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We explore, employing the renormalization-group theory, the critical scaling behavior of the permutation
symmetric three-vector model that obeys nonconserving dynamics and has a relevant anisotropic perturbation
which drives the system into a nonequilibrium steady state. We explicitly find the independent critical exponents
with corrections up to two loops. They include the static exponents ν and η, the off equilibrium exponent η̃, the
dynamic exponent z, and the strong anisotropy exponent �. We also express the other anisotropy exponents in
terms of these.
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I. INTRODUCTION

Universality exhibited by systems out of equilibrium has
been a prominent object of study in statistical physics, es-
pecially since the formulation of the renormalization-group
(RG) theory [1–4]. A variety of genuine nonequilibrium (NE)
universality classes have been identified and well studied in
the past few decades. The driven diffusive systems [2,5,6] and
the percolation models [7,8] are a few examples. However,
in comparison to equilibrium and near-equilibrium classes
[9,10], genuine nonequilibrium ones remain far less explored.

Driven-diffusive models constitute an important category
that violates the detailed-balance condition. They have been
widely used to describe physical systems, such as fast ionic
conductors [11,12] and traffic jams [13,14], in order to inves-
tigate physics far from equilibrium. A variety of such models
have been explored in the past [5], and they continue to appear
in recent studies, for instance, Bose condensation transition
[15,16] and systems coupled to mutually interacting Lang-
muir kinetics [17]. These are essentially Ising-like models
with anisotropic forces, and many of them exhibit universality
distinct from that of any equilibrium class [18–20]. However,
those models with spatially biased forces that violate detailed
balance even at the long-distance and large-time limit are
mostly the ones that follow conserving dynamics.

Nonconserved Ising-like systems with relevant anisotropic
perturbations are rare, and their critical properties are far
less explored. One such exception can be found in Ref. [21],
wherein a cyclic permutation symmetric three-vector model
with nonconserving dynamics and anisotropic perturbations
was introduced. It was shown that for this model, below the
critical dimension dc = 4, there exists an infrared stable fixed
point at which one of the anisotropic perturbations is relevant,
thus identifying a genuine nonequilibrium universality class.

Though the anisotropic NE fixed point was identified, the
critical behavior of this class has not been investigated. Sec-
ondly, the relevance of the anisotropic term should reflect as
difference in the longitudinal and the transverse power-law
behavior of the correlation functions. Further, unlike other
commonly found Ising-like systems with relevant spatial bias

[18–20,22,23], this model follows nonconserving dynamics.
These factors raise several interesting questions. What are
the similarities and the differences in the critical behavior of
the model from that of the conserved ones? Does the model
exhibit common critical features such as faster decay of lon-
gitudinal fluctuations [5]? Is the critical power-law decay of
the response and the correlation functions spatially biased?

Motivated by these questions, we explore the critical scal-
ing behavior of this class. For this, we look at a simpler
model obtained by replacing the cyclic permutation sym-
metry in the model introduced in Ref. [21] by permutation
symmetry. In other words, we consider the nonconserved
strongly anisotropic permutation symmetric (NSAPS) three-
vector model. It is sufficient to study this model and determine
the critical exponents as it has the same NE fixed point. To this
end, we perform a two-loop RG analysis on this model.

We organize this paper as follows. In Sec. II, we introduce
the NSAPS three-vector model. In Sec. III, we first discuss
the renormalization of the theory and then briefly describe the
computational methods employed in the two-loop calculation.
In Sec. IV, we obtain the critical exponents to two-loop order
in an expansion around the upper critical dimension dc = 4
and then discuss the various critical features of the model.
In Appendix A, the computational methods used in obtaining
and evaluating the Feynman diagrams are detailed, and in
Appendices B to I the relevant one particle irreducible (1PI)
diagrams and their divergences are listed.

II. THE MODEL

The most general field theory for nonconserved N-vector
models subject to anisotropic forces with all the marginal per-
turbations in 4 + 1 dimensions was constructed in Ref. [21].
The theory is written in Martin-Siggia-Rose (MSR) formalism
[24] as

S (φ, φ̃) =
∫

x

[
φ̃a(∂t − ∇2 + r)φa − 1

2Eabcφ̃aφb∂‖φc

+ 1
3! Gabcd φ̃aφbφcφd − T φ̃aφ̃a

]
, (1)
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where x denotes the time and the space coordinates {t, x},∫
x ≡ ∫

dtdd x, φ̃ is the auxiliary field, and T is the noise
strength. The fields φ and φ̃ are functions of x and the repeated
indices are summed over. The G terms are straightforward
generalizations of the φ4 term in the familiar O(n) sym-
metric relaxational models [2,25]. The E terms are genuine
nonequilibrium anisotropic perturbations which violate de-
tailed balance. Such perturbations do not allow the system
to equilibrate at large time, leading to nonequilibrium states
which exhibit several interesting properties [26,27].

It was shown in Ref. [21] that only when the number
of components N = 3 there can be anisotropic perturbations
consistent with a single length scale. In the case of cyclic
permutation symmetry, there are five allowed independent
couplings, namely, G1111, G1122, G1133, E123, and E132. Below
the upper critical dimension dc = 4 this model has an infrared
stable NE fixed point at which the anisotropic coupling E123

and the couplings G1111 and G1122 are relevant, while the cou-
plings G1133 and E132 are irrelevant [21]. Thus, a nonconserved
Ising-like model with a relevant anisotropic perturbation was
constructed, identifying a genuine nonequilibrium universal-
ity class.

If we now restrict to full permutation symmetry, the
NSAPS three-vector model is obtained, where the number
of allowed independent couplings reduces to three, namely,
G1111, G1122, and E123. Note that permutation symmetry does
not distinguish G1133 and E132 from G1122 and E123, respec-
tively. The NSAPS three-vector model has the same infrared
stable fixed point as the cyclic permutation symmetric one
[21]. Therefore, it is sufficient to study the critical scaling
behavior of this model. The MSR action for this simpler case
can be written as

S =
3∑

a=1

∫
x

{
φ̃a[∂t − D(∇2

⊥ + ρ∂2
‖ − r)]φa − T φ̃2

a

+ u0

3!
φ̃aφ

3
a+

u1

2!
φ̃aφa

(
φ2

a+1 + φ2
a+2

) + epφa+1φa+2∂‖φ̃a

}
,

(2)

where u0 ≡ G1111, u1 ≡ G1122, ep ≡ E123, φi+3 ≡ φi, and
φ̃i+3 ≡ φ̃i. We split the ∇2 term into the longitudinal and the
transverse components by introducing the coefficient ρ as the
theory is spatially anisotropic.

By setting φi = φ, for i = 1, 2, and 3, and u1 = u0/(3!)
in Eq. (2), we obtain the one-component model which was
studied by Bassler and Schmittmann [28]. This special case
can be thought of as a coarse-grained model describing parti-
cles hopping on an Ising lattice subject to an anisotropic force,
ep∂‖φ2, where the number of particles is not conserved.

We proceed to perform a two-loop RG analysis on the
NSAPS three-vector model and extract the critical exponents
associated to the response and the correlation functions.

III. RG ANALYSIS

In this section, we first discuss the standard renormaliza-
tion procedure (see, for example, the excellent textbook by
Täuber [2]), and apply it to the NSAPS three-vector model,
where we define the renormalization constants and state the

renormalization conditions. Then we briefly describe the com-
putational techniques employed in the calculation, which are
suitable when the diagrams are numerous. The computational
packages FEYNARTS [29] and FEYNCALC [30,31] are used with
MATHEMATICA [32] to obtain the Feynman diagrams and the
package SECDEC [33] is used for numerical dimensional regu-
larization.

A. Definitions and notations

The effective action is written as

�[ψ, ψ̃] = − lnZ[J, J̃] +
∑

a

∫
x

Ja(x)ψa(x) + J̃a(x)ψ̃a(x),

(3)
where ψ (x) = δ lnZ

δJ (x) , ψ̃ (x) = δ lnZ
δJ̃ (x)

, and the gener-

ating functional for correlation functions Z[J, J̃] =
〈exp

∑
a

∫
x φa(x)Ja(x) + φ̃a(x)J̃a(x)〉. The 1PI diagrams

are obtained by taking the functional derivatives of �:

�
ã1...̃aña1...an
ñ,n (̃x1, ..̃x̃n; x1, ..xn)

=
ñ∏

i=1

δ

δψ̃ãi (̃xi )

n∏
j=1

δ

δψa j (x j )
�[ψ̃, ψ]

∣∣∣∣∣
ψ̃=ψ=0

. (4)

The ultraviolet divergences are absorbed into the renormal-
ization constants Zφ , Zφ̃ , ZD, Zρ , ZT , Z0, Z1, and Zp, and the
bare fields and the bare parameters are written in terms of their
renormalized counterparts as

φa = Zφ
1/2φaR, φ̃a = Zφ̃

1/2φ̃aR, D = ZD

Z
DR,

ρ = Zρ

ZD
ρR, T = ZT

Zφ̃

TR, r = Zr

ZD
μ2rR, (5)

u0 = Z0

ZZφ

u0R, u1 = Z1

ZZφ

u1R, ep = Zp

ZZφ
1/2 epR,

where Z = √
ZφZφ̃ , the subscript R denotes the renormal-

ized quantities, and the factor μ is introduced to make rR

dimensionless. The renormalization constants are fixed by
the following renormalization conditions with the minimal
substraction scheme:

�11
R 1,1(qi = 0) = DRrRμ2, (6)

∂

∂q2
‖
�11

R 1,1(q; q)

∣∣∣∣
q=0

= DRρR, (7)

∂

∂iq0
�11

R 1,1(q; q)

∣∣∣∣
q=0

= 1, (8)

∂

∂q2
⊥

�11
R 1,1(q; q)

∣∣∣∣
q=0

= DR, (9)

�11
R 2,0(qi = 0) = −2TR, (10)

∂

∂iq‖
�123

R 1,2

(
− q,

q

2
,

q

2

)∣∣∣∣
q=0

= epR, (11)

�1111
R 1,3(qi = 0) = u0R, (12)

�1122
R 1,3(qi = 0) = u1R. (13)
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FIG. 1. The straight line represents G0(q) and the dotted line
C0(q). The four-point vertex takes the value u0/6 if i = 0 and u1/2 if
i �= 0. The three-point vertex takes the value iq‖ep. The dotted branch
becomes a straight line when it is hit with an auxiliary field and
remains dotted otherwise. We choose the convention that the external
φ fields hit from the left and the external φ̃ fields hit from the right.
This makes the arrow which is usually attached to the propagator
redundant and is hence not explicitly shown.

B. Diagrammatics and perturbative computation

The unperturbed action in Fourier space is

S =
∑

a

∫
q
φ̃a(−q)[−iq0 + M(q)]φa(q), (14)

where M(q) = D(q⊥2 + ρq2
‖ + r) and

∫
q ≡ 1

(2π )d+1

∫
dq0dq.

The Fourier transform of a function f (x) is defined by the
relation f (x) = ∫

q f (q)e−iq.x , where q.x = q0x0 − q.x. The
subscripts ⊥, ‖, and 0 denote the transverse, the longitudinal,
and the temporal directions, respectively.

The two nonvanishing unperturbed two-point correlations
are

〈φa(q1)φ̃b(q2)〉0 = δabδ̄(q1 + q2)

−iq0 + M(q)
= δabδ̄(q1 + q2)G0(q1),

〈φa(q1)φb(q2)〉0 = 2T
δabδ̄(q1 + q2)

q2
0 + M(q)2

= δabδ̄(q1 + q2)C0(q1),

(15)

where δ̄(q) ≡ (2π )d+1δ(q).
The diagrammatic representations of the two-point Gaus-

sian correlation functions and the perturbations are illustrated
in Fig. 1. With the help of these building blocks, we per-
form the perturbative expansions of the vertex functions to
two loops and extract the divergences. This is implemented
computationally in the following steps.

(1) For a given vertex function, we obtain all the contribut-
ing Feynman diagrams and the corresponding expressions to
two loops using the packages FEYNARTS [29] and FEYNCALC

[30,31]. For this, we first draw all the topologically distinct
irreducible diagrams (topologies) with l external legs that can
be constructed with three-point and four-point vertices to two
loops, where l is determined by the vertex function we evalu-
ate. Then, we draw all possible realizations of the topologies
that can be obtained using the building blocks shown in Fig. 1.
Each such realization (Feynman diagram) corresponds to an
expression of the form

A f

∫
{qi}

p1‖ p2‖ . . . G0(k1)G0(k2) . . .C0(km)C0(km+1) . . . ,

(16)

where {qi} is the set of internal momenta, pi and ki are in
general linear combinations of the internal and the external
momenta, and A f is the overall factor associated with each
diagram.

(2) Derivatives and limits are now applied to isolate the
divergences in the expressions obtained in step 1. Integrating
out qi0s subsequently leads to an expression of the form

B f

∫
{qi}

pm1
1‖ |p2⊥|m2

Mn1
1 Mn2

2 . . .
+ similar terms, (17)

where Mi is either M(ki ) or a sum of M(ki )s. The variables
pi and ki now contain only the internal momenta. Once the
parallel components of qis are scaled appropriately, M(ki )
takes the form of the scalar propagator with a factor D.

(3) The integrals obtained by the above procedure are reg-
ularized by the method of dimensional regularization and the
UV-divergent parts are expanded as

D̂
(∫

{qi}

p1
m1
‖ |p2⊥|m2

Mn1
1 Mn2

2 . . .

)
= ω1

ε2
+ ω2

ε
, (18)

where the operator D̂ is defined such that D̂ acting on an
integral gives the poles of the corresponding dimensionally
regularized integral, the parameter ε = 4 − d , and ω1 and ω2

are real numbers. This step is implemented with the help of
the package SECDEC [33–35].

The above steps are elucidated with the help of an example
in Appendix A.

(4) Once all the diagrams contributing to a given vertex
function are evaluated and the divergences are obtained in
negative powers of ε, we apply the renormalization conditions
with the minimal subtraction scheme to obtain the renormal-
ization constants.

The divergent 1PI Feynman diagrams contributing to the
various relevant vertex functions and the renormalization con-
stants are given in Appendices B to I.

There are 11 distinct divergent Feynman diagrams con-
tributing to the various relevant vertex functions at the
one-loop order. The presence of both three-point and four-
point vertices enhances the number of diagrams at the
two-loop order enormously, where the number rises to 319.
In the absence of the four-point vertices, the total number
of two-loop diagrams reduces to 27, while in the absence
of the three-point vertices the total number of two-loop di-
agrams reduces to 19. For instance, there are 25 two-loop
diagrams contributing to �11

1,1(−q; q), as shown in Fig. 4, of
which only six diagrams (diagrams 10 to 15) are constructed
with three-point vertices alone, while only two diagrams
(diagrams 20 and 25) are constructed with four-point ver-
tices alone. Similarly, of the 83 diagrams contributing to

∂
∂iq‖

�123
1,2(−q,

q
2 ,

q
2 )|

q=0
, shown in Table X, only 21 dia-

grams (diagrams 14 to 25 and 73 to 81) are constructed with
three-point vertices alone, while none is constructed with
four-point vertices alone. Of the 94 diagrams contributing
to �1111

1,3 (qi = 0), shown in Table XIII, none is constructed
with three-point vertices alone, while only eight diagrams
(diagrams 47 to 53 and 94) are constructed with four-point

062150-3



RAJIV G. PEREIRA PHYSICAL REVIEW E 102, 062150 (2020)

TABLE I. The critical exponents of the NSAPS three-vector
model and the standard model [5,22]. For the standard model, the
upper critical dimension d̄c = 5, and the exponents are for dimen-
sions d < d̄c. Exp. stands for exponents.

Exp. NSAPS Standard model

ν⊥ 0.5 + 0.192308ε + 0.0955914ε2 0.5
ν‖ 0.5 + 0.26923075ε + 0.121763995ε2 1 + ε̄/6
z⊥ 2 − 0.0164001ε2 4
z‖ 2 − 0.307691ε + 0.044589276ε2 12/(6 + ε̄)
γ⊥ 1 + 0.384616ε + 0.17021575ε2 1
γ‖ 1 + 0.384616ε + 0.17021575ε2 −ε̄/3
ηMS

⊥ 0.0419341ε2 0
ηMS

‖ 0.307691ε − 0.019055276ε2 (6 + 2ε̄)/(6 + ε̄)

ηRS
⊥ 0.1538455ε + 0.03510785ε2 1 + ε̄/3

ηRS
‖ −0.1538455ε + 0.072428788ε2 (3 − d )(3 + ε̄)/(6 + ε̄)

vertices alone. Of the 116 diagrams contributing to �1122
1,3 (qi =

0), shown in Table XVI, none is constructed with three-point
vertices alone and only eight diagrams (diagrams 67 to 73
and 116) are constructed with four-point vertices alone. The
only diagram contributing to �11

2,0(0), shown in Table VIII, is
constructed with four-point vertices alone.

IV. THE CRITICAL EXPONENTS OF THE NSAPS
THREE-VECTOR MODEL

We proceed to write down and solve the RG equation to
obtain the scaling form of the vertex functions at the NE
fixed point as the temperature approaches the critical value.
In particular, we analyze the scaling behavior of the dynamic
structure factor and the dynamic susceptibility and extract the
exponents associated with them.

For notational simplicity, the subscript R is suppressed in
this section, and the following dimensionless couplings are

employed:

λ0 = 1

8π2

T

D2ρ1/2
u0μ

−ε,

λ1 = 1

8π2

T

D2ρ1/2
u1μ

−ε,

λ2 = 1

8π2

T

D3ρ3/2
ep

2μ−ε . (19)

The beta functions are

βi = μ
dλi

dμ
, (20)

for i = 0, 1, and 2, and Wilson’s flow functions are

γφ = −μ
∂

∂μ
ln Zφ, γφ̃ = −μ

∂

∂μ
ln Zφ̃ , γD = μ

∂

∂μ
ln D,

γρ = μ
∂

∂μ
ln ρ, γT = μ

∂

∂μ
ln T, γr = μ

∂

∂μ
ln r, (21)

where the derivatives are to be taken keeping the bare param-
eters and couplings constant. Since all the UV divergences
can be absorbed into the eight renormalization constants Zφ ,
ZD, Zρ , ZT , Zr , Z0, Z1, and Zp, the auxiliary field renor-
malization constant Zφ̃ is set to unity, which implies that
γφ̃ = 0.

We now write down the RG equation, which follows from
the fact that the bare vertex functions are independent of μ:[

μ
∂

∂μ
+ γφ

n

2
+

∑
i

γsi si
∂

∂si
+

∑
i

βi
∂

∂λi

]
× �ñ,n(qi, si, λi, μ) = 0, (22)

where qi denotes the external momenta and si denotes the
elements of the set of parameters {D, ρ, T, r}.

The beta functions are obtained by using the renormaliza-
tion constants given in Appendices B to I, in Eqs. (B3), (C1),
(D1), (E1), (F1), (G1), (H1), and (I1), together with Eq. (20),
and are explicitly written as

β0 = −ελ0 + 1.5λ2
0 + 3λ2

1 + 0.375λ0λ2 − 1.41 667λ3
0 − 6λ3

1 + 0.3 36 482λ2λ
2
0 − 2.5λ2

1λ0 + 0.156 108λ2
2λ0

− 0.3 41 841λ0λ1λ2 − 0.01 63 937λ1λ
2
2 + 0.9 91 439λ2

1λ2,

β1 = −ελ1 + 2.5λ2
1 + λ0λ1 + 0.375λ1λ2 − 4.5λ3

1 − 0.03 59 603λ2
0λ2 − 3λ0λ

2
1 + 0.7 00 121λ2λ

2
1 − 0.4 16 667λ2

0λ1

+ 0.1 58 841λ2
2λ1 + 0.1 35 281λ0λ2λ1 − 0.00 14 9424λ0λ

2
2,

β2 = −ελ2 + 1.125λ2
2 + 3.5λ1λ2 + 0.4 75 028λ3

2 − 0.1 81 794λ0λ
2
2 + 1.38 638λ1λ

2
2 + 0.125λ2

0λ2 − 4.05 652λ2
1λ2

− 2.90 455λ0λ1λ2. (23)

Similarly, we obtain Wilson’s flow functions by using the renormalization constants given in Appendices B to I together with
Eq. (21) and they are explicitly written as

γφ = −0.1 43 841λ2
0 − 0.8 63 046λ2

1,

γD = −0.04 16 667λ2
0 − 0.25λ2

1 − 0.025 463λ1λ2,

γρ = −0.75λ2 − 0.04 16 667λ2
0 − 0.25λ2

1 − 0.3 12 217λ2
2 − 0.3 08 408λ1λ2, (24)

γT = −0.07 19 205λ2
0 − 0.4 31 523λ2

1,

γr = −2 + 0.5λ0 + λ1 − 0.25λ2
0 − 1.5λ2

1 + 0.1 12 161λ2λ0 + 0.2 24 321λ1λ2.

062150-4



CRITICAL DYNAMICS OF THE NONCONSERVED STRONGLY … PHYSICAL REVIEW E 102, 062150 (2020)

The set of equations

βi = 0 (25)

leads to the critical points. For ε < 0, the equilibrium Gaus-
sian fixed point is stable. For ε > 0, the following NE fixed
point is stable:

λ0
∗ = 0.4 61 538ε + 0.1 73 639ε2,

λ1
∗ = 0.1 53 847ε + 0.08 37 608ε2, (26)

λ2
∗ = 0.4 10 255ε − 0.1 33 947ε2,

where the superscript ∗ denotes the fixed point values of the
couplings λi. The above result agrees with the one-loop cal-
culations in Ref. [21] to that order. By substituting Eq. (26)
in Eq. (24), we further obtain Wilson’s flow functions at this
fixed point as

γD
∗ = −0.01 64 001ε2,

γρ
∗ = −0.3 07 691ε + 0.01 36 525ε2,

γr
∗ = −2 + 0.3 84 616ε + 0.1 17 218ε2,

γT
∗ = −0.0 25 534ε2,

γφ
∗ = −0.0 51 068ε2. (27)

We now solve the RG equation (22) using the method of
characteristics (see, for instance, Ref. [2]). To this end, we de-
fine μ′(σ ) = μσ , where σ is a dimensionless real parameter,
and introduce the running parameters s′

i(σ ) and the couplings
λ′

i(σ ) which respect the following relations:

σ
ds′

i(σ )

dσ
= s′

i(σ )γsi (σ ), s′(1) = si, (28)

σ
dλ′

i(σ )

dσ
= λ′(σ )βi(σ ), λ′(1) = λi. (29)

The RG equation (22) together with the above relations yields

�ñ,n(qi, si, λi, μ)

= exp

(∫ σ

1

dσ ′

σ ′
n

2
γφ (σ )

)
�ñ,n(qi, s′

i(σ ), λ′
i(σ ), μσ ). (30)

At the fixed points, the solution to Eq. (28) gives simple
power-law behavior, and at the NE fixed point we obtain

s′
i(σ ) ≈ si σ

γ ∗
si . (31)

Using the above result in Eq. (30), we obtain the critical
scaling form of the vertex functions at the NE fixed point:

�ñ,n(qi, si, μ) = σ
n
2 γ ∗

φ �ñ,n
(
qi, si σ

γ ∗
si , μσ

)
, (32)

where we have not shown the arguments of � which are not
affected by rescaling. In the limit r → 0, the parameter σ

scales as σ ∝ r−1/γ ∗
r , as can be seen from Eq. (31).

From Eq. (32) the scaling forms of the dynamic structure
factor S(q, t ) = ∫

q0
e−iq0t�2,0(q)/|�1,1(q)|2 and the dynamic

susceptibility χ (q) = 1/�1,1(q) follow as

S(q⊥, q‖, t, r)

= σ−2+γ ∗
T −γ ∗

φ −γ ∗
D S

(
q⊥
σ

,
q‖

σ 1−γ ∗
ρ /2 , tσ 2+γ ∗

D ,
r

σ−γ ∗
r

)
, (33)

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

Ex
po
ne
nt
s

η
Δ
z
ν
η

FIG. 2. The independent exponents of the NSAPS three-vector
model as a function of ε.

χ (q⊥, q‖, t, r)

= σ−2−γ ∗
φ /2−γ ∗

Dχ

(
q⊥
σ

,
q‖

σ 1−γ ∗
ρ /2 , tσ 2+γ ∗

D ,
r

σ−γ ∗
r

)
. (34)

Comparing Eqs. (33) and (34) with the standard scaling forms
[5],

S(q⊥, q‖, t, r) = σ−2+η S

(
q⊥
σ

,
q‖

σ 1+�
, tσ z,

r

σ 1/ν

)
, (35)

χ (q⊥, q‖, t, r) = σ−z+η̃/2+η/2 χ

(
q⊥
σ

,
q‖

σ 1+�
,

q0

σ z
,

r

σ 1/ν

)
,

(36)

we obtain the exponents

η = γ ∗
T − γ ∗

D − γ ∗
φ = 0.0 419 341ε2,

� = −γ ∗
ρ /2 = 0.1 538 455ε − 0.00 682 625ε2,

z = 2 + γ ∗
D = 2 − 0.0 164 001ε2,

ν = −1/γ ∗
r = 0.5 + 0.1 92 308ε + 0.09 55 914ε2,

η̃ = γ ∗
D − γ ∗

T = 0.00 91 339ε2, (37)
which are correct to second order in ε. A graph showing the
behavior of these exponents as a function of ε is given in
Fig. 2. As ε increases the exponents are, of course, expected
to deviate from the exact values significantly.

The other standard anisotropy exponents [5] can be written
in terms of the above five exponents. The transverse and the
longitudinal dynamic exponents are

z⊥ = z, z‖ = z/(1 + �). (38)

The significance of these exponents can be realized by consid-
ering the scaling form of the dynamic structure factor given in
Eq. (35). Choosing the parameter σ = t−1/z and substituting
in Eq. (35) yields

S(q⊥, q‖, t ) = f (q⊥t1/z⊥ , q‖t1/z‖ ). (39)

This implies that the transverse length scale behaves with
time as 〈|l⊥|〉 ∝ t1/z⊥ . Using Eqs. (37) and (38) we obtain
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explicitly 1/z⊥ = 1/2 + 0.0 04 10 003ε2. Clearly, the higher
order correction to the the dynamic exponent z shows that the
spread of fluctuations in the transverse direction is superdif-
fusive. This is a contrasting feature when compared to the
familiar O(n)-symmetric model A. There the dynamic expo-
nent z = 2 + 0.3 63 046(n + 2)ε2/(n + 8)2 or 1/z = 1/2 −
0.09 07 615(n + 2)ε2/(n + 8)2, where n is the number of
field components [10], indicating a subdiffusive spread of
fluctuations.

Again, from Eq. (39), we deduce that the longitudinal
length scale behaves with time as 〈l‖〉 ∝ t1/z‖ . Using Eqs. (37)
and (38) we infer that fluctuations spread superdiffusively
in the longitudinal direction too. However, it spreads faster
in this direction than in the transverse direction as z‖ < z⊥.
This speeding up of fluctuations in the direction of the bias is
also observed in several of the conserved models with strong
anisotropy [5,19,22,36]. For instance, in the case of the so-
called standard model [5], z⊥ = 4 and z‖ = 12/(6 + ε̄), where
ε̄ = 5 − d . Clearly, z‖ < z⊥, indicating that fluctuations decay
faster in the longitudinal direction than in the transverse di-
rection. A comparison of the critical exponents of the NSAPS
three-vector model to those of the standard model is given in
Table I.

Unlike the standard model, and the other strongly
anisotropic conserved models [5,19,22,36], where the spread
of fluctuations is superdiffusive in the longitudinal direc-
tion and subdiffusive in the transverse direction, here, it is
superdiffusive in the transverse as well as the longitudinal
directions.

We now discuss the correlation length exponents. The
transverse correlation length exponent ν⊥ = ν, while the lon-
gitudinal correlation length exponent ν‖ = ν(1 + �). As the
strong anisotropy exponent � > 0, ν‖ > ν⊥. This implies that
the longitudinal correlation length diverges faster than the
transverse correlation length as the temperature approaches
the critical value. As a result, near the critical point, corre-
lations extend over a larger length scale in the longitudinal
direction than in the transverse direction. The analogous
conserved models also exhibit this feature. For the standard
model, ν⊥ = 1/2 and ν‖ = 1 + ε̄/6 [5,22]. Clearly, ν‖ > ν⊥,
implying the feature in question.

There are four η-like exponents, two in the momentum
space, and two in the real space. The two momentum space
η-like exponents, ηMS

⊥ = η and ηMS
‖ = (η + 2�)/(1 + �), de-

termine the anisotropic power-law behavior of the dynamic
structure factor in momentum space and the two real space
η-like exponents, ηRS

⊥ = η + � and ηRS
‖ = (η − �)/(1 + �),

determine the anisotropic power-law behavior of the dynamic
structure factor in real space. The values of these exponents,
obtained by substituting Eq. (37) in the above relations, are
given in Table I.

The significance of the η-like exponents can be realized
by considering the momentum space dynamic structure factor
at two different limits, restricting to the case of t = 0 for
convenience. From Eq. (35) we deduce that the transverse and
the longitudinal structure factors scale as

S⊥ ≡ S(q⊥ → 0, q‖ = 0) ∼ |q⊥|−2+ηMS
⊥ ,

S‖ ≡ S(q⊥ = 0, q‖ → 0) ∼ q
−2+ηMS

‖
‖ . (40)

From the values given in Table I we observe that ηMS
‖ > ηMS

⊥ ,
implying that near the critical point the longitudinal structure
factor is less dominant than the transverse one in the long
wavelength limit. This is also the case with the standard
model [5,22]. For model A and other isotropic models there
is, of course, no distinction between the transverse and the
longitudinal ones.

Unlike equilibrium models, here the scaling behavior of
the susceptibility cannot be extracted from the structure factor
[5]. The transverse and the longitudinal susceptibilities scale
as χ⊥ ∼ r−γ⊥ and χ‖ ∼ r−γ‖ , where χ⊥ ≡ χ (q⊥ → 0, q‖ =
0) and χ‖ ≡ χ (q⊥ = 0, q‖ → 0). From Eq. (36) we obtain

γ⊥ = γ‖ = ν(z − η̃/2 − η/2). (41)

As opposed to the strongly anisotropic models that follow
conserving dynamics, the susceptibility exponents γ⊥ and γ‖
are equal [5,19,22,36].

To summarize, we studied the critical scaling behavior
of the NSAPS three-vector model, which belongs to a new
genuine nonequilibrium universality class. We obtained the
critical exponents, which characterize the anisotropic power-
law behavior of the dynamic structure factor and the dynamic
susceptibility, to two-loop order. Among them is the important
strong anisotropy exponent � that captures the effects of the
spatially biased drive. We briefly mentioned the similarities
and the dissimilarity in the critical behavior of the model to
that of strongly anisotropic models that follow conserving
dynamics.
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FIG. 3. All possible irreducible two-loop topologies with two
external lines constructible with three-point and four-point vertices.
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APPENDIX A: GENERATING AND EVALUATING FEYNMAN DIAGRAMS: AN EXAMPLE

To obtain the Feynman diagrams that contribute to a vertex function, we first draw all the relevant topologies. For instance,
to obtain the two-loop Feynman diagrams contributing to �11

1,1, we draw all the distinct irreducible two-loop topologies with two
external legs that can be constructed with three-point and four-point vertices, as shown in Fig. 3. Any two-loop contribution to
�11

1,1 must be topologically similar to one of these diagrams. Now, we use the building blocks shown in Fig. 1 to construct all the
possible realizations of these topologies. This leads to the Feynman diagrams shown in Fig. 4.

Each of the diagrams in Fig. 4 corresponds to an expression that is of the form given in Eq. (25). For instance, diagram 22
corresponds to

I22 = 12T 2u0e2
p

∫
q1,q2

(q1‖ + q2‖)q2‖C0(q1)C0(q1 + q2)G0(−q1 − q2)G0(−q2).

All the above steps were implemented in MATHEMATICA [32] with the help of FEYNCALC [30,31] and FEYNARTS [29].
We can now proceed to extract the divergences. For instance, setting the external momenta to zero we obtain the quadratically

divergent part which renormalizes the mass parameter r. The above integral does not depend on the external momenta and
remains unchanged. Integrating out q10 and q20 from the above integral and making the transformation, {qi⊥,

√
ρqi‖} →

{√rqi⊥,
√

rqi‖}, we obtain

I22 = 3

2

T 2u0e2
p

D4ρ2
rd−3

∫
q1,q2

(q1‖ + q2‖)q2‖
N (q1)N (q1 + q2)2[N (q1) + N (q2) + N (q1 + q2)]

(A1)

where N (q) = q2 + 1. The UV-divergent parts of the above integral are expanded in powers of 1
ε

by employing the dimensional
regularization scheme with the help of the package SECDEC [33–35]:

D̂
(∫

q1,q2

q1‖q2‖
N (q1)N (q1 + q2)2[N (q1) + N (q2) + N (q1 + q2)]

)
= 1

256π4

(
0.125

ε2
− 0.563592

ε

)
and

D̂
(∫

q1,q2

q2
2
‖

N (q1)N (q1 + q2)2[N (q1) + N (q2) + N (q1 + q2)]

)
= 1

256π4

(
−0.75

ε2
+ 0.290792

ε

)
. (A2)

Equation (A1) together with Eq. (A2) gives the UV-divergent parts of diagram 22:

D̂(I22) = − 3

512π4

T 2u0e2
p

D4ρ2
rd−3

(
0.625

ε2
+ 0.2728

ε

)
. (A3)

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25

FIG. 4. Two-loop Feynman diagrams contributing to �11
1,1(q).
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TABLE II. One-loop contribution to �11
1,1(0).

APPENDIX B: �11
1,1(0)

Table II shows the only one-loop diagram contributing to �11
1,1(0) and its divergent contribution. The divergent parts of the

two-loop diagrams contributing to �11
1,1(0) have the general form

D̂(I (q = 0)) = r1−εDA
(

n

ε
+ m

ε2

)
(B1)

where I is the integral that a diagram represents and n and m are real numbers. The factor A is a function of the modified
couplings

g0 ≡ T

8π2D2ρ1/2
u0, g1 ≡ T

8π2D2ρ1/2
u1, andg2 ≡ T

8π2D3ρ3/2
e2

p. (B2)

Table III shows the two-loop diagrams and their respective contributions.
Collecting the divergences from all the diagrams shown in Tables II and III and applying the renormalization condition (6) we

obtain the renormalization constant Zr . In terms of the dimensionless renormalized couplings λi, which are defined in Eq. (19),
Zr can be written explicitly as

Zr = 1 + 1

ε

(
λ1 + 0.5λ0 − 0.125λ2

0 − 0.75λ2
1 + 0.05 60 803λ0λ2 + 0.1 12 161λ1λ2

)
+ 1

ε2

(
0.5λ2

0 + 2.5λ2
1 + λ0λ1 + 0.09 375λ0λ2 + 0.1875λ1λ2

)
. (B3)

APPENDIX C: ∂

∂q2‖
�11

1,1(q)|q=0

Table IV shows the only one-loop diagram contributing to ∂

∂q2
‖
�11

1,1(q)|q=0 and its divergent contribution.

The divergent parts of the two-loop diagrams contributing to ∂

∂q2
‖
�11

1,1(q)|q=0 have the general form r−εDρA( n
ε

+ m
ε2 ). Table VII

shows these diagrams and their respective divergences. Collecting the divergences from all the diagrams given in Tables IV

TABLE III. Two-loop contributions to �11
1,1(0).

Diagram A, n, m Diagram A, n, m

g1g2,−0.1364,−0.3125 (g0 + 2g1) g2,−0.0341,−0.078125

g1g2,−0.133328,−0.125 (g0 + 2g1) g2, 0.0846443, 0.0625

g1g2, 0.269728, 0.4375 (g0 + 2g1) g2,−0.0341,−0.078125

(g0 + 2g1)
2, 0.0193039,−0.25 g2

0 + 6g2
1 ,−0.230696,−0.25
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TABLE IV. One-loop contribution to ∂

∂q2
‖
�11

1,1(q)|q=0.

Diagrams Divergence in ε-expansion

−r−ε/2Dρg2
0.75

ε

and VII and applying the renormalization condition (7) yields

Zρ = 1 + 1

ε

(−0.75λ2 − 0.02 08 333λ2
0 − 0.125λ2

1 − 0.156 109λ2
2 − 0.154 204λ1λ2

) + 1

ε2

(−0.140 625λ2
2 − 1.3125λ1λ2

)
.

(C1)

APPENDIX D: ∂
∂iq0

�1,1(q)|q=0

There is no one-loop contribution to ∂
∂iq0

�1,1(q)|q=0. The divergent parts of the two-loop diagrams have the general form
r−εA( n

ε
+ m

ε2 ). Table V shows these diagrams and their respective divergences. Collecting the divergences from all the diagrams
given in Table V and applying the renormalization condition (8) yields

Z = 1 + 1

ε

(−0.0 359 603λ2
0 − 0.2 157 62λ2

1

)
. (D1)

TABLE V. Two-loop contributions to ∂

∂iq0
�1,1(q)|q=0.

Diagram A, n, m Diagram A, n, m

g1g2, 0.0172122,−0.0468752 g1g2,−0.00208572, 0.0468752

g1g2,−0.01512692, 0 g2
0 + 6g2

1 ,−0.03596025, 0

APPENDIX E: ∂

∂q2⊥
�11

1,1(q)|q=0

There is no one-loop contribution to ∂

∂q2
⊥
�11

1,1(q)|q=0. The divergent parts of the two-loop diagrams have the general form

r−εDA( n
ε

+ m
ε2 ). Table VI shows these diagrams and their respective divergences. Collecting the divergences from all the

diagrams given in Table VI and applying the renormalization condition (9) yields

ZD = 1 + 1

ε

(−0.02 08 333λ2
0 − 0.125λ2

1 − 0.01 27 315λ1λ2
)
. (E1)

TABLE VI. Two-loop contributions to ∂

∂q2
⊥
�11

1,1(q)|q=0.

Diagram A, n, m Diagram A, n, m

g1g2,−0.00224807,−0.03125 g1g2,−0.0000398716, 0.03125

g1g2,−0.01044354, 0 g2
0 + 6g2

1 ,−0.0208333, 0
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TABLE VII. Two-loop contributions to ∂

∂q2
‖
�11

1,1(q)|q=0.

Diagram A, n, m Diagram A, n, m

g0g2 + 2g1g2,−0.0520833, 0 g2
2 ,−0.00835706, 0.0234375

g0g2 + 2g1g2,−0.09375, 0 g2
2 , 0.0020853,−0.046875

g0g2 + 2g1g2,−0.0416667, 0 g2
2 ,−0.0180942, 0.0234375

g1g2,−0.306357, 0.375 g2
2 , 0.018626,−0.0117188

g1g2, 0.143841, 0 g2
2 ,−0.0401051, 0.0234375

g1g2, 0.0875039,−0.09375 g2
2 ,−0.0283968, 0

g1g2,−0.216176, 0.1875 g2
2 ,−0.0580853, 0.0234375

g1g2,−0.0313306, 0 g2
2 ,−0.0794423, 0.09375

g1g2,−0.000119615, 0.09375 g1g2,−0.370412, 0.75

g2
2 ,−0.0180942, 0.0234375 g2

0 + 6g2
1 ,−0.0208333, 0

g2
2 , 0.0160218,−0.0117188 - -
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TABLE VIII. Two-loop contribution to �11
2,0(q)|q=0.

Diagram Divergence

r−εT
g2
0
6

+ g2
1

0.4315235
ε

APPENDIX F: �11
2,0(q)|q=0

There is no one-loop contribution to �11
2,0(q)|q=0. The only two-loop contribution is given in Table VIII.

Collecting the divergence from the diagram given in Table VIII and applying the renormalization condition (10) yields

ZT = 1 + 1

ε

(−0.03 59 603λ2
0 − 0.2 15 762λ2

1

)
. (F1)

APPENDIX G: ∂
∂iq‖ �123

1,2(−q, q
2 , q

2 )|q=0

Table IX shows the one-loop diagrams contributing to ∂
∂iq‖

�123
1,2(−q,

q
2 ,

q
2 )|

q=0
and their respective divergent contributions.

The divergent parts of the one-loop diagrams have the general form r−ε/2epA( n
ε

).
As the first and the second diagrams in Table IX cancel each other there is no g2 contribution to the renormalization constant

Zp at the one-loop order.
Table X shows the two-loop diagrams contributing to ∂

∂iq‖
�123

1,2(−q,
q
2 ,

q
2 )|

q=0
.

The divergent contributions of the above diagrams to ∂
∂iq‖

�123
1,2(−q,

q
2 ,

q
2 )|

q=0
have the general form, r−εepA( n

ε
+ m

ε2 ). The

parameters A, n, and m for each of the above diagrams are listed against their respective diagram numbers in Table XI.
Collecting the divergences from all the diagrams given in Tables IX and X and applying the renormalization condition (11)

yields

Zp = 1 + 1

ε

(
1.75λ1 − 1.20 163λ2

1 + 0.00 167 566λ2
2 − 0.7 26 138λ0λ1 + 0.2 21 394λ1λ2 − 0.04 54 484λ0λ2

)
+ 1

ε2

(
3.71 875λ2

1 + 0.875λ0λ1 + 0.3 28 125λ1λ2
)
. (G1)

TABLE IX. One-loop contributions to ∂

∂iq‖
�123

1,2(−q,
q
2 ,

q
2 )|

q=0
.

Diagram A, n Diagram A, n Diagram A, n Diagram A, n

g2, 0.125 g2,−0.125 g1, 1 g1, 0.75
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TABLE X. Two-loop contributions to ∂

∂iq‖
�123

1,2(−q,
q
2 ,

q
2 )|

q=0
.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83
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TABLE XI. Divergent contributions of the diagrams shown in Table X.

No. A n m

1 (g0 + 2g1)g2 −0.00899006 0
2 (g0 + 2g1)g2 −0.0132699 0
3 (g0 + 2g1)g2 −0.0359603 0
4 (g0 + 2g1)g2 0.0201779 −0.03125
5 (g0 + 2g1)g2 0.00427981 0
6 (g0 + 2g1)g2 0.0206083 −0.03125
7 (g0 + 2g1)g2 0.0359603 0
8 (g0 + 2g1)g2 −0.0540561 0.0625
9 (g0 + 2g1)g2 0.0125967 −0.0117188
10 (g0 + 2g1)g2 0.000396799 −0.0117188
11 (g0 + 2g1)g2 −0.0297559 0.0117188
12 (g0 + 2g1)g2 0.00759028 −0.0117188
13 (g0 + 2g1)g2 −0.00502626 0.0234375
14 g2

2 0.00328934 −0.00390625
15 g2

2 −0.0160106 0.015625
16 g2

2 −0.00344199 0
17 g2

2 −0.000192796 0.0078125
18 g2

2 0.00208366 −0.0078125
19 g2

2 0.0137743 −0.0117188
20 g2

2 −0.0216832 0.015625
21 g2

2 0.00586539 −0.0078125
22 g2

2 0.0123075 0
23 g2

2 −0.000657054 0.0078125
24 g2

2 −0.0160893 0
25 g2

2 0.019079 −0.015625
26 g1(2g0 + 3g1) 0.127185 −0.25
27 g1(2g0 + 3g1) −0.107881 0
28 g1(g0 + 2g1) −0.00449503 0
29 g1(g0 + 2g1) −0.00449503 0
30 g1(2g0 + 3g1) −0.0492301 0
31 g1(2g0 + 3g1) 0.089859 −0.09375
32 g1(2g0 + 3g1) −0.0398513 −0.09375
33 g2

1 0.0302539 0
34 g2

1 0.209432 −0.28125
35 g2

1 0.00417054 −0.09375
36 g1(g0 + 2g1) −0.0230808 0
37 g1(g0 + 2g1) 0.09375 0
38 g1(g0 + 2g1) 0.0520833 0
39 g2

1 0.306357 −0.375
40 g2

1 −0.143841 0
41 g2

1 −0.0875039 0.09375
42 (g0 + 2g1)g2 −0.03125 0
43 (g0 + 2g1)g2 0.015625 0
44 (g0 + 2g1)g2 0.015625 0
45 g1g2 0.103402 −0.125
46 g1g2 −0.103402 0.125
47 g1g2 −0.0901321 0.125
48 g1g2 0.0719206 0
49 g1g2 0.0875039 −0.09375
50 g1g2 0.126092 −0.125
51 g1g2 −0.0719206 0
52 g1g2 −0.0609641 0.09375
53 g1g2 0.0875039 −0.09375
54 g1g2 0.0719206 0
55 g1g2 0.0609641 −0.09375
56 g1g2 0.0201779 −0.03125
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TABLE XI. (Continued.)

No. A n m

57 g1g2 0.00690802 −0.03125
58 g1g2 −0.0132699 0
59 g1g2 −0.0138161 0.0625
60 g1g2 0.0854314 −0.0820313
61 g1g2 −0.0333353 0.046875
62 g1g2 −0.0121528 0
63 g1g2 −0.0115466 0.0351563
64 g1g2 0.105484 −0.09375
65 g1g2 0.00600193 −0.0234375
66 g1g2 0.0283968 0
67 g1g2 0.0140635 −0.0234375
68 g1g2 0.0361885 −0.046875
69 g1g2 −0.0160218 0.0117188
70 g1g2 −0.00208526 0.046875
71 g1g2 0.0135654 −0.0234375
72 g1g2 −0.018626 0.0117187
73 g2

2 0.00806154 0
74 g2

2 −0.00471026 0
75 g2

2 0.00378175 0
76 g2

2 −0.00378175 0
77 g2

2 0.0445327 −0.0351563
78 g2

2 0.0217619 0
79 g2

2 0.0274811 −0.0351563
80 g2

2 −0.0757955 0.0703125
81 g2

2 −0.0179801 0
82 g2

1 0.577216 −1
83 g2

1 0.370412 −0.75

APPENDIX H: �1111
1,3 (0)

Table XII shows the one-loop diagrams contributing to �1111
1,3 (0) and their respective divergent contributions. The divergent

part of the one-loop diagrams have the general form r−ε/2u0A( n
ε

).
As the first two diagrams in Table XII cancel each other there is no g2 contribution to the renormalization constant Z0 at the

one-loop order. Table XIII shows the two-loop diagrams contributing to �1111
1,3 (0).

The divergent contributions of the above diagrams to �1111
1,3 (0) have the general form r−εu0A( n

ε
+ m

ε2 ). The parameters A, n,
and m for each of the above diagrams are listed against their respective diagram numbers in Table XIV.

Collecting the divergences from all the diagrams given in Tables XII and XIII and applying the renormalization condition
(12) yields

Z0 =1 + 1

ε

(
1.5λ0 − 0.75λ2

0 − 1.5λ2
1 − 0.26 712λ1λ2 + 0.1 68 241λ0λ2 − 3λ3

1

λ0
+ 0.49 572λ2λ

2
1

λ0
+ 3λ2

1

λ0
− 0.0 08 19 685λ2

2λ1

λ0

)
+ 1

ε2

(
2.25λ2

0 + 7.5λ2
1 − +0.28 125λ0λ2 + 7.5λ3

1

λ0
+ 0.5625λ2λ

2
1

λ0

)
. (H1)

TABLE XII. One-loop contributions to �1111
1,3 (0).

Diagram A, n Diagram A, n Diagram A, n

g1g2
g0

, 0.75 g1g2
g0

,−0.75 g0 +
2g2

1
g0

, 1.5
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TABLE XIII. Two-loop diagrams contributing to �1111
1,3 (0).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94
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TABLE XIV. Divergent contributions of the diagrams shown in Table XIII.

No. A n m

1
g2

1g2

g0
−0.0796192 0

2
g2

1g2

g0
0.170381 0

3
g2

1g2

g0
0.0128394 0

4
g2

1g2

g0
−0.0539404 0

5
g2

1g2

g0
0.0582202 0

6 g1(g0+g1 )g2
g0

−0.0398096 0

7 g1(g0+g1 )g2
g0

0.181601 −0.28125

8 g1(g0+g1 )g2
g0

0.0207241 −0.09375

9 g1(g0+g1 )g2
g0

0.185475 −0.28125

10 g1(g0+g1 )g2
g0

0.0851904 0

11 g1(g0+g1 )g2
g0

−0.0289365 −0.09375

12 g1(g0+g1 )g2
g0

−0.486505 0.5625

13 g1(g0+g1 )g2
g0

−0.0769779 0.1875

14 g1(g0+g1 )g2
g0

−0.0539404 0

15 g1(g0+g1 )g2
g0

−0.0796192 0

16 g1(g0+g1 )g2
g0

−0.215762 0

17 g1(g0+g1 )g2
g0

0.0256788 0

18 g1(g0+g1 )g2
g0

0.215762 0

19
g1g2

2
g0

0.0459143 −0.0390625

20
g1g2

2
g0

−0.0800529 0.078125

21
g1g2

2
g0

0.0293269 −0.0390625

22
g1g2

2
g0

−0.108416 0.078125

23
g1g2

2
g0

−0.0206519 0

24
g1g2

2
g0

0.0197361 −0.0234375

25
g1g2

2
g0

−0.00657054 0.078125

26
g1g2

2
g0

0.19079 −0.15625

27
g1g2

2
g0

0.0522647 0

28
g1g2

2
g0

−0.0415526 −0.0234375

29
g1g2

2
g0

−0.0468204 0.046875

30
g1g2

2
g0

0.00918285 −0.0078125

31
g1g2

2
g0

−0.0160106 0.015625

32
g1g2

2
g0

0.00586539 −0.0078125

33
g1g2

2
g0

−0.0216832 0.015625

34
g1g2

2
g0

−0.00131411 0.015625

35
g1g2

2
g0

0.038158 −0.03125

36
g1g2

2
g0

−0.0965356 0

37
g1g2

2
g0

0.0738452 0

38
g1g2

2
g0

0.0175962 −0.0234375

39
g1g2

2
g0

0.0275486 −0.0234375

40
g1g2

2
g0

−0.0650495 0.046875

41
(g0+g1 )g2

2
g0

0.0275486 −0.0234375
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TABLE XIV. (Continued.)

No. A n m

42
(g0+g1 )g2

2
g0

−0.0480317 0.046875

43
(g0+g1 )g2

2
g0

−0.00115712 0.046875

44
(g0+g1 )g2

2
g0

0.0125021 −0.046875

45
(g0+g1 )g2

2
g0

−0.0206519 0

46
(g0+g1 )g2

2
g0

0.0197361 −0.0234375

47
g3

0+2g2
1g0+4g3

1
g0

−0.107881 0

48
g3

0+2g2
1g0+4g3

1
g0

0.381554 −0.75

49
g3

0+2g2
1g0+4g3

1
g0

−0.0249845 −0.375

50
g3

0+2g2
1g0+4g3

1
g0

0.190777 −0.375

51
g3

0+2g2
1g0+4g3

1
g0

−0.323643 0

52
g3

0+2g1g2
0+2g2

1g0+4g3
1

g0
0.1875 0

53
g3

0+2g1g2
0+2g2

1g0+4g3
1

g0
0.1875 0

54
g2

1g2

g0
0.378277 −0.375

55
g2

1g2

g0
−0.136142 0

56
g2

1g2

g0
−0.540793 0.75

57
g2

1g2

g0
0.0375155 −0.375

58
g2

1g2

g0
−0.0453808 0

59
g2

1g2

g0
0.787535 −0.84375

60
g2

1g2

g0
−0.0125116 0.28125

61 g1(g0+2g1 )g2
g0

0.09375 0

62 g1(g0+2g1 )g2
g0

−0.09375 0

63 g1(2g0+g1 )g2
g0

0.310206 −0.375

64 g1(2g0+g1 )g2
g0

−0.310206 0.375

65
g2

1g2

g0
0.756554 −0.75

66
g2

1g2

g0
−0.431524 0

67
g2

1g2

g0
−0.365785 0.5625

68
g2

1g2

g0
−0.540793 0.75

69
g2

1g2

g0
0.431524 0

70
(g2

0+2g2
1 )g2

g0
0.0914462 −0.140625

71
(g2

0+2g2
1 )g2

g0
0.131256 −0.140625

72
(g2

0+2g2
1 )g2

g0
0.107881 0

73 g1(2g0+g1 )g2
g0

0.0605337 −0.09375

74 g1(2g0+g1 )g2
g0

0.0207241 −0.09375

75 g1(2g0+g1 )g2
g0

−0.0398096 0

76 g1(2g0+g1 )g2
g0

−0.0414484 0.1875

77
g1g2

2
g0

0.267196 −0.210938

78
g1g2

2
g0

−0.227387 0.210938

79
g1g2

2
g0

0.0549622 −0.0703125

80
g1g2

2
g0

−0.0210752 0

81
g1g2

2
g0

−0.00920429 0.0703125
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TABLE XIV. (Continued.)

No. A n m

82
g1g2

2
g0

0.24733 −0.316406

83
g1g2

2
g0

−0.151591 0.140625

84
g1g2

2
g0

0.0274811 −0.0351563

85
g1g2

2
g0

−0.0757955 0.0703125

86
g1g2

2
g0

0.0890654 −0.0703125

87
g1g2

2
g0

−0.227387 0.210938

88
g1g2

2
g0

−0.107881 0

89 g2
2 0.0113452 0

90 g2
2 −0.0113452 0

91 g2
2 −0.0141308 0

92 g2
2 0.0241846 0

93
g1g2

2
g0

0.130571 0

94
g3

0+6g2
1g0+2g3

1
g0

0.432912 −0.75

APPENDIX I: �1122
1,3 (0)

Table XV shows the one-loop diagrams contributing to �1122
1,3 (0) and their respective divergent contributions. The divergent

parts of the one-loop diagrams have the general form r−ε/2u1A( n
ε

).
As the first two diagrams in Table XV cancel each other there is no g2 contribution to the renormalization constant Z1 at the

one-loop order. Table XVI shows the two-loop diagrams contributing to �1122
1,3 (0).

The divergent contributions of the above diagrams to �1122
1,3 (0) have the general form r−εu1A( n

ε
+ m

ε2 ). The parameters A, n,
and m for each of the above diagrams are listed against their respective diagram numbers in Table XVII.

Collecting the divergences from all the diagrams given in Tables XV and XVI and applying the renormalization condition
(13) yields

Z1 = 1 + 1

ε

(
λ0 + 2.5λ1 − 0.25λ2

0 − 2.5λ2
1 − 1.5λ0λ1 + 0.06 76 406λ2λ0 + 0.2 53 861λ1λ2 + 0.0 01 36 604λ2

2

− 0.01 79 802λ2λ
2
0

λ1
− 0.00 07 47 121λ2

2λ0

λ1

)
+ 1

ε2

(
1.25λ2

0 + 7.75λ2
1 + 3.75λ1λ0 + 0.1875λ2λ0 + 0.46 875λ1λ2

)
. (I1)

All the results obtained in Appendices B to I using the computational method described in Appendix A when truncated to
one-loop order agree with the results obtained in Ref. [21], where calculations were performed only to this order.

TABLE XV. One-loop contributions to �1122
1,3 (0).

Diagram A, n Diagram A, n Diagram A, n

g0g2
g1

, 0.125 g0g2
g1

,−0.125 2g0 + 5g1, 0.5
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TABLE XVI. Two-loop diagrams contributing to �1122
1,3 (0).

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104

105 106 107 108 109 110 111 112

113 114 115 116
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TABLE XVII. Divergent contributions of the diagrams shown in Table XVI.

No. A n m

1 (g0 + 4g1)g2 −0.0265397 0
2 (g0 + 4g1)g2 0.0567936 0
3 (g0 + 4g1)g2 0.00427981 0
4 (g0 + 4g1)g2 −0.0179801 0
5 (g0 + 4g1)g2 0.0194067 0
6 (3g0 + 7g1)g2 −0.00663493 0
7 (3g0 + 7g1)g2 0.0302668 −0.046875
8 (3g0 + 7g1)g2 0.00345401 −0.015625
9 (3g0 + 7g1)g2 0.0309125 −0.046875
10 (3g0 + 7g1)g2 0.0141984 0
11 (3g0 + 7g1)g2 −0.00482275 −0.015625
12 (3g0 + 7g1)g2 −0.0810842 0.09375
13 (3g0 + 7g1)g2 −0.0128297 0.03125
14 (3g0 + 7g1)g2 −0.00899006 0
15 (3g0 + 7g1)g2 −0.0132699 0
16 (3g0 + 7g1)g2 −0.0359603 0
17 (3g0 + 7g1)g2 0.00427981 0
18 (3g0 + 7g1)g2 0.0359603 0
19 g2

2 −0.00706539 0
20 g2

2 0.0201538 0
21 g2

2 0.0161231 0
22 g2

2 −0.0208333 0

23
(g0+9g1 )g2

2
g1

0.00229571 −0.00195313

24
(g0+9g1 )g2

2
g1

−0.00400265 0.00390625

25
(g0+9g1 )g2

2
g1

0.00146635 −0.00195313

26
(g0+9g1 )g2

2
g1

−0.00542079 0.00390625

27 g2
2 −0.010326 0

28 g2
2 0.00986803 −0.0117188

29
(g0+9g1 )g2

2
g1

−0.000328527 0.00390625

30
(g0+9g1 )g2

2
g1

0.00953951 −0.0078125

31 g2
2 0.0261324 0

32 g2
2 −0.0207763 −0.0117188

33 g2
2 −0.0234102 0.0234375

34
(3g0+5g1 )g2

2
g1

0.00229571 −0.00195313

35
(3g0+5g1 )g2

2
g1

0.00146635 −0.00195313

36
(3g0+5g1 )g2

2
g1

−0.00542079 0.00390625

37
(3g0+5g1 )g2

2
g1

−0.00400265 0.00390625

38
(g0+g1 )g2

2
g1

−0.00344199 0

39
(g0+g1 )g2

2
g1

0.00328934 −0.00390625

40
(3g0+5g1 )g2

2
g1

−0.000328527 0.00390625

41
(3g0+5g1 )g2

2
g1

0.00953951 −0.0078125

42
(g0+g1 )g2

2
g1

−0.00692543 −0.00390625

43
(g0+g1 )g2

2
g1

0.00871079 0

44
(g0+g1 )g2

2
g1

−0.00780339 0.0078125

45 g2
2 0.00459143 −0.00390625

46 g2
2 −0.00344199 0

47 g2
2 −0.00800529 0.0078125

48 g2
2 0.00328934 −0.00390625
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TABLE XVII. (Continued.)

No. A n m

49 g2
2 0.00293269 −0.00390625

50 g2
2 −0.0108416 0.0078125

51 g2
2 −0.000657054 0.0078125

52 g2
2 −0.00692543 −0.00390625

53 g2
2 0.00871079 0

54 g2
2 0.019079 −0.015625

55 g2
2 −0.00780339 0.0078125

56
(g0+3g1 )g2

2
g1

−0.0160893 0

57
(g0+3g1 )g2

2
g1

0.0123075 0

58
(g0+3g1 )g2

2
g1

0.00293269 −0.00390625

59
(g0+3g1 )g2

2
g1

0.00459143 −0.00390625

60
(g0+3g1 )g2

2
g1

−0.0108416 0.0078125

61
(g0+5g1 )g2

2
g1

0.00459143 −0.00390625

62
(g0+5g1 )g2

2
g1

−0.00800529 0.0078125

63
(g0+5g1 )g2

2
g1

−0.000192854 0.0078125

64
(g0+5g1 )g2

2
g1

0.00208369 −0.0078125

65
(g0+5g1 )g2

2
g1

−0.00344199 0

66
(g0+5g1 )g2

2
g1

0.00328934 −0.00390625

67 g2
0 + 6g1g0 + 10g2

1 −0.0359603 0
68 g2

0 + 6g1g0 + 10g2
1 0.127185 −0.25

69 g2
0 + 6g1g0 + 10g2

1 −0.00832817 −0.125
70 g2

0 + 6g1g0 + 10g2
1 0.0635923 −0.125

71 g2
0 + 6g1g0 + 10g2

1 −0.107881 0
72 2g2

0 + 9g1g0 + 10g2
1 0.0625 0

73 2g2
0 + 9g1g0 + 10g2

1 0.0625 0

74
(g2

0+4g1g0+6g2
1 )g2

g1
0.0157615 −0.015625

75
(g2

0+8g1g0+18g2
1 )g2

g1
−0.00378173 0

76
(g2

0+4g1g0+6g2
1 )g2

g1
−0.022533 0.03125

77
(g2

0+4g1g0+6g2
1 )g2

g1
0.00156315 −0.015625

78
(g2

0+8g2
1 )g2

g1
−0.00378173 0

79
(g2

0+8g2
1 )g2

g1
0.00156315 −0.015625

80
(g2

0+8g2
1 )g2

g1
−0.022533 0.03125

81
(g2

0+8g2
1 )g2

g1
0.0157615 −0.015625

82 (g0 + 3g1)g2 0.131256 −0.140625
83 (g0 + 3g1)g2 −0.00208527 0.046875

84
(g2

0+5g1g0+6g2
1 )g2

g1
0.015625 0

85
(g2

0+5g1g0+6g2
1 )g2

g1
−0.015625 0

86
(g2

0+2g1g0+7g2
1 )g2

g1
0.051701 −0.0625

87
(g2

0+2g1g0+7g2
1 )g2

g1
−0.051701 0.0625

88 (g0 + 3g1)g2 0.126092 −0.125
89 (g0 + 3g1)g2 −0.0719206 0
90 (g0 + 3g1)g2 −0.0609641 0.09375
91 (g0 + 3g1)g2 −0.0901321 0.125
92 (g0 + 3g1)g2 0.0719206 0
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TABLE XVII. (Continued.)

No. A n m

93 (2g0 + 5g1)g2 0.0304821 −0.046875
94 (2g0 + 5g1)g2 0.0437519 −0.046875
95 (2g0 + 5g1)g2 0.0359602 0

96
(g2

0+2g1g0+7g2
1 )g2

g1
0.0100889 −0.015625

97
(g2

0+2g1g0+7g2
1 )g2

g1
0.00345401 −0.015625

98
(g2

0+2g1g0+7g2
1 )g2

g1
−0.00663493 0

99
(g2

0+2g1g0+7g2
1 )g2

g1
−0.00690807 0.03125

100
(g0+5g1 )g2

2
g1

0.0148442 −0.0117188

101 g2
2 −0.0757955 0.0703125

102 g2
2 0.0549622 −0.0703125

103 g2
2 −0.00702507 0

104 g2
2 −0.0030681 0.0234375

105
(g0+3g1 )g2

2
g1

0.0148442 −0.0117188

106
(g0+3g1 )g2

2
g1

0.0148442 −0.0117188

107
(g0+3g1 )g2

2
g1

−0.0378978 0.0351563

108
(g0+3g1 )g2

2
g1

−0.0179801 0

109
(g0+3g1 )g2

2
g1

−0.0378978 0.0351563

110 g2
2 0.0113452 0

111 g2
2 −0.0113452 0

112 g2
2 −0.0141308 0

113 g2
2 0.0120923 0

114
(g0+3g1 )g2

2
g1

0.0274811 −0.0351563

115
(g0+3g1 )g2

2
g1

0.0217619 0

116 3 g2
0 + 3g1g0 + 11g2

1 0.144304 −0.25
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