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Visualizing free-energy landscapes for four hard disks
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We present a simple model system with four hard disks moving in a circular region for which free-energy
landscapes can be directly calculated and visualized in two and three dimensions. We construct several energy
landscapes for our system, and we explore the strengths and limitations of each in terms of understanding system
dynamics, in particular the relationship between state transitions and free-energy barriers. We also demonstrate
the importance of distinguishing between system dynamics in real space and those in landscape coordinates,
and we show that care must be taken to appropriately combine dynamics with barrier properties to understand
the transition rates. This simple model provides an intuitive way to understand free-energy landscapes, and it
illustrates the benefits that free-energy landscapes can have over potential energy landscapes.
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I. INTRODUCTION

Energy landscapes are of widespread utility for science,
relevant for understanding condensed-matter systems [1–3],
protein folding [4–6], chemical reactions [7,8], optimiza-
tion problems [9], and even machine learning [10]. The first
proposal related to energy landscapes dates back to René
Marcelin, a French physical chemist who in 1914 proposed
understanding chemical kinetics in terms of the Lagrangian
coordinates describing atomic motions [7,11]. Marcelin’s idea
was “mouvement des points représentatifs dans l’espace à
2N dimensions”—“movement of representative points in 2N-
dimensional space,” where N is the number of Lagrangian
generalized coordinate pairs. More modern descriptions of
energy landscapes date from 1969, when Martin Goldstein
reintroduced the concept [1]. Goldstein considered a situation
with N particles in a three-dimensional space, with some
potential energy U of interaction between the particles. To
quote, “When I speak of the potential energy surface I refer
to U plotted as a function of 3N atomic coordinates in a
(3N + 1)-dimensional space.” That is, U is a function of the
x, y, and z positions of all N particles (a total of 3N numbers),
so graphing U forms a surface in this very high-dimensional
space.

Picturing this high-dimensional surface is of course chal-
lenging. The first picture the authors are aware of was
published by Stillinger and Weber in 1984 [12], and it is
shown in Fig. 1. Here the surface is represented as the height
as a function of two coordinates, giving rise to the terminol-
ogy of calling this the “energy landscape.” The solid lines
are contours of constant U . The dashed lines enclose local
minima of the surface; the nodes where the dashed lines
connect are local maxima. ×’s mark saddle points between
local minima. For a thermal system, particles can transition
from one configuration to another by a thermal fluctuation that
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carries them over a dashed line, perhaps crossing near a saddle
point. The transition in the 3N-dimensional space encodes the
appropriate changes of the coordinates in real space of the
N particles. Stillinger and Weber were interested in studying
liquids, so accordingly the disordered appearance of Fig. 1
represents the complex dependence of U on the amorphous
liquid structure.

A few years later, the challenge of drawing a surface as a
function of 3N coordinates was further simplified to a curve
in one dimension; a 1988 example from Stillinger is shown
in Fig. 2 [13]. Here the lowest energy state corresponds to
a crystal—the ground state. In contrast, there are many dis-
ordered glassy states and they have higher potential energy.
The states at the right represent regions of phase space that
correspond to particular configurations of the N atoms with
slightly lower U , but nonetheless which are amorphous and
thus far from the crystal configuration that minimizes U .
Later work generalized this type of sketch to be more ran-
dom in appearance (for example, Ref. [14]), with the general
understanding that this one-dimensional landscape sketch is
supposed to convey a complex high-dimensional surface.

A conceptual simplification comes from considering the N
objects not to be atoms but rather hard spheres. Hard spheres
have no attractive interaction, and they repel each other if they
touch. The potential energy U for hard spheres is zero if they
do not overlap, and infinite if they do overlap. This system
can be ordered into a crystal or disordered like a liquid or
glass, and so it has interesting phase behavior [15–19]. In
this situation, there are still 3N coordinates. As a function
of these coordinates, U is either zero or infinite, with U =
∞ representing forbidden configurations where two or more
particles overlap. Now transitions between states no longer
require crossing saddle points where U is slightly higher;
rather, transitions between states require passing through en-
tropic bottlenecks [20,21]. One can think of a free energy,
F = U − T S, where T is the absolute temperature and S is
the entropy. States with high S (thus low F ) correspond to
common configurations of the hard spheres, and states with
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FIG. 1. Sketch of a potential energy surface as a function of
two coordinates. The solid lines are contours of constant U . The
dashed lines separate local minimal (solid circles) and connect at
local maxima. Saddle points are marked with ×. From Stillinger and
Weber [12]. Reprinted with permission from AAAS.

low S correspond to rare configurations. One would have to
understand what would be meant by a common or rare con-
figuration of the 3N coordinates, and it is not obvious how a
sketch of F would differ (if at all) from something like Figs. 1
or 2. While hard spheres are a conceptual simplification, it
does not necessarily make understanding the free-energy land-
scape any simpler.

FIG. 2. Sketch of a potential energy surface as a function of
one coordinate. This particular sketch represents different possible
characters of the phase space, including a crystalline state (left) and
amorphous states (middle and right). Reprinted from F. H. Still-
inger [13], with the permission of AIP Publishing.

The earliest mention of free-energy landscapes that we are
aware of was Hill and Eisenberg in 1976, who considered
“free-energy surfaces” in myosin-actin-ATP systems [22].
They projected the behavior of the system down to a few
important coordinates. For example, at one point they discuss
the free energy of a molecule based on one coordinate, “statis-
tically averaged over all possible configurations of all solvent
molecules and over the rotational coordinates of the ligand.”
Later work was more explicit about the landscape analogy;
for example, Bryngelson and Wolynes in 1987, also consider-
ing a biological system (protein folding), discuss ideas such
as moving downhill to a local minimum of the free energy.
Other work in the 1980s and 1990s talked about free-energy
landscapes but gloss over the difference between that and
a potential energy landscape; these authors mainly consider
free-energy landscapes as they had methods to calculate the
free energy as a function of coordinates [23–25]. A com-
mon approach for free energy is to consider just one or two
“reaction coordinates” or “order parameters” that describe a
behavior of interest, such as protein folding or a chemical
reaction [26]. A recent review explicitly addressing both po-
tential energy and free-energy landscapes notes that for the
latter, one constructs a free-energy landscape “by averaging
over most of the coordinates” [27]. The main benefit of free-
energy landscapes is to focus attention on a small number of
meaningful coordinates.

In this paper, we present a model system using four
hard disks which has nontrivial dynamics and a nontrivial
free-energy landscape. The potential energy landscape as a
function of the 2N = 8 coordinates can be usefully projected
down to three or even two dimensions so that a free landscape
can be directly visualized, rather than needing a conceptual
sketch. We use this model system to illustrate several ideas
about free-energy landscapes. For example, a key point is
that this projection operation is not unique: there are multiple
possible ways to visualize the free-energy landscape, with
varying utility. We verify that similar results are obtained for
diffusive dynamics and ballistic dynamics. Our model is in the
spirit of other simple models involving very small numbers of
particles [21,28–38].

II. DYNAMICS OF THE MODEL SYSTEM

Figure 3 shows the model system, comprised of four hard
disks confined to a two-dimensional circular region; this is an
extension of a previous model with three hard disks [21]. We
let the disks move, subject to the constraint that no disk can
overlap another disk or overlap the boundary of the system.
The disks are distinguishable, so there are six “equilibrium”
states, shown in Fig. 4. Changing from one state to another
requires one of the disks to move through the middle of
the system so as to swap locations with one of its neigh-
bors. Examples of these swaps are shown in Figs. 5(a)–5(e)
and 6(a)–6(e). Swapping locations requires a large enough
system for this to occur: three disks must be able to align
momentarily as the middle one passes through the other two.
We define the disks all to have radius 1, and then the minimum
system size is radius R = 3. A smaller R is possible, but
then no rearrangements can occur. A larger system makes
rearrangements easier, so accordingly we define the system
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FIG. 3. Illustration of our model system, with four hard disks
confined to a two-dimensional circular region. The disks have radius
equal to 1, and the circular region has a radius 3 + ε; in this sketch,
ε = 0.3.

radius to be R = 3 + ε. Letting ε → 0 results in behavior a
bit like a crystalline or glassy system, in that particles become
unable to rearrange, although they can still vibrate locally.

We use two simulation methods. The first method approx-
imates diffusive motion for the particles, and will be used for
most of the results presented in this paper. In this simula-
tion, we consider a small trial move for a disk in a random
direction. This move is accepted if the new position does
not overlap any other disk or the boundary, and otherwise
is rejected. A simulation time step occurs when we have
considered one trial move for each of the four disks (picked
in random order at each time step). We choose a step size
of L = 10−2.5 so that most steps are accepted, and we verify
that our results are insensitive to this choice. With this choice,
the time it takes for a free particle to diffuse in the x (or y)
coordinate a distance 1 is given by τD = 1/L2 = 105 time
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FIG. 4. The six distinct “equilibrium” states, labeled by the order
of the disks in a clockwise direction. The bottom row of states are
mirror images of the top row. At any given moment, it is unlikely
that the four particles are exactly arranged in a square, but rather
these states should be understood as the situations in which the order
of the four particles is well defined. Likewise, rotations of these states
are considered equivalent; only the order matters. For example, the
state shown in Fig. 3 is (1243).
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FIG. 5. (a) Real-space trajectories during a transition with
system size ε = 0.18 and using diffusive dynamics. The letters cor-
respond to the snapshots of the system shown in panels (b)–(e). In
this transition (1243) → (1324), the outlined disk moves through
the middle. The total time pictured is 10τD, and steps are drawn
spaced by �t = 0.01τD. (f) Free-energy landscape in the variables
(c1, c2, c3). (g) Free-energy landscape in the variables (d1, d2). (h)
Free-energy landscape in the variables (u1, u2). In panels (f), (g), and
(h), the positions corresponding to snapshots (b)–(e) are marked.

steps. Accordingly, we define our time in units of τD. We run
our simulations for 104–105τD, long enough for at least 20
rearrangements to occur, and often 100–1000 rearrangements,
depending on ε. As will be seen, the smaller ε is, the longer it
takes for a rearrangement to occur.
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FIG. 6. (a) Real-space trajectories during a transition with sys-
tem size ε = 0.20 and using ballistic dynamics. Letters correspond
to the snapshots shown in panels (b)–(e). In this transition (3421) →
(1234), the outlined disk moves through the middle. The total time
pictured is 4τv . (f) Free-energy landscape in the variables (c1, c2, c3).
(g) Free-energy landscape in the variables (d1, d2). (h) Free-energy
landscape in the variables (u1, u2). In panels (f), (g), and (h), the
positions corresponding to snapshots (b)–(e) are marked. Note that
the phase space trajectory in (f) has been rotated; in particular, this is
a different perspective from that shown in Fig. 5(f).

The second simulation method computes ballistic trajecto-
ries for each disk using an event-driven computation. For this
simulation, the four disks are initialized with velocities v = 1
in random directions, but with the constraint that the total

angular momentum is zero. We calculate the next time for
each possible collision (disk-disk or disk-wall) and advance
the positions of the four particles to the earliest collision.
The velocity of the colliding particle(s) is updated conserving
energy and momentum. Where these results are presented
in this paper, time is in units of τv = 1/v = 1, the time it
takes a noncolliding particle to move a distance of 1 (the
disk radius) based on the initial velocity scale v; note that
the instantaneous velocity of the disks fluctuates due to the
collisions, albeit with the total kinetic energy constant.

There are many possible ways to project from the eight-
dimensional phase space in the disk coordinates down to
lower dimensions. One needs to map from the four original
positions down to a smaller number of coordinates. We choose
to use vector operations. Relative positions are describable by
vectors pointing from disks i to disks j:

�vi j = (x j − xi, y j − yi ). (1)

With i �= j, this is a set of six vectors (ignoring the coun-
terparts in the opposite direction, that is, using �v12 and not
�v21 = −�v12). While many operations could be done with these
vectors to generate landscape coordinates, it is easiest to con-
sider working with pairs of vectors: there are 15 such pairs.
It is also useful to require each pair of vectors to depend on
the coordinates of all four particles: this reduces the number
of distinct pairs to 3. That is, considering the pair (�v12, �v13) is
not desirable as it tell us nothing about particle 4, whereas the
pair (�v12, �v34) has some information about all four particles.
Finally, we will consider the two straightforward vector oper-
ations to act on each pair of vectors: the cross product and the
dot product, which will each result in a distinct free-energy
landscape.

We first consider the cross product, and we will use this
initially to illustrate the system dynamics. We compute the
vector cross products:

c1 = (�v12 × �v34) · ẑ, c2 = (�v13 × �v42) · ẑ,

c3 = (�v14 × �v23) · ẑ, (2)

where the final dot product with ẑ ensures that the c’s
are scalars; ẑ is the unit vector perpendicular to the
two-dimensional system. For the equilibrium configurations
shown in Fig. 4, the c’s are positive, negative, or roughly zero
depending on the arrangement of the four disks. For example,
if the disks are arranged in a square of side length s, with
the disks arranged (1243), then c1 = +2s2, c2 = c3 = 0. If
the disks are arranged in the opposite order (3421), then c1 =
−2s2 and c2 = c3 = 0. Likewise c2 and c3 are each nonzero
for two opposite pairs of configurations, and zero for the other
four.

Before constructing a free-energy landscape with these
coordinates, first consider the behavior of the system viewed
through one of these coordinates, shown in Fig. 7. For a
relatively large system size [panel (a), ε = 0.3], transitions
happen fairly frequently. As the system size is decreased,
panels (b) and (c) show that transitions happen less frequently.
This is because there is less ability for the disks to find a
configuration where one disk passes through the middle of the
system to swap places with one of the others.
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FIG. 7. Trajectories of the coordinate c1 as a function of time,
for system sizes ε as indicated, using diffusive dynamics. Transitions
indicate one of the disks passing through the middle of the system.
Note that c1 is zero for four of the six states shown in Fig. 4, so some
transitions that keep c1 = 0 are not apparent in the data, but would
be apparent in plots of c2 and c3.

Figure 8 shows the mean time τ between switching states
as a function of the system size ε. As ε → 0, the switching
time grows larger, confirming the qualitative picture of Fig. 7.
It is perhaps a bit of a coincidence that as a function of ε

the magnitude of τ is similar for diffusive dynamics (circles,
in terms of τD) and ballistic dynamics (triangles, in terms of
τv). The particular power-law dependence τ ∼ ε−9/2 will be
explained in Sec. IV.

The behavior appears similar to a glass transition, in that
the timescale for rearrangement grows dramatically as ε → 0.
As a molten glass is cooled, its viscosity grows dramatically—
which is to say, the timescale for internal rearrangements
grows dramatically [2,39,40]. The previous three-disk model
(which inspired this four-disk model) was designed to capture

FIG. 8. The switching timescale τ as a function of the system
size ε for diffusive dynamics (circles, in units of τD) and ballistic
dynamics (triangles, in units of τv). As ε → 0, the timescale grows
as ε−9/2 as indicated by the solid line. The uncertainties are 95%
confidence intervals; where not shown, the uncertainties are smaller
than the symbol size.

the basic crowding that can lead to a glass transition [21].
The coordinated motion of the four disks during a transition
from one basic state to another conceptually resembles what
is seen in simulations of materials close to the glass transi-
tion [3,41,42].

III. FREE-ENERGY LANDSCAPES

We wish to use the simulation data to map the free-
energy landscape. In the original senses of Marcelin [7] and
Goldstein [1], the potential energy is an eight-dimensional
landscape, as we have four disks each of which is described
by two coordinates (x, y). Some states are allowed (states such
that no disks overlap) and those all have equal probability. To
generate a more interesting free-energy landscape, we must
project the eight-dimensional description down to lower di-
mensions, where we will see that states do not have equal
probability—thus leading to an entropic penalty for some
states, and a nontrivial free-energy landscape.

Before further choosing a projection, we first consider what
transitions between the states are possible. In Fig. 4, consider
changing from one of the states to another one. For example,
changing between (1234) to (1324) requires swapping disks
2 and 3. This can be done by having disk 2 move to the
middle of the system, and then swap places with disk 3; or
likewise disk 3 could be the one to move through the middle.
Changing from (1234) to (4321) requires two such swaps, as
simultaneously swapping two disks across the diagonal re-
quires R > 4. In fact, starting at any one of the states in Fig. 4,
there are four choices of adjacent particle pairs that could be
swapped, leading to four different new states. The only state
for which a direct transition is disallowed is the mirror image
state, which requires two particle pair swaps. The easiest way
to picture this is to have each state correspond to a face
of a cube. Only transitions between adjacent cube faces are
allowed.

The phase space of c1, c2, c3 [Eq. (3)] has the desired
cubical symmetry for our free-energy landscape. To generate
the landscape, we compile a histogram of the microstates
seen in the simulation, �(c1, c2, c3). The entropy is then
S = kB ln �(c1, c2, c3) using Boltzmann’s constant kB. The
free-energy landscape is F = U − T S = −T S (since U = 0
must be true for nonoverlapping hard disks). Equivalently,
we can consider − ln � to be the free-energy landscape in
units of kBT . In this three-dimensional phase space, it turns
out that states near the origin are never seen (for R < 4), so
this phase space can be safely projected onto the surface of
a unit sphere. This projection is shown in Fig. 9, where the
large squarish regions correspond to the equilibrium states,
and the tenuous connections through the triangular corner
regions show transition paths between the equilibrium states.
The empty circular regions correspond to the cube edges,
which are configurations that would cause disks to overlap
and thus are forbidden.

This is our first free-energy landscape. The colors in Fig. 9
indicate the height of the free-energy landscape, with darker
colors being the minima corresponding to the equilibrium
states. To change states, the system must undergo a real-space
rearrangement that corresponds to moving from a cube face
“up” the energy landscape to one of the corners, and then
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FIG. 9. Free-energy landscape in the variables c1, c2, c3 for sys-
tem size ε = 0.5, projected onto a unit sphere. The blue lines indicate
the axes (c1, etc.) and the red points are contours at 2kBT (the
square-shaped contour) and 4kBT (the stretched contour). The black
regions pierced by the axes correspond to the lowest points in the
landscape (states with highest entropy).

back “down” to a different cube face; one such trajectory is
shown in Fig. 5(f). Given that this is mapped to the surface
of a unit sphere, this landscape is a function of only two
(angular) coordinates, although given the cubical symmetry
it is perhaps more useful to think of this as a function of the
three c’s which have the proper symmetry. Nonetheless, it is
intriguing that the eight original coordinates can be usefully
reduced down to two or three effective coordinates in this
free-energy landscape.

We now consider a second free-energy landscape. Three
dot products can be defined as

q1 = �v12 · �v34, q2 = �v13 · �v42,

q3 = �v14 · �v23. (3)

With these choices, if the four disks are arranged at the corners
of a square of side length s such as in Fig. 4, one of the
dot products will be zero and the other two will be ±s2.
However, states that are reversed are indistinguishable: (1234)
is identical to (4321). Thus, rather than six unique states with
cubical symmetry, there are three unique states with triangular
symmetry. They are (q1, q2, q3) = (s,−s, 0), (−s, 0, s), and
(0, s,−s). In three dimensions, these are the corners of an
equilateral triangle. Given that these three points span a plane,
we can project the data onto a 2D plane by defining three
mutually perpendicular unit vectors:

d̂1 = (+1,−1, 0)/
√

2, d̂2 = (+1,+1,−2)/
√

6,

d̂3 = (+1,+1,+1)/
√

3, (4)

where d̂1 is directed toward the (s,−s, 0) location, d̂2 is cho-
sen to be in-plane and perpendicular to d̂1, and d̂3 = d̂1 × d̂2.
In the plane spanned by d̂1 and d̂2, we define coordinates by
d1 ≡ d̂1 · (q1, q2, q3), d2 ≡ d̂2 · (q1, q2, q3). It turns out that
d̂3 · (q1, q2, q3) = 0, which can be shown by putting in the

FIG. 10. (a) Free-energy landscape in (d1, d2) coordinates for
ε = 0.4. The landscape is bounded by the whitest points. Within
the landscape, darker regions are lower (more probable). The red
contours are at 1kBT, 3kBT , and 5kBT . The center of the landscape
is a broad local maximum with a height of 4.9kBT . (b) Map of the
effective diffusivity at each point in the landscape. The diffusivity
in the center is 1.22 times greater than the diffusivity in the three
darker spots. The diffusivity near the long straight outer edges of the
landscape is 1.48 times greater than the diffusivity in the darker spots.
(c) Free-energy landscape in the (u1, u2) coordinates for ε = 0.4. The
red contours are at 1kBT, 3kBT , 5kBT , and 7kBT . The center of the
landscape has a height of 7.3kBT . (d) Map of the effective diffusivity
at each point in the landscape. The diffusivity in the center is 2.8
times greater than the diffusivity at the dark edges.

definitions of q1, q2, q3 in terms of the original disk positions.
This shows that the coordinates (q1, q2, q3) lie on a plane
rather than filling a three-dimensional region.

A visualization of the 2D (d1, d2) free-energy landscape
is shown in Fig. 10(a). The dark regions are the equilibrium
states, and the brighter regions correspond to higher locations
on the free-energy landscape (lower entropy, and thus the un-
likely transition regions). While this representation collapses
the six equilibrium states into three minima, nonetheless all
transitions are seen in this free-energy landscape as landscape
trajectories from one local minimum to another one. One such
transition is shown in Fig. 5(g).

One final free-energy landscape that is useful to consider
is formed by defining the q variables [Eqs. (3)] using unit
vectors, that is, changing from �v12 to v̂12. The landscape coor-
dinates are then defined using the d̂ vectors given in Eqs. (4),
leading to coordinates (u1, u2) in analogy with (d1, d2). The
landscape for these coordinates is shown in Fig. 10(c). Fig-
ure 5(h) illustrates a trajectory through this landscape.

Crossings through the exact middle of the phase space
[either the (d1, d2) or (u1, u2) phase space] correspond to an
unusual situation in which the transition is equally likely to go
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FIG. 11. The blue circles are ln(τ ), the log of the switching
timescale. The straight line is the same as that shown in Fig. 8.
The diamonds, squares, and triangles indicate the free-energy barrier
height for the u, c, and d free-energy landscape variables, respec-
tively. Uncertainties for all points are smaller than the symbol size.

to any of three different equilibrium states, as shown in Fig. 6.
The disks near the edge of the system become symmetrically
placed around the disk in the center, as shown in Fig. 6(d).
This arrangement allows the central disk to be equally likely
to go to any of the three possible equilibrium states. In the
cubical free-energy landscape of Fig. 9, this configuration cor-
responds to the centers of the corners of the cube [Fig. 6(f)],
where transitions to any of the adjacent three faces are equally
likely.

These three free-energy landscape representations (the c
variables using the cross products, the d variables using the
dot product, and the u variables using the dot product of unit
vectors) illustrate our first point about free-energy landscapes:
Multiple free-energy landscapes can be constructed to repre-
sent the same system. This point was also made in Ref. [21],
which presented two different one-dimensional landscapes for
a system with three hard disks. To an extent this observation
is trivial: even the original coordinate system is arbitrary. One
could use Cartesian (x, y) coordinates to describe the position
of each disk, or polar coordinates (r, θ ). It is reasonable that
likewise a free-energy landscape could be described by differ-
ent coordinates.

However, one fact is intriguing: the different represen-
tations [Fig. 9 and Figs. 10(a) and 10(c)] lead to different
free-energy barrier heights. The barrier heights are plotted in
Fig. 11. The free-energy barrier heights are similar for the
cross products landscape (squares) and the original dot prod-
ucts landscape (triangles), and markedly higher for the unit
vector landscape (diamonds). For the first two, it is clear that
ln(τ ) ∼ FB, that is, the switching timescale grows essentially
exponentially with the barrier height. (The deviation from this
relationship at large ε is due to the large system size where
the disks require more time to diffuse across the system in
order to have a transition [21]. That is, as R gets large, the
disks spend more time farther apart from one another, and
thus the switching time is no longer dominated by the free-
energy barrier.) The free-energy barrier from (u1, u2) is not

FIG. 12. Free-energy landscapes with ε = 0.2 for (a) the (d1, d2)
variables and (b) the (u1, u2) variables. Equivalent points in the two
phase spaces are marked by the red regions (left side of both images)
and the green regions (right side of both images).

only consistently larger than the other two, but it also grows
faster as ε → 0 than the other two barriers.

This brings us to our second point about free-energy
landscapes: The nonlinear mapping used to create free-
energy landscapes can distort the free-energy barrier height.
This is especially true when comparing different free-energy
landscapes. To understand this, consider the mapping from
the original eight-dimensional space to a projected free-
energy landscape. There is some region of the original
eight-dimensional space corresponding to the transition states
between equilibria with size �t , and another region corre-
sponding to the equilibria states of size �e. Figure 12 shows
that these do not map to equivalent proportions of different
landscapes: �t takes up a large portion of the (u1, u2) land-
scape, and �e takes up a small portion, as seen in Fig. 12(b),
denoted by a large red square and a small green rectangle,
respectively. However, they map onto nearly equivalent areas
in the (d1, d2) landscape, as seen in Fig. 12(a). For any given
small region in the central transition region of Fig. 12(b),
there are fewer microstates—the density of microstates per
unit area is lower—and thus the entropic barrier ∼ − ln � is
higher. Also important is that the density of microstates in the
equilibrium region is higher [comparing the green points of
Figs. 12(a) and 12(b)], thus increasing the entropy associated
with those common states for the (u1, u2) landscape, which
further increases the entropic barrier for the rare transition
states.

To be clear, all of these projections are valid and are free-
energy landscapes for the same system—and the switching
time between equilibrium states cannot depend on how we
represent the free-energy landscape. To understand how the
switching time is independent of the free-energy landscape,
we need to understand how diffusive motion occurs on each
landscape. As pointed out by Frenkel [43], the switching time
between two minima is a product of the barrier height and the
time it takes to move across the barrier. The latter is based
on the barrier width and the diffusion rate across that region.
As seen in Figs. 10(a) and 10(c), the barrier is much wider
for the (u1, u2) coordinates as well as taller—but also, the
system diffuses through this region more quickly. This can be
seen by comparing the segment sizes between panels (g) and
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(h) of Fig. 5. Each segment corresponds to 1000 simulation
time steps, and these correspond to larger relative distances in
phase space in Fig. 5(h). The combined influence of barrier
height, barrier width, and diffusion rate through the transition
region is such that the timescale for a transition is the same
for all free-energy landscapes–as it must be. As it happens, the
(c1, c2, c3) and (d1, d2) landscapes have essentially unchang-
ing crossing attempt rates as ε → 0, and thus ln(τ ) ∼ FB stays
true. This suggests that these two landscape representations
are more “useful” to a physicist. To be clear, this discussion
has focused on diffusion; similar comments would apply to
the ballistic dynamics, where a constant real-space velocity
yields different rates of transport in different landscapes.

Effective diffusion rates can vary between landscapes, but
the story of diffusion on a free-energy landscape is more com-
plicated than that. A third point about free-energy landscapes
is that diffusion rates on the free-energy landscape can vary
spatially. This is demonstrated in Figs. 10(b) and 10(d), which
show the effective diffusivity at each point in the landscapes
corresponding to panels (a) and (c). The effective diffusivity
was determined by simulating the system for a long time
(>100 transitions). At each time we save the position that the
system is at in the landscape, and then we measure how much
that position changes in the next simulation time step. The
effective diffusion is measured as the mean square landscape
displacement as a function of the initial coordinate. Recall that
at each time step, disks can move a distance 10−2.5 in any
direction in real space: this is always the same no matter where
the disk is, with the exception of configurations where that
movement is disallowed so that overlaps are avoided. In the
landscape, however, the motion depends on the transformation
from the eight real-space coordinates into the landscape coor-
dinates, and this is nonlinear. The real-space motions result in
a smaller or larger movement within the landscape depend-
ing on the position, as Figs. 10(b) and 10(d) demonstrate.
For example, if all four disks are far from each other, then
slight real-space motions change their relative angles θ by
small amounts. Recall that cross products such as Eqs. (3) are
related to sin θ , and dot products such as Eqs. (4) are related
to cos θ , thus regions of the landscape corresponding to disks
far apart in real space have smaller changes in θ and therefore
have slower landscape motion. Again, while this discussion
is considering diffusive dynamics, similar comments hold for
ballistic dynamics: a constant real-space velocity leads to a
nonconstant velocity through a landscape.

IV. QUANTIFYING THE ENTROPIC BARRIER

Returning to the question of the power-law dependence
of the switching timescale τ on ε seen in Fig. 8, we can
understand this by recognizing that it is an entropic barrier.
Following Ref. [21], the barrier can be quantified by counting
the number of microstates �t available at a transition. A
transition involves three collinear disks: the center disk is the
one passing between the other two, thus defining a swap; see,
for example, Figs. 5(c) and 5(d). If this line is along a diameter
of the system, then the relative positions of each of those three
disks are described by just three coordinates. The length of the
diameter is 6 + 2ε, but as each disk has a diameter of length
2, the amount of free space is 2ε. If one disk was confined

to this much free space, then �t = 2ε. For the three disks,
while they must share this free space, they each have O(ε)
possible positions and thus �t ∼ ε3 for the three of them;
this can be confirmed by an exact calculation [21]. However,
transitions can occur when the disks are along a line other
than the diameter, so long as that line is at least of length
6. The position of that line has O(ε1/2) possibilities, giving
�t ∼ ε7/2 for three disks to make a transition [21]. The fourth
disk, which is not as involved in the transition, nonetheless
needs to be out of the center of the system: the number of
microstates corresponding to this extra degree of freedom is
also proportional to ε, leading to the overall �t ∼ ε9/2.

Compared to this transition state, the number of mi-
crostates �e associated with the equilibrium states is quite
large, and essentially independent of ε when ε 	 1. There-
fore growth of the entropic barrier as ε → 0 is determined
by the ε dependence of �t (related to the transition state).
This argument then suggests an entropic barrier that grows as
FB/kBT = −SBT/kBT ∼ − ln �t ∼ ln ε−9/2. In other words,
the system has to find one of the rare transition microstates
counted by �t as opposed to being in the many microstates
associated with a common configuration. The scarcity of the
transition microstates as ε becomes small is what increases
the entropic barrier, and thus slows down the transition.
There is also a timescale τ0 for attempts to cross the bar-
rier, such that τ = τ0 exp(FB/kBT ) ∼ τ0ε

−9/2. Figure 8 shows
that this relation holds as ε → 0. Note that this argument
of counting the microstates does not depend on defining a
free-energy landscape. Rather, this is a direct counting of
microstates in the original eight-dimensional state space, and
thus it does not have any of the arbitrariness of defining new
coordinates.

V. CONCLUSIONS

We have presented a simple model system comprised of
four disks moving in a small region. This system can be
described by several different free-energy landscapes, with
greater or lesser success. The spherical representation shown
in Fig. 9 has the advantage of emphasizing the symmetry of
the landscape and the existence of six unique local minima.
However, it has the drawback of requiring a 3D represen-
tation, and thus is slightly harder to depict on the printed
page. The simpler triangular landscape of Fig. 10(a) collapses
the six minima into three, with the gained advantage of a
purely 2D representation. A different version of this triangular
landscape, shown in Fig. 10(c), has the disadvantage that
the apparent free-energy barrier height is not as useful for
determining the transition rate between states. These three
landscapes illustrate the main points we have made about
free-energy landscapes: (a) a system does not have “the” free-
energy landscape, but rather multiple free-energy landscapes
can be defined for a given system; (b) different free-energy
landscapes have different apparent barrier heights; and (c)
the different apparent barrier heights are compensated for by
different effective diffusivity rates on different landscapes,
such that the transition rate between states is independent
of the choice of free-energy landscape description. A related
point is that the effective diffusivity rate depends on the loca-
tion in the free-energy landscape. For well-chosen free-energy
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landscapes, and in the limit of small system size, the transition
timescale between states has an Arrhenius scaling depending
on the free-energy barrier height. For simulations with ballis-
tic dynamics, the conclusions about diffusivity map smoothly
to conclusions about the speed of trajectories through the
different landscapes.

One additional point can be made by comparing this four-
disk model with an earlier three-disk model [21]. The earlier
model has free-energy landscapes describable by only one
coordinate, for example �v12 × �v13 [compare with our Eq. (3)].
By adding one disk, we need to add at least one coordinate
in a useful free-energy landscape description. Clearly as we
increase the number of disks (or consider spheres moving
in three dimensions) we will need more coordinates for a
free-energy landscape description. It seems likely that the
number of needed coordinates will scale as the number of
particles N for large N , but exactly how this scaling should
behave for large N is unclear. Nonetheless, it suggests that
one can imagine that a free-energy landscape for N 
 1 can
be described by some space with a dimensionality lower than
the original coordinate space, and the landscape will be highly
symmetric, albeit in some number of dimensions hard to vi-
sualize. It is plausible that explicitly constructed free-energy
landscapes for large systems may be of limited use given that

they are still high-dimensional, as is the original potential
energy landscape. Nonetheless, we note that often authors do
think about free-energy landscapes for hard particle systems
(e.g., [31–33,44,45]), so it is encouraging to think that such
landscapes could, at least hypothetically, be constructed in a
manner such as we have done in this work.

A final comment is that if the particles in a system are
not hard, but interact with some interaction potential, then
the potential energy term U contributes also to the free en-
ergy. This situation is considered elsewhere in the context of
the earlier three-disk model [46], which found that the en-
tropic and energetic contributions to the free-energy landscape
are often comparable. That is, transitions can require both
a thermal fluctuation that allows particles to interact more
strongly and increase U , and also that particles find a rare,
low entropy state. Nonetheless, the main points listed above
for free-energy landscapes will still be true for situations with
nontrivial potential energy.
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