDAKA
m ≈ 0.64. As shown in Fig. 12,

for ρ < ρm the activity in the AKA and DAKA models first

BKA
DBKA
DKA

1 10 100 1000
t

0.10
0.12
0.14
0.16
0.18
0.20

K

FIG. 11. The temporal behavior of the activity in the BKA,
DBKA and DKA models for density ρ = 0.5. The dashed lines are
the SMF approximation. The symbols are numerical results averaged
over 105 runs of 100 × 100 systems.

decreases until it reaches a minimum at time tmin, then in-
creases until it reaches the steady state, while for ρ > ρm it
is monotonically decreasing. This result is counterintuitive;
one would expect that the activity would either increase or
decrease monotonically with time, depending on whether the
system becomes less or more restricted.

The SMF approximation can qualitatively explain this be-
havior. Consider the evolution equation for PB in the three
driven models, given explicitly by

∂PDKA
B

∂t
= 1 − ρ2

1 − ρ3

(
ρ − PDKA

B

)
PDKA

F ,

∂PDAKA
B

∂t
=

[
ρ(1 − ρ2)

1 − ρ3
− PDAKA

B

]
PDAKA

F ,

∂PDBKA
B

∂t
=

[
ρ − PDBKA

B
1 − ρ2

1 − ρ3

]
PDBKA

F , (10)

DAKA
Ρ 0.2

0.030.10.3 1 3 10 30100 500
t

0.1588
0.1590
0.1592
0.1594
0.1596

K

AKA

Ρ 0.2

0.030.1 0.3 1 3 10 30 100 500
t

0.1588
0.1590
0.1592
0.1594
0.1596

K

DAKA
Ρ 0.5

0.030.10.3 1 3 10 30100 500
t

0.215

0.220

0.225
K

AKA
Ρ 0.5

0.030.10.3 1 3 10 30 100 1000
t

0.212
0.213
0.214
0.215
0.216
0.217
0.218

K

DAKA
Ρ 0.8

0.1 1 10 100 1000
t

0.02

0.04

0.06

K

AKA
Ρ 0.8

0.03 0.1 0.3 1 3 10 30 100
t

0.02

0.04

0.06

K

FIG. 12. The temporal behavior of the activity in the AKA and
DAKA models for three different densities. The dotted red line is the
SMF approximation. The blue dots are numerical results averaged
over 105 runs of 100 × 100 systems.
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FIG. 13. The time at which the activity reaches a minimum, tmin,
as a function of density ρ, for numerical simulations (symbols) and
the SMF approximation (solid line).

with the initial condition PB|t=0 = ρ. In the DKA model,
PDKA

B = ρ at all times, while in the DAKA (DBKA) model
∂PB
∂t is negative (positive) for all ρ. This means that PDAKA

B

(PDBKA
B ) decreases (increases) monotonically with time from

its initial value, ρ, to its steady-state value.
Now consider the evolution equation for PF in the three

driven models, which has the form

∂PF

∂t
= (C0 + CBPB + CFPF)PF, (11)

where C0,CB, and CF depend only on the density. For the DKA
and DBKA models, ∂PF/∂t is negative for all values of PB and
PF between their initial values and the steady-state values, for
all densities, and thus PF in these two models monotonically
decreases with time, and so does the activity. In the DAKA
model, however, there are values of PB and PF between their
initial and steady-state values for which ∂PF/∂t is positive.
Furthermore, for PDAKA

B equal to its steady-state value, and
ρ < ρSMF

DAKA ≈ 0.933, we find that ∂PF/∂t is positive for all
values of PDAKA

F between its initial and steady-state values.
Figure 13 shows the value of tmin versus the density. The

SMF approximation predicts that tmin diverges at ρDAKA
m ≈

0.827, while according to the simulations it diverges at
ρ ≈ 0.64.

IV. DISCUSSION

In this paper we showed that counterintuitively, adding
transitions to a dynamical system that increase its activity
in the MF approximation may in fact decrease its activity.
We analyzed this scenario by investigating six related lattice
gas models: the equilibrium KA model, and five nonequi-
librium variants of it (AKA, BKA, DKA, DAKA, DBKA).
In some cases adding such transitions increases the activity
(DKA → DAKA, KA → AKA at small densities) as intu-
itively expected, while in other cases it surprisingly decreases
the activity (DKA → DBKA, KA → BKA).

The difference lies in the topology of the phase space
for each model. For example, consider the undriven models
KA, AKA, and BKA. The phase space of the KA model is
composed of a large part which contains states in which none
of the particles are permanently frozen, and many small parts
each of them contains states in which a specific subset of the
particles cannot move, most of them due to the particles being
in two (or more) consecutive rows or columns. The AKA and
BKA models add transitions between the different disjoined

parts. In the BKA model, the permanently frozen walls cannot
be broken, but they can form dynamically. Therefore, the
added transitions in the BKA model between the different
parts of the state space is into a more jammed structure. In the
AKA model, the permanently frozen walls can be broken, and
so the added transitions between the parts allow the system
to escape from these jammed parts. At high enough density,
there are other jammed structures which are 2D in nature, not
quasi-1D as the walls. The AKA model also allows transitions
into these 2D jammed structures, but not out of them, and thus
at high enough density it also jams.

The appearance of these jammed structures is the precursor
to the system reaching an absorbing state, in which none of
the particles can move. In an infinite system, qualitatively
described by our SMF approximation, the time to reach an
absorbing state is either finite above the critical density and
then the steady-state activity is zero, or infinite below it and
then the steady-state activity is finite. In a finite-size system
below the critical density, the system will eventually reach the
absorbing state, however before that it reaches a long-lived
metastable state with a finite activity, the life time of which
increases exponentially with the system size.

It would be interesting to continue investigating the mod-
els we described in this paper: AKA, DAKA, BKA, and
DBKA. For example, the critical density we found in the
simulations is for a system of size 30 × 30, and there are
bound to be finite-size effects. As these models exhibit an
absorbing state phase transition, a natural question is what
universality class do they belong to. We conjecture that the
DKA, AKA, and DAKA models all belong to the same class,
while the BKA and DBKA belong to a different class. Also,
our simulations started from an uncorrelated initial condition,
and an interesting question is how does the initial condition
affects the dynamics, since the initial conditions affect even
models which obey detailed balance [56]. Other points which
are worth investigating are the correlations and the relaxation
time, especially in the BKA and DBKA models.

ACKNOWLEDGMENTS

We thank Gregory Bolshak, Rakesh Chatterjee, Paul
Krapivsky, Carl Merrigan, and Erdal Oğuz for fruitful dis-
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APPENDIX A: DERIVATION OF THE TRANSITION RATES
IN THE DRIVEN MODELS

In this Appendix we derive the transition rates for the three
driven models. Each possible transition is illustrated in the
configuration before the move, and an arrow shows which par-
ticle moves where. The particle whose state changes between
free, blocked, and jammed is called the main particle, and it
is marked in the illustrations with a green circle. A site with
an empty circle represent an occupied site, and a site without
any mark represent a vacant site. Other symbols represent
sites which may or may not be occupied and are specified for
each rate. In the derivation of the rates, we use various kinds
of conditional probabilities, which are evaluated in Sec. A 1.
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TABLE I. The rates ωα,β and 	α,β for the three driven models.

DKA DAKA DBKA

ωB,J
ρ3(1−ρ2 )

1−ρ3 ρ2 ρ3(1−ρ2 )
1−ρ3

ωB,F 1 − ρ2 1 − ρ2 1 − ρ2

ωJ,F
1

2−ρ3 [1 + 2(1−ρ2 )
1−ρ3 + 2(1−ρ2 )

2

(1−ρ3 )2 ] 1 + 2 1−ρ2

1−ρ3 2 1−ρ2

1−ρ3

	F,B
ρ(1−ρ2 )

1−ρ3
ρ(1−ρ2 )

1−ρ3 ρ

ωF,J
ρ3(1−ρ2 )

(1−ρ3 )2 [1 + 2(1−ρ )(2+2ρ−ρ3 )

(1−ρ3 )2 ] 2ρ3

(1−ρ3 )2
ρ3

1−ρ3 (1 + 2 1−ρ2

1−ρ3 )

	F,J
ρ3(1−ρ )

1−ρ3
ρ3(1−ρ )

1−ρ3 0

The rates for the DAKA, DBKA and DKA model are derived
in Secs. A 2, A 3, and A 4, respectively. The derived rates
ωα,β and 	α,β for the three driven models, related to the
rates rα,β via Eq. (6), are summarized in Table I. Note that
ωJ,B = ωF,B = 0 for all the driven models, since a particle can
change into a blocked state only if it moves downwards.

1. Conditional probabilities

In this section we evaluate several conditional probabilities
by using a MF approach. We start with the probability that
a particle is free given that one of its constraining sites is
occupied, PF|ρ . The conditional probability is given by

PF|ρ = PF∩ρ

ρ
, (A1)

where PF∩ρ is the probability that the particle is free and one
of its constraining sites is occupied. We approximate PF∩ρ as
PF multiplied by the mean-field fraction of free configurations
with one constraining site occupied,

PF∩ρ = ρ(1 − ρ2)

1 − ρ3
PF. (A2)

Hence,

PF|ρ = (1 − ρ2)

1 − ρ3
PF. (A3)

In a similar fashion, we find that the probability that a particle
is free given that one of its constraining sites is vacant, PF|v, is

PF|v = PF∩v

1 − ρ
= 1

1 − ρ3
PF. (A4)

The probability that a particle is free given that the site
below is vacant, PF|t , is

PF|t = PF∩t

1 − ρ
= PF

1 − ρ
. (A5)

the probability that a particle is free given that one of its
constraining sites is occupied and the site below it is vacant,
PF|ρt , is

PF|ρt = PF∩ρ∩t

ρ(1 − ρ)
= PF∩ρ

ρ(1 − ρ)
= PF|ρ

1 − ρ
. (A6)

The probability that a particle is free given that one of its
constraining sites and the site below it are vacant, PF|vt, is

PF|vt = PF∩v∩t

(1 − ρ)2 = PF∩v

(1 − ρ)2 = PF|v
1 − ρ

. (A7)

The probability that a site is occupied given that it is a
constraining site of a free particle, Pρ|F, is given by

Pρ|F = PF∩ρ

PF
= ρ(1 − ρ2)

1 − ρ3
, (A8)

and the probability that a site is vacant given that it is a
constraining site of a free particle, Pv|F, is given by

Pv|F = PF∩v

PF
= 1 − ρ

1 − ρ3
, (A9)

The probability that two sites are occupied given that they are
constraining sites in the same group of a free particle, Pρ2|F, is
given by

Pρ2|F = PF∩ρ2

PF
= ρ2(1 − ρ)

1 − ρ3
. (A10)

In the DKA model, we are also interested in the proba-
bilities that a particle is free given some condition on both
groups of constraining particles, PF|s1,s2 , and the probabilities
that the two groups satisfy a certain condition given that they
are constraining groups of a free particle, Ps1,s2|F. Since in
the MF approximation the occupancies of the two groups are
independent of each other, we find that

PF|s1,s2 = PF|s1 PF|s2

PF
,

Ps1,s2|F = Ps1|FPs2|F. (A11)

Similarly, the probability that a particle is free given some
conditions on both groups of constraining particles and that
the site below is vacant, PF|s1,s2,t , is given by

PF|s1,s2,t = PF|s1,s2

1 − ρ
. (A12)

We are also interested in the conditional probabilities in the
DKA model that the two constraining groups are in a certain
configuration given that the main particle is jammed. Specif-
ically, the probability that one of the constraining groups is
fully occupied and the other is not, Pρ3,1−ρ3|J, and the prob-
ability that one of the constraining groups is fully occupied
and in the other one specific site is vacant and at least one of
the other two is also vacant, Pρ3,v(1−ρ2 ). These probabilities are
given by

Pρ3,1−ρ3|J = PJ∩ρ3∩1−ρ3

PJ
= ρ3(1 − ρ3)

ρ6 + 2ρ3(1 − ρ3)
,

Pρ3,v(1−ρ2 )|J = PJ∩ρ3∩v(1−ρ2 )

PJ
= ρ3(1 − ρ)(1 − ρ2)

ρ6 + 2ρ3(1 − ρ3)
. (A13)

2. DAKA model

a. rDAKA
B,J and rDAKA

B,F

Before the move, the blocked configuration consists of the
main particle (green circle in Fig. 14) and the blocking particle
(empty circle). The state of the main particle can change only
if the blocked particle moves. The blocked particle can move
with probability PDAKA

F , since the occupancy of the three sites
comprising its kinetic constraint (purple ×) is irrelevant to the
state of the main particle either before or after the move. If
both sites marked with a blue � are occupied, which occurs
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FIG. 14. An illustration of the transitions B → J and B → F in
the DAKA model.

with probability ρ2, then after the move the main particle will
be jammed, otherwise it will be free. Therefore,

rDAKA
B,J = ρ2PF,

rDAKA
B,F = (1 − ρ2)PF. (A14)

b. rDAKA
J,F and rDAKA

J,B

Before the move, the jammed configuration consists of the
main particle (green circle in Fig. 15) and the three jamming
particles (empty circles). The state of the main particle can
change only if one of the three jamming particles moves, and
it can only change to a free state, not a blocked state, hence

rDAKA
J,B = 0. (A15)

The middle jamming particle [Fig. 15(a)] can move with
probability PF, while the jamming particles on the two sides
[Fig. 15(b)] can move with probability PF|ρ . Therefore, the
rate rDAKA

J,F is

rDAKA
J,F = PF + 2PF|ρ = PF + 2

1 − ρ2

1 − ρ3
PF. (A16)

c. rDAKA
F,B

Before the move the configuration consists of the main free
particle (green circle in Fig. 16) and the particle which will
block the main particle after the move (empty circle). The rate
is given by the probability that the bottom site is occupied
given that the main particle is free, Pρ|F, and thus

rDAKA
F,B = Pρ|F = ρ(1 − ρ2)

1 − ρ3
. (A17)

d. rDAKA
F,J

There are two ways in which a free particle can change into
a jammed particle. In the first case, illustrated in Fig. 17(a),

(a) (b)

FIG. 15. An illustration of the transition J → F in the DAKA
model.

FIG. 16. An illustration of the transition F → B in the DAKA
model.

the main particle moves into a jammed configuration. This
happens if the three jamming sites are occupied, which occur
with probability ρ3, and if the site between them is vacant,
which occur with probability Pv|F. Therefore, the rate for the
first case is

rDAKA,1
F,J = ρ3Pv|F = ρ3(1 − ρ)

1 − ρ3
. (A18)

In the second case, illustrated in Fig. 17(b), a particle
moves to occupy one of neighbors of the main particle. The
rate for this case is

rDAKA,2
F,J = 2Pρ2|FρPF|vt = 2ρ3

(1 − ρ3)2 PF. (A19)

The total rate rDAKA
F,J is given by

rDAKA
F,J = rDAKA,1

F,J + rDAKA,2
F,J . (A20)

3. DBKA model

a. rDBKA
B,J and rDBKA

B,F

The main particle (green circle in Fig. 18) can change its
state only if the blocking particle (empty circle) moves. The
rates are therefore

rDBKA
B,J = ρ3PF|ρ = ρ3(1 − ρ2)

1 − ρ3
PF,

rDBKA
B,F = (1 − ρ3)PF|ρ = (1 − ρ2)PF. (A21)

b. rDBKA
J,B and rDBKA

J,F

The main jammed particle (green circle in Fig. 19) can
change its state only if one of its two side neighbors move.
The rates are therefore

rDBKA
J,B = 0,

rDBKA
J,F = 2PF|ρ = 2

1 − ρ2

1 − ρ3
PF. (A22)

(a) (b)

FIG. 17. An illustration of the transition F → J in the DAKA
model.
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FIG. 18. An illustration of the transitions B → J and B → F in
the DBKA model.

c. rDBKA
F,B and rDBKA

F,J

The transition F → B is illustrated in Fig. 20(a), and its
rate is

rDBKA
F,B = ρ. (A23)

The transition F → J can occur in two different ways illus-
trated in Figs. 20(b) and 20(c). The corresponding rates for
the two cases are

rDBKA,1
F,J = Pρ2|FρPF|t = ρ3

1 − ρ3
PF,

rDBKA,2
F,J = 2Pρ2|FρPF|ρt = 2ρ3(1 − ρ2)

(1 − ρ3)2 PF. (A24)

The total rate is therefore

rDBKA
F,J = rDBKA,1

F,J + rDBKA,2
F,J = ρ3

1 − ρ3

(
1 + 2

1 − ρ2

1 − ρ3

)
PF.

(A25)

4. DKA model

a. rDKA
B,J and rDKA

B,F

Similarly to the corresponding rates in the DAKA and
DBKA model, these transitions occur only when the blocking
particle (empty circle in Fig. 21) moves. In order for it to be
free, it requires that at least one of its three neighbors after
the move (purple ×) is vacant, and that at least one of its
three neighbors before the move (the main particle depicted
as a green circle and the two yellow stars) is vacant. Since
the main particle already occupies one site, this transition is
possible only if at least one of the two sites marked with a
yellow star is vacant, which itself means that in order for the
main particle to be jammed after the blocking particle moves,
all three sites marked with a � must be occupied, otherwise it
will be free after the blocking particle moves. Therefore, the

FIG. 19. An illustration of the transition J → F in the DBKA
model.

(a) (b) (c)

FIG. 20. An illustration of the transitions F → B and F → J in
the DBKA model.

rates are

rDKA
B,J = ρ3PF|ρ = ρ3(1 − ρ2)

1 − ρ3
PF,

rDKA
B,F = (1 − ρ3)PF|ρ = (1 − ρ2)PF. (A26)

b. rDKA
J,B and rDKA

J,F

A jammed particle can change its state only if one of its
neighbors moves, which causes it to become free. Therefore,

rDKA
J,B = 0. (A27)

The transition J → F may occur in three different ways, illus-
trated in Fig. 22. In the first case, shown in Fig. 22(a), at least
one of the three sites marked � is vacant, and at least one of
the sites marked × is vacant. The corresponding rate is

rDKA,1
J,F = Pρ3(1−ρ3 )|JPF|v = 1

2 − ρ3
PF. (A28)

In the second case, shown in Fig. 22(b), at least one of the
three sites marked � is vacant, and at least one of the two sites
marked × is vacant. The corresponding rate is

rDKA,2
J,F = 2Pρ3(1−ρ3 )|JPF|v,ρ = 2

1 − ρ2

(2 − ρ3)(1 − ρ3)
PF. (A29)

In the third case, shown in Fig. 22(c), at least one of the two
sites marked � is vacant, and at least one of the two sites
marked × is vacant. The corresponding rate is

rDKA,3
J,F = 2Pρ3v(1−ρ2 )|JPF|ρ,v,t = 2

(1 − ρ2)2

(2 − ρ3)(1 − ρ3)2 PF.

(A30)

FIG. 21. An illustration of the transitions B → J and B → F in
the DKA model.
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(a) (b) (c)

FIG. 22. An illustration of the transitions J → F in the DKA
model.

c. rDKA
F,B

This transition is shown in Fig. 23, and the rate is

rDKA
F,B = Pρ|F = ρ(1 − ρ2)

1 − ρ3
. (A31)

d. rDKA
F,J

There are five ways to transition from a free state to a
jammed state. In the first case, shown in Fig. 24(a), at least
one of the three � sites is vacant, at least one of the three ×
sites is vacant, and at least one of the two ∗ sites is vacant. The
corresponding rate is

rDKA,1
F,J = ρPρ2|FPF|ρ,t = ρ3(1 − ρ2)

(1 − ρ3)2 PF. (A32)

In the second case, shown in Fig. 24(b), at least one of the two
× sites is vacant, and the corresponding rate is

rDKA,2
F,J = 2ρPρ2,v|FPF|ρ,vρ,t = 2

ρ3(1 − ρ)(1 − ρ2)

(1 − ρ3)4 PF.

(A33)

In the third case, shown in Fig. 24(c), at least one of the two
� sites is vacant and at least one of the two × sites is vacant.
The corresponding rate is

rDKA,3
F,J = 2ρvPρ2,ρ|FPF|ρ,ρ2v,t = 2

ρ4(1 − ρ)(1 − ρ2)2

(1 − ρ3)4 PF.

(A34)

In the fourth case, shown in Fig. 24(d), at least one of the
two � sites and at least one of the two × sites are vacant. The
corresponding rate is

rDKA,4
F,J = 2Pρ,ρ2v|FPF|ρ,v,t = 2

ρ3(1 − ρ2)2

(1 − ρ3)4 PF. (A35)

FIG. 23. An illustration of the transition F → B in the DKA
model.

(a) (b) (c)

(d) (e)

FIG. 24. An illustration of the transition F → J in the DKA model.

In the fifth case, shown in Fig. 24(e), at least one of the three
� sites is vacant and the corresponding rate is

rDKA,5
F,J = ρ3Pv|F = ρ3(1 − ρ)

1 − ρ3
. (A36)

APPENDIX B: STABILITY OF THE
STATIONARY SOLUTION

In this Appendix we show that whenever the nontrivial
stationary solution exists, it is also stable. Using Eq. (3), the
evolution equations for PB and PF are explicitly

∂PB

∂t
= [	F,B + ωF,BPF + ωJ,B(1 − PB − PF)

− (ωB,J + ωB,F)PB]PF,

∂PF

∂t
= [ωB,FPB + ωJ,F(1 − PB − PF)

− (	F,B + ωF,BPF + 	F,J + ωF,JPF)]PF, (B1)

which can be written in matrix form as

∂

∂t

(
PB

PF

)
= PF

[
M

(
PB

PF

)
+

(
P0

B

P0
F

)]
, (B2)

with the matrix M given explicitly by

M = −
(

ωJ,B + ωB,J + ωB,F ωJ,B − ωF,B

ωJ,F − ωB,F ωJ,F + ωF,B + ωF,J

)
,

(B3)

and the vector (P0
B

P0
F
) by(

P0
B

P0
F

)
=

(
	F,B + ωJ,B

ωJ,F − 	F,B − 	F,J

)
. (B4)

The determinant of M is

|M| = (ωF,B + ωF,J )(ωB,J + ωJ,B)

+ (ωB,J + ωF,B)ωJ,F + ωB,F(ωF,J + ωJ,B + ωJ,F),
(B5)
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which is positive since for any set of kinetic constraints, in-
cluding for models we do not consider here, ωJ,F and at least
one of ωB,F and ωB,J are positive.

We now look for stationary solutions of Eq. (4) under the
condition 0 � PF, PJ, PB � 1. The solution PF = 0 is always a
stationary solution. We find that if there is another stationary
solution with PF > 0, then it is unique and given by(

PB

PF

)
ss

= −M−1

(
P0

B

P0
F

)
. (B6)

In order to check its stability, we perturb PB and PF around it,
such that Pα = Pα,ss + δα . Setting this perturbation in Eq. (B2)
yields

∂

∂t

(
δB

δF

)
= (PF,ss + δF)

[
M

(
PB

PF

)
+ M

(
δB

δF

)
+

(
P0

B

P0
F

)]

= δF

[
M

(
PB

PF

)
+

(
P0

B

P0
F

)]
+ PF,ssM

(
δB

δF

)
, (B7)

where in the second step we kept terms linear in δα . Using
Eq. (B6) yields

∂

∂t

(
δB

δF

)
= PF,ssM

(
δB

δF

)
. (B8)

Since PF,ss > 0, the steady-state solution is stable if the real
part of both eigenvalues of M is negative. The two eigenval-
ues of M have the form

λ± = −λ0 ± λ1, (B9)

where λ0 > 0 and λ1 can be negative, positive, or imaginary.
Therefore, only λ+ can have a positive real part, and that
occurs only if λ1 is positive. However, in that case λ− < 0,
and since |M| > 0, and thus λ+ must also be negative. Hence,
if the nontrivial stationary solution exists, it is also stable.

APPENDIX C: STABILITY OF THE PF = 0 SOLUTION

In this Appendix we investigate the stability of the PF =
0 state in the SMF approximation. We start from the driven
models, and then consider the BKA model.

1. Driven models

In order to check the stability of the PF = 0 state in the
driven models, we perturb PB and PF around it, such that PF =
δF and PB = PB,ss + δB. Setting this perturbation in Eq. (B2)
and keeping only terms linear in δB and δF yields

∂

∂t

(
δB

δF

)
= δF

(
ωB

ωF

)
, (C1)

with

ωB = 	F,B + ωJ,B − (ωJ,B + ωB,J + ωB,F)PB,ss,

ωF = (ωB,F − ωJ,F)PB,ss − (	F,B + 	F,J − ωJ,F). (C2)

For any value of ρ we find a critical PB,c above which ωF < 0
and thus the PF = 0 solution is stable. This critical PB,ss is

PDAKA
B,c = 3 + 2ρ − ρ3

2 + 2ρ + ρ2 + ρ3 + ρ4
, PDBKA

B,c = 2 + ρ − ρ2 − ρ3

(1 + ρ)(1 + ρ3)
,

PDKA
B,c = 5 + 8ρ + 5ρ2 − 2ρ3 − 2ρ4 + 3ρ6 + 2ρ7 + ρ8

3 + 6ρ + 5ρ2 + 5ρ3 + 7ρ4 + 6ρ5 + 2ρ6 − 2ρ7 − 2ρ8 − ρ9
. (C3)

Note that PB,c > 1 for ρ < 0.618 for all three models, which
means that the PF = 0 solution is unstable for ρ < 0.618. The
value of 0.618 is the root of the polynomial 1 − ρ2(1 + ρ)2.

In the BKA model, there are six states as outlined in Ap-
pendix D. In two of them, B4 and B3J, the particle cannot
move and in the other four the particle can move in at least
one direction. The trivial stationary solution in this model
is PB3J = 1 − PB4 and PB2F2 = PBFBF = PBF3 = PF4 = 0. Per-
turbing the evolution equation around this solution to first
order in the perturbation yields equations of the form

∂δα

∂t
=

∑
β

(ωβ,α + 	β,αPB)δβ, (C4)

where ωβ,α and 	β,α depend only on the density, and α and
β are the states in which the particle can move in at least one
direction. This may be written in matrix form as

∂

∂t
δ = (ω + PB	)δ. (C5)

The trivial stationary solution is stable if the real part of
all the four eigenvalues of the matrix ω + PB	 is negative.

Investigating this matrix numerically we find that all its eigen-
values are real, and that for PB = 1 they are negative for all ρ.
Therefore, the critical PBKA

B4,c is obtained when the determinant
of the matrix equals zero, which yields

PBKA
B4,c = 1 − 4ρ3

9 − 3ρ2
. (C6)

0.0 0.2 0.4 0.6 0.8 1.0
Ρ0.0

0.2

0.4

0.6

0.8

1.0
PB

FIG. 25. The value of PB,c (continuous lines) and PB,ss (dotted
lines) as a function of the density ρ for the DKA model (red), DAKA
model (blue), DBKA model (green), and BKA model (purple). The
small circles are the points at which the nontrivial solution ceases to
exist.
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B4 B3J B2F2

BFBF BF3 F4

FIG. 26. An illustration of the six states of particles in the BKA
model, up to symmetries.

For densities slightly below ρc, in which the nontrivial
solution exists and is stable, the stationary value of PB in the
driven models is

PB,ss = 	F,B + ωJ,B

ωJ,B + ωB,J + ωB,F
. (C7)

In the BKA model we find it numerically. Figure 25 shows
PB,c and PB,ss as a function of ρ for the four models DKA,
DAKA, DBKA, and BKA. Note that in the DKA and DBKA
models, but not in the DAKA and BKA models, there is a
range of densities for which PB,c < PB,ss.

APPENDIX D: SMF APPROXIMATION IN THE BKA
MODEL

In the BKA model there are six states illustrated in Fig. 26:
B4 in which all the four nearest neighbors of the main particle
are occupied, B3J in which three of the four nearest neighbors
are occupied and the fourth is vacant, B2F2 in which two
adjacent neighbors are occupied, BFBF in which two nonad-
jacent neighbors are occupied, BF3 in which one neighbor is
occupied, and F4 in which all four neighbors are vacant. Since
the sum of all six probabilities is 1, there are five coupled
nonlinear equations. We numerically solve them in order to
find the steady state.

1. Conditional probabilities

In the BKA model we are interested in the probability that
a particle can move in a specific direction, PM, the probability
that it can move in a specific direction given that its neighbor
in the opposite direction is occupied, PM|o, the probability that
it can move in a specific direction given that its neighbor in
the direction perpendicular to its motion is occupied, PM|s, the
probability that it can move in a specific direction given that its
neighbor in the direction perpendicular to its motion is vacant,
PM|v , the probability that it can move in a specific direction
given that the target site is vacant, PM|t , the probability that
it can move in a specific direction given that its neighbor in
the direction perpendicular to its motion is occupied and that
the target site is vacant, PM|st , and the probability that it can
move in a specific direction given that both its neighbor in the
direction perpendicular to its motion and the target site are
vacant, PM|vt . The probability PM is

PM = 1
2 (PB2F2 + PBFBF) + 3

4 PBF3 + PF4. (D1)

The conditional probability PM|o is

PM|o = PM∩o

ρ
= ρ−1(PB2F2∩o + PBF3∩o) = ρ−1

(
1

2
PB2F2 + 1

4
PBF3

)
. (D2)

The conditional probability PM|s is

PM|s = PM∩s

ρ
= ρ−1(PB2F2∩s + PBFBF∩s + PBF3∩s) = ρ−1

(
1

4
PB2F2 + 1

2
PBFBF + 1

4
PBF3

)
. (D3)

The conditional probability PM|v is

PM|v = PM∩v

1 − ρ
= (1 − ρ)−1(PB2F2∩v + PBF3∩v + PF4∩v) = (1 − ρ)−1

(
1

4
PB2F2 + 1

2
PBF3 + PF4

)
. (D4)

The conditional probability PM|t is

PM|t = PM∩t

1 − ρ
= PM

1 − ρ
. (D5)

The conditional probabilities PM|vt and PM|st are

PM|vt = PM∩v∩t

(1 − ρ)2 = PM∩v

(1 − ρ)2 = PM|v
1 − ρ

,

PM|st = PM∩s∩t

ρ(1 − ρ)
= PM∩s

ρ(1 − ρ)
= PM|s

1 − ρ
. (D6)

2. rBKA
B4,B3J

This transition is illustrated in Fig. 27. At least one of the
× sites is vacant. The rate is

rBKA
B4,B3J = PM|o + 2PM|s. (D7)

3. Outgoing rates from B3J

The outgoing rates from state B3J are illustrated in Fig. 28.
In Figs. 28(a) and 28(b) at least one of the × sites is vacant,
and in Figs. 28(c) and 28(d) the transition occur if the particle
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(a) (b)

FIG. 27. An illustration of the transition B4 → B3J.

moves in one of the three directions. The rates are

rBKA
B3J,B4 = 1

4 (ρPM|t + 2ρPM|st ),

rBKA
B3J,B2F2 = 1

4 (4PM|s + 2PM|o),

rBKA
B3J,BFBF = 1

4 (2PM|s + PM|o). (D8)

4. Outgoing rates from B2F2

The outgoing rates from state B2F2 are illustrated in
Fig. 29. Figure 29(a) shows the transition induced by the
main particle moving. The state after the move depends on the
three sites marked �. Figures 29(b)–29(d) show the transition
to B3J induced by an incoming particle. Figure 29(e) shows
the transition to BF3 induced by the movement of one of the
blocking particles. The rates are

rBKA
B2F2,B3J = 1

2 [ρ3 + ρPM|t + ρPM|vt + ρPM|st ],

rBKA
B2F2,BFBF = 1

2ρ2(1 − ρ),

rBKA
B2F2,BF3 = 1

2 [3ρ(1 − ρ)2 + 2PM|s + PM|o],

rBKA
B2F2,F4 = 1

2 (1 − ρ)3. (D9)

5. Outgoing rates from BFBF

The outgoing rates from state BFBF are illustrated in
Fig. 30. Figure 30(a) shows the transition induced by the main
particle moving. The state after the move depends on the three
sites marked �. Figures 30(b) and 30(c) show the transition
to B3J induced by an incoming particle. Figure 30(d) shows
the transition to BF3 induced by the movement of one of the

(a) (b)

(c) (d)

FIG. 28. An illustration of the outgoing transitions from B3J.

(a) (b) (c)

(d) (e)

FIG. 29. An illustration of the outgoing transitions from B2F2.

blocking particles. The rates are

rBKA
BFBF,B3J = 1

2 (ρ3 + ρPM|t + 2ρPM|st ),

rBKA
BFBF,B2F2 = ρ2(1 − ρ),

rBKA
BFBF,BF3 = 1

2 [3ρ(1 − ρ)2 + 2PM|s + PM|o],

rBKA
BFBF,F4 = 1

2 (1 − ρ)3. (D10)

6. Outgoing rates from BF3

The outgoing rates from state BF3 are illustrated in Fig. 31.
Figure 31(a) shows the transition induced by the main particle
moving in either of the three directions. The state after the
move depends on the three sites marked �. Figures 31(b)–
31(d) show the transition to B2F2 induced by an incoming
particle. Figures 31(e) and 31(f) show the transition to B2F2
induced by an incoming particle. Figure 31(g) shows the tran-
sition to F4 induced by the movement of one of the blocking
particles. The rates are

rBKA
BF3,B3J = 3

4ρ3,

rBKA
BF3,B2F2 = 1

2 [3ρ2(1 − ρ) + ρPM|t + ρPM|st + ρPM|vt ],

rBKA
BF3,BFBF = 1

4 [3ρ2(1 − ρ) + 2ρPM|vt + ρPM|t ],

rBKA
BF3,F4 = 1

4 [3(1 − ρ)3 + 2PM|s + PM|o]. (D11)

7. Outgoing rates from F4

The outgoing rates from state F4 are illustrated in Fig. 32.
Figure 32(a) shows the transition induced by the main particle

(a) (b) (c) (d)

FIG. 30. An illustration of the outgoing transitions from BFBF.
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(a) (b) (c) (d)

(e) (f) (g)

FIG. 31. An illustration of the outgoing transitions from BF3.

moving in either of the four directions. The state after the
move depends on the three sites marked �. Figures 32(b)
and 32(c) shows the transition to BF3 induced by an incoming

(a) (b) (c)

FIG. 32. An illustration of the outgoing transitions from F4.

particle. The rates are

rBKA
F4,B3J = ρ3,

rBKA
F4,B2F2 = 2ρ2(1 − ρ),

rBKA
F4,BFBF = ρ2(1 − ρ),

rBKA
F4,BF3 = 3ρ(1 − ρ)2 + ρPM|t + 2ρPM|vt . (D12)
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