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Equilibration of sinusoidal modulation of temperature in linear and nonlinear chains
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The equilibration of sinusoidally modulated distribution of the kinetic temperature is analyzed in the β-Fermi-
Pasta-Ulam-Tsingou chain with different degrees of nonlinearity and for different wavelengths of temperature
modulation. Two different types of initial conditions are used to show that either one gives the same result
as the number of realizations increases and that the initial conditions that are closer to the state of thermal
equilibrium give faster convergence. The kinetics of temperature equilibration is monitored and compared to the
analytical solution available for the linear chain in the continuum limit. The transition from ballistic to diffusive
thermal conductivity with an increase in the degree of anharmonicity is shown. In the ballistic case, the energy
equilibration has an oscillatory character with an amplitude decreasing in time, and in the diffusive case, it is
monotonous in time. For smaller wavelength of temperature modulation, the oscillatory character of temperature
equilibration remains for a larger degree of anharmonicity. For a given wavelength of temperature modulation,
there is such a value of the anharmonicity parameter at which the temperature equilibration occurs most rapidly.
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I. INTRODUCTION

The miniaturization of electronic and microelectromechan-
ical systems has led to the need to control heat fluxes at
the micro- and nanolevels, where the laws established for
macrosystems turned out to be inaccurate; for example, the
Fourier law of thermal conductivity is not valid [1–6]. On
the other hand, the possibility of creating nanostructured
metamaterials with desired properties endows researchers and
technologists with new levers of heat flow control. Heat in
materials is transferred mainly by phonons, and phononics
is a rapidly growing field of knowledge at the intersection
of physics, materials science, and nanotechnology, studying
phonon energy transport and its applications [7,8]. Major
achievements in this field are the development of thermal tran-
sistors [9,10], thermal diodes [11–15], and thermal logic de-
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vices [16–18]. Such developments require a better theoretical
and experimental understanding of anomalous thermal trans-
port in miniature low-dimensional systems.

The Fourier law of thermal conductivity states that for
macroscopic bodies, the heat flux is proportional to the tem-
perature gradient with a proportionality coefficient κ , referred
to as thermal conductivity. In a number of theoretical works
[19–31], it was shown that in one-dimensional structures,
Fourier’s law does not work, in the sense that κ depends
not only on the material, but also on the dimensions of the
conductor, in particular, on its length L according to the power
law κ ∼ Lα , where the exponent is in the range 0 � α � 1.
The case α = 1 corresponds to ballistic thermal conductivity,
and for α = 0 we have normal, diffusive thermal conductivity
obeying the Fourier law. If 0 < α < 1, we have anomalous
thermal conductivity. Note that defect-free linear systems of
any complexity always demonstrate ballistic heat propagation
[32–40]. One might expect that in systems with weak anhar-
monicity, the linear theory can be very helpful [41].

It was shown that the ballistic propagation of heat in lin-
ear discrete systems can be described with high accuracy by
continuum equations [38,41]. In particular, equilibration of
sinusoidal modulation of temperature was described analyt-
ically [38], and it was shown that temperature oscillations
in the α-Fermi-Pasta-Ulam-Tsingou (α-FPUT) chain lead to
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the excitation of mechanical vibrations. This physical phe-
nomenon is referred to as the ballistic resonance [41].

For the description of anomalous thermal conductivity, the
nonlocal fractional-type diffusion equation [20] and nonlinear
fluctuating hydrodynamics [42,43] have been developed.

The equilibration of sinusoidal modulation of temperature
was studied earlier in anharmonic chains [44,45]. The authors
found that the equilibration of the short-wavelength modu-
lation of temperature occurs through oscillations, while the
long-wavelength modulation is equilibrated monotonically.
Here we give explanations for those observations, demonstrat-
ing that the oscillatory regime of temperature equilibration
can be described by the linear theory and that the oscil-
lations of the long-wavelength modulations are suppressed
by a weaker anharmonicity as compared to short-wavelength
modulations.

Here the β-FPUT chain with symmetric anharmonicity is
considered [46] because it is free of thermal expansion and the
mechanical and thermal oscillations are not coupled [41].

The main goal of this study is to analyze the transition from
ballistic [38,41] to diffusive [20,44,45] energy equilibration
as the degree of anharmonicity increases. We describe the β-
FPUT model and simulation setup in Sec. II, numerical results
are presented in Sec. III, and conclusions are drawn in Sec. IV.

II. THE MODEL AND SIMULATION SETUP

A. The Fermi-Pasta-Ulam-Tsingou chain

We consider the β-FPUT chain of particles [46] having
mass m, whose dynamics is defined by the Hamiltonian

H = K + P =
∑

n

Kn +
∑

n

Pn, (1)

which is the sum of the kinetic (K) and potential (P) energies
of the chain with the kinetic, potential, and total energies of
individual particles being equal to

Kn = mu̇2
n

2
, (2)

Pn = k

4
(un − un−1)2 + β

8
(un − un−1)4

+ k

4
(un+1 − un)2 + β

8
(un+1 − un)4, (3)

Hn = Kn + Pn, (4)

respectively. Here, un(t ) is the displacement of the nth particle
from its equilibrium position, which is an unknown function
of time t , and u̇n ≡ dun/dt is its velocity. The particles are
coupled to their nearest neighbors by the potential which
includes the quadratic term with the harmonic force constant
k and the quartic term with the anharmonic force constant β.

The equations of motion that stem from Eqs. (1)–(3) are

mün = k(un−1 − 2un + un+1)

−β(un − un−1)3 + β(un+1 − un)3. (5)

Without loss of generality, we set m = 1, k = 1, and take
different values for β. The lattice spacing is h = 1. The chain
of N particles with the periodic boundary conditions (un =
un+N ) is considered.

In the case of small amplitude vibrations, one can ne-
glect the nonlinear term by setting β = 0 and find the
solutions of the linearized Eq. (5) in the form of normal
modes un ∼ exp[i(2πqn/N − ωqt )] with the wave number
q = 0, 1, . . . , N/2 and frequency ωq. These modes obey the
following dispersion relation:

ωq = 2

√
k

m
sin

πq

N
. (6)

The considered chain supports the small-amplitude running
waves (phonons) with frequencies within the band from
ωmin = 0 for q = 0 to ωmax = 2

√
k/m for q = N/2.

As a measure of temperature, the averaged kinetic energy
per atom,

T = K̄ = 1

N

∑
n

m
〈
u̇2

n

〉
2

, (7)

is used, where 〈·〉 denotes the mathematical expectation.

B. Two types of initial conditions

Since we deal with temperature and take a relatively small
number of particles, the physical picture emerges as a result
of averaging over many realizations.

We aim to set the initial conditions that create, after averag-
ing over many realizations, the initial distribution of the total
energy over the particles of the form

〈Hn〉 = Hb + ε

[
1 + sin

(
2πn

N

)]
, (8)

where Hb is the background level of the total energy and the
term with a multiplier ε � Hb adds the desired sinusoidal
modulation.

The initial total energy distribution (8) can be achieved in
many different ways. We will compare the results for two
types of initial conditions. The small sinusoidal addition, in
both cases, will be taken in the form of kinetic energy as
described below. On the other hand, the background energy,
which constitutes the main part of the total energy of the
system, will be introduced either as kinetic energy or it will be
nearly equally shared between the kinetic and potential forms.

Initial conditions of the first type. We assign random ve-
locities to the particles with zero initial displacements so that
the initial total energy includes only kinetic energy, while the
potential energy is zero. To do so, in each realization, we set
the initial velocities of the particles such that

u̇n = ρn

√
2

m

√
Hb + ε

[
1 + sin

(
2πn

N

)]
, (9)

where ρn is a random variable with the standard normal
distribution having zero expectation and unit variance. For
generation of random variable ρn, the standard normal dis-
tribution given by the probability density function P(x) =
exp(−x2/2)/

√
2π is used. Then the desired spatial distribu-

tion of the total energy at t = 0 is achieved,

〈Hn〉 = 〈Kn〉 = m

2

〈
u̇2

n

〉 = Hb + ε

[
1 + sin

(
2πn

N

)]
. (10)
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Initial conditions of the second type. In this case, the back-
ground total energy Hb is obtained by summing up all N/2
running harmonics [47],

un = bN/2 cos(πn) +
N/2−1∑

q=1

bq cos

(
2qπn

N
± ωqt + δq

)
,

(11)
with ωq given by Eq. (6), with random phase shifts δq
uniformly distributed in the domain (0, 2π ), and with the
amplitudes bq chosen such that each harmonic has same total
energy equal to Hb/(N/2). A plus or minus sign in front of the
ωqt term is taken with equal probability in order to have equal
contribution to the energy from the waves running to the right
and to the left.

For running waves in the linear lattice (β = 0), the kinetic
and potential energies are exactly equal, while for β > 0,
there appears a deviation from equality due to the effect of
nonlinearity.

The sinusoidal modulation of the energy distribution along
the chain is achieved for each realization by increasing the
particle kinetic energies by


Kn = ε

[
1 + sin

(
2πn

N

)]
, (12)

so that each particle having velocity u̇n gets the velocity
increment,


u̇n = ±
√

u̇2
n + 2

m

Kn − u̇n, (13)

where the upper (lower) sign is for positive (negative) u̇n.
Summary. In the initial conditions of the first type, the total

energy of the chain at t = 0 is in the form of kinetic energy
with the potential energy being exactly zero. In the initial
conditions of the second type, the background energy at t = 0
is almost equally shared between the kinetic and potential
forms (exactly equally in the linear case) and a small amount
of the kinetic energy is added to achieve the desired sinusoidal
modulation of the total energy distribution.

C. Analytical solution for the linear chain

Heat transfer in the linear chain can be described with a
high accuracy by the continuum equation [38]

T̈ + 1

t
Ṫ = c2T ′′, (14)

where T (x, t ) is the temperature field and

c = h

√
k

m
(15)

is the sound velocity.
For the initial conditions,

T = Tb + 
T sin(λx), Ṫ = 0, (16)

where

λ = 2π

L
, (17)

and L is the modulation wavelength, the solution to Eq. (14)
reads [38]

T = Tb + A(t ) sin(λx), A(t ) = 
T J0(ωt ), (18)

where

ω = λc, (19)

and J0 is the Bessel function of the first kind.
Initially, the left half of the chain, 0 � x � π/λ, has an

averaged temperature greater than the right half, π/λ < x �
2π/λ. Temperature equilibration in the system can be moni-
tored by comparing average temperatures of the left and right
halves,

TL = λ

π

∫ π/λ

0
T dx, TR = λ

π

∫ 2π/λ

π/λ

T dx. (20)

Substituting Eq. (18) into Eq. (20), we obtain the difference
between the averaged temperatures,

δT = TL − TR = 4

π

T J0(ωt ). (21)

A comparison of Eq. (16) with Eq. (8), taking into ac-
count that kinetic energy is equal to one-half of total energy,
suggests that

Tb = 1

2
(Hb + ε), 
T = ε

2
, λ = 2π

Nh
. (22)

In view of Eqs. (15), (19), and (22), we rewrite Eq. (21) in
terms of the parameters of our computational model,

δT = TL − TR = 2ε

π
J0

(
2π

N

√
k

m
t

)
. (23)

D. Simulation protocol

There are two ways to address the effect of anharmonicity
on the dynamics of the chain. The first approach is to fix
the anharmonicity parameter β and study systems with dif-
ferent levels of energies (different temperatures). The second
approach is to fix the energy of the system and to change β.
In the present study, the second method is used.

The equations of motion given by Eq. (5) are integrated
numerically using the symplectic, sixth-order Störmer method
with the time step τ = 10−3√m/k. The accuracy of integra-
tion is controlled by monitoring the total energy of the system
which, in our simulations, is conserved with the relative error
not exceeding 10−7 within the whole numerical run.

In the simulations, we take Hb = 1.0 and ε = 0.1 and
consider different values of the nonlinearity parameter β in-
cluding the case of the linear chain with β = 0. The initial
conditions are taken in one of two forms, as described in
Sec. II B.

As mentioned above, initially the left half of the chain has
an averaged temperature TL greater than the right half, TR. In
order to study the kinetics of temperature equilibration, the
difference between these temperatures,

δT = TL − TR = 2

N

N/2−1∑
n=0

〈Kn〉 − 2

N

N−1∑
n=N/2

〈Kn〉, (24)
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FIG. 1. Values of particle energies 〈Hn〉 in the chain of N = 1024
particles for the initial conditions of the first type averaged over (a)
102, (b) 103, and (c) 104 realizations. The red line shows the desired
energy distribution (8) for Hb = 1 and ε = 0.1. Here the chain is
linear, β = 0.

is calculated as a function of time and compared to the predic-
tion of the linear theory, given by Eq. (23). Note that Eq. (24)
is the discrete version of Eq. (20).

We also carry out simulations for chains of different
lengths N . We emphasize that in most calculations, the tem-
perature modulation wavelength is equal to the chain length
N and, only at the end of Sec. III C, we consider the case of a
chain including several temperature modulation wavelengths.

The period of the Bessel function J0(ξ ) gradually shortens,
rapidly approaching the value of 2π . Suppose we want to
analyze the dynamics of the chain for about I periods of the
Bessel function, in other words, for ξ � 2π I . Then, in view
of Eq. (23), the simulation time is about

ts = IN

√
m

k
. (25)

Recall that in our simulations, we set m = 1 and k = 1.

III. SIMULATION RESULTS

A. Characteristics of the initial conditions

The initial conditions of the first type, given by Eq. (9), and
of the second type, given by Eqs. (11) and (13), are stochastic,
and it is instructive to estimate their statistical characteristics
for chains of different lengths N .

First, in Figs. 1 and 2, we show the initial distribution of
total energy in the linear chain (β = 0) of N = 1024 particles
for the initial conditions of the first and second types, respec-
tively, for Hb = 1 and ε = 0.1. The energies of the particles
are averaged over (a) 102, (b) 103, and (c) 104 realizations.

FIG. 2. The same as in Fig. 1, but for the initial conditions of the
second type.

The red line in each panel shows the desired distribution of
energy, given by Eq. (8).

A comparison of the results presented in Figs. 1 and 2
shows that the initial conditions of the second type are less
stochastic than the initial conditions of the first type. This is
understandable because in the initial conditions of the second
type, the background energy Hb is obtained by summation of
phonon modes followed by correction of the particles’ veloc-
ities to achieve the sinusoidal distribution of energy, while in
the first type of the initial conditions, all particles have random
initial velocities.

In this work, energy equilibration in the chain will be
monitored by observing the time evolution of an integral char-
acteristic, namely, the difference between the temperatures of
the left and right halves of the chain, δT = TL − TR. Let us
analyze the statistical characteristics of δT at t = 0. Accord-
ing to Eq. (23), at t = 0 one should have the mean value of
δT = 2ε/π . We generate sets of 104 initial conditions for
different N and calculate the standard deviation s of δT for
β = 0 (linear case). In Fig. 3, the standard deviation of δT
is presented as a function of the number of particles in the
chain N for the initial conditions of the first type (dots) and the
second type (circles). The log-log plot shows that s = a/

√
N

(the offset dashed line has the slope −1/2) and a = 1.56 for
the initial conditions of the first type, while a = 0.989 for
the initial conditions of the second type. The results of Fig. 3
confirm that the initial conditions of the second type are less
stochastic because, for them, s is smaller than for the initial
conditions of the first type.

Recall that when the initial conditions of the first type are
used, the potential energy of the chain at t = 0 is zero and the
total energy is equal to the kinetic energy. According to the
exact result obtained for linear chains, the energy exchange
between the kinetic and potential parts follows the Bessel
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1×10-3

FIG. 3. Standard deviation of the difference between the temper-
atures of the left and right halves of the chain, δT , at t = 0 calculated
for 104 realizations of the initial conditions of the first type (dots)
and the second type (circles) for the chains of different length N .
The dashed line shows the slope of −1/2. Results for β = 0 (linear
case).

function [39]. In Fig. 4, we plot the time evolution of the
kinetic and potential energies in the linear chain (β = 0) of
N = 215 = 32 768 particles for the initial conditions of the
first [Fig. 4(a)] and second [Fig. 4(b)] types. The result is the
average over 100 realizations. In the case of the first (second)
initial conditions at t = 0, one has K − P = Hb + ε = 1.1
(K − P = ε = 0.1). Thus, in the initial conditions of the sec-
ond type, kinetic and potential energies of the system at t = 0
are much closer than in the case of the first type of initial
conditions.

FIG. 4. Kinetic (K) and potential (P) energies of the chain as
functions of time. Initial conditions of the (a) first and (b) second
type are used. The presented result is the averaged one over 100
realizations. The linear chain (β = 0) includes N = 215 = 32 768
particles.

FIG. 5. Total to kinetic energy ratio as a function of the anhar-
monicity parameter β = 0 for the case of total energy per particle
equal to H/N = 1, with the number of particles N = 215 = 32 768.

It should be pointed out that the period of oscillations of
the kinetic and potential energies is about π/2 ≈ 1.57 (see
Fig. 4), while the period of temperature equilibration in the
linear chain is much longer, since it is proportional to the chain
length N ; see Eq. (25). For example, for a chain of N = 210 =
1024 particles, the period of temperature equilibration is three
orders of magnitude longer than the oscillation period of the
kinetic and potential energies.

The main idea of this work is to analyze the effect of weak
anharmonicity on the equilibration of sinusoidal temperature
modulation, and thus it is important to quantify the proximity
of the chain to the harmonic case. It is well known that in a
harmonic chain, the kinetic energy is exactly half of the total
energy, but this is not the case in the presence of anharmonic-
ity. Let us use the total to kinetic energy ratio, H/K , as the
measure of deviation from the harmonic case, which can also
be used as the measure of heat capacity [48–50]. In Fig. 5,
the H/K ratio is shown as a function of the anharmonicity
parameter β for the case of total energy per particle equal
to H/N = 1, with the number of particles N = 215 = 32 768.
The range β � 0.1 is considered, which, as will be shown, is
sufficient for our study; see Fig. 9. It follows from Fig. 5 that
for β < 0.1, the deviation of the H/K ratio from the value
corresponding to the harmonic limit (β = 0) is within 5%.

The presented analysis allows us to draw the following
conclusions about the two types of the initial conditions. (i)
The initial conditions of the second type are less stochastic
(see Fig. 3), which means that they should give a better con-
vergence of the results with increasing number of realizations.
(ii) Simulations with longer chains should give a better con-
vergence of the results with increasing number of realizations
since s decreases with increasing N ; see Fig. 3. (iii) The initial
conditions of the second type are closer to thermal equilibrium
with closer values of the kinetic and potential energies in
the system at t = 0; see Fig. 4. (iv) For β < 0.1, the total
to kinetic energy ratio, H/K , differs by no more than 5%
from 2, which is the value for the harmonic case; see Fig. 5.
This means that for β < 0.1, we have the regime of weak
anharmonicity.
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FIG. 6. Results for β = 0 (linear case). The normalized differ-
ence between the averaged temperatures of the left and right halves
of the chain, δT , is plotted as a function of normalized time. The
numerical result is shown by a black line, while the theoretical
prediction given by Eq. (23) (the Bessel function of the first kind)
is shown by the light green line. Initial conditions (a),(c) of the first
type and (b),(d) of the second type are used. In (a),(b), the chain
length is N = 16 384, and in (c),(d), it is N = 32 768. In all cases,
the result of averaging over 50 realizations is shown.

B. Temperature equilibration in the linear chain

For the linear chain (β = 0), the analytical result given
by Eq. (23) is available, according to which the temperature
difference of the left and right halves of the chain oscillates
with a reduction in the time amplitude following the Bessel
function of the first kind. In Fig. 6, the normalized differ-
ence δT = TL − TR as a function of the normalized time is
plotted for N = 16 384 [Figs. 6(a) and 6(b)] and N = 32 768
[Figs. 6(c) and 6(d)]. In Figs. 6(a) and 6(c), the initial con-
ditions of the first type are used, while in Figs. 6(b) and
6(d), those of the second type are used. Black curves show
the numerical results and light green curves stand for the
analytical prediction given by Eq. (23). In all cases, the result
of averaging over 50 realizations is shown.

It can be seen from Fig. 6 with the naked eye that the results
for the longer chain shown in Figs. 6(c) and 6(d) are closer
to the theoretical prediction than the results for the shorter
chain presented in Figs. 6(a) and 6(b). In order to quantify
the difference between the numerical and theoretical curves,
we calculate the area S between them within the interval 0 �
(2π/N )t � 30. The result is (a) S = 0.7247, (b) S = 0.7001,
(c) S = 0.4030, and (d) S = 0.4027. The smaller the area, the
closer the numerical result is to the theoretical prediction. For

FIG. 7. Normalized δT as a function of normalized time for
different values of the nonlinearity parameter β, as specified for each
curve. The initial conditions of the second type are used. The chain
length is N = 32 768. All curves are the result of averaging over 50
realizations.

(a) and (b), S is considerably larger than for (c) and (d), and
this is in line with the result presented in Fig. 3, showing
that the standard deviation s of δT reduces with increasing
chain length. It can also be seen that the area S is slightly
smaller when the initial conditions of the second type are used.
This again agrees with Fig. 3, showing that s is smaller for the
second type of initial conditions.

From the results presented in Fig. 6, one can see that the
number of realizations needed to achieve certain accuracy
strongly depends on the chain length N . This is so because we
monitor the time evolution of the integral parameter δT , and
for a longer chain, this parameter is estimated with a higher
accuracy for each particular realization. In the following, if
the chain length is halved, the number of realizations is at least
doubled to get approximately the same accuracy.

According to our simulations, for increasing number of re-
alizations, the kinetics of temperature equilibration converges
not only for the harmonic chain, but also for β > 0.

It is clear that the theoretical result given by Eq. (23)
predicts the temperature equilibration in the linear chain very
well. This confirms that the continuum Eq. (14) is capable of
describing the heat flux in linear chains.

C. Effect of anharmonicity

The effect of the anharmonicity parameter β on equilibra-
tion of the sinusoidal modulation of temperature is presented
in Fig. 7. The time evolution of normalized δT is presented
and the value of β is indicated for each curve. The chain length
is N = 32 768. The results are averaged over 50 realizations.

It can be seen from Fig. 7 that with increasing β, the
amplitude of oscillations of the curves decreases and, at
β = 0.08, one has an almost monotonically decreasing curve.
The oscillation frequency increases with increasing β. It can
also be noted that the fastest temperature equilibration is
observed for β = 0.02 because, in this case, the energy dif-
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FIG. 8. A set of curves showing normalized δT as a function
of time for different values of the nonlinearity parameter β in the
vicinity of the first minimum. For β∗ = 0.0943, the first minimum of
the δT curve reaches zero value (shown by the solid line). The initial
conditions of the first type are used. The chain length is N = 512.
All curves are the result of averaging over 2.5 × 104 realizations. It
is assumed that for β < β∗, the linear theory is still informative and,
for larger β, the anharmonicity plays an essential role.

ference δT vanishes faster. For smaller β, the amplitude of
oscillations decays slower, and for larger β, the relaxation
becomes slower, as compared to the case of β = 0.02. We
note the analogy with the damped oscillator, which relaxes
to the equilibrium position very slowly if the viscosity is very
high (overdamped motion) or when it is very small (slowly
decaying oscillations), so that there exists a value of the vis-
cosity parameter with the fastest relaxation [51].

Our next step is to estimate the accuracy of the linear the-
ory for different wavelengths of the temperature modulation,
which, in our simulations, is equal to the chain lengths N .
We need to define a characteristic value of the anharmonicity
parameter β∗ such that for β < β∗, one can rely on the linear
theory, but for large β, the effect of anharmonicity must be
taken into account.

As one can see from Fig. 7, with increasing β, the min-
ima of the oscillating curve go up. Let us focus on the first
minimum of the curve and specify β∗ as the value of β when
the first minimum of δT reaches zero. This definition of β∗ is
further illustrated in Fig. 8. Here a set of curves is plotted for
different values of β in the vicinity of the first minimum and
interpolation between the minimal points allows one to find
β∗ = 0.0943 when the first minimum of δT vanishes (shown
by the solid line). Note that for β = β∗, the oscillations of
δT in time are still pronounced and not yet suppressed by the
anharmonicity. This means that for β < β∗, the linear theory
is valid in the sense that it explains the oscillatory character of
temperature equilibration in the chain. The results presented
in Fig. 8 are obtained for N = 512, initial conditions of the
first type are used, and averaging over 2.5 × 104 realizations
is performed for each value of β. Note that a larger number of
realizations should be taken for short-wavelength temperature
modulation.

FIG. 9. The characteristic value of the anharmonicity parameter
β∗ as a function of the wavelength of temperature modulation N . The
dashed line shows the slope −1/2. The table shows the numerical
values of β∗ for different N .

Figure 9 shows how the characteristic value of the an-
harmonicity parameter β∗ depends on the wavelength of
the temperature modulation N . The dashed line in the log-
log plot has the slope −1/2. This means that β∗ ∼ N−1/2

for large N , and for smaller N the decrease of β∗ with
increasing N is somewhat faster. The presented result says
that the linear theory describes short-wavelength modulations
of temperature in the chain with larger anharmonicity, while
for long-wavelength modulations the effect of anharmonicity
is stronger.

So far, the temperature modulation wavelength was equal
to the chain length N . Let us check the effect of the chain
length taking the modulation wavelength equal to 512 in the
chain of 32 768 particles, thus having 64 temperature modu-
lation periods in the chain. In this case, the temperatures TL
and TR are calculated as the sums over 64 half periods of tem-
perature modulation. Simulations with the initial conditions of
the first type have shown that for the long chain, β∗ = 0.0963,
which should be compared to β∗ = 0.0943 found for the chain
with a single period of temperature modulation (see Fig. 9). It
is seen that the effect of the chain length is marginal because
the characteristic value β∗ is nearly the same for the chains
that include one and 64 periods of temperature modulation.

IV. CONCLUSIONS

In the present study, the effect of anharmonicity on the
equilibration of sinusoidal modulation of temperature in the
β-FPUT chain was analyzed. The results for different values
of the anharmonicity parameter β and for different wave-
lengths of temperature modulation N are obtained numerically
and compared to the analytical solution available for the linear
case (β = 0). Applicability of the linear theory to a weakly
nonlinear chain was assessed for different wavelengths of
temperature modulation N . Initial conditions of two types
were used: (i) at t = 0, the energy of the system is in the form
of kinetic energy with zero potential energy and (ii) the other,
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major part of the energy is initially shared between kinetic and
potential energies.

Our main findings can be summarized as follows:
(1) For the linear chain (β = 0), the numerical results aver-

aged over increasing number of realizations converged to the
analytical solution given by Eq. (18). This solution predicts
that equilibration of sinusoidal modulation of temperature
demonstrates oscillations with decrease in time amplitude,
following the Bessel function of the first kind. This was true
for the initial conditions of both types, though convergence
with increasing number of realizations was faster for the initial
conditions with nearly equal kinetic and potential energies.
Convergence was also faster for larger wavelength of tempera-
ture modulation N ; see Sec. III A. The kinetics of temperature
equilibration, for increasing number of realizations, converges
not only for the harmonic chain, but also for β > 0.

(2) With an increase in the degree of anharmonicity, the
oscillatory equilibration of temperature gradually transforms
into a monotonic one. For a given temperature wavelength
modulation, there exists a value of the anharmonicity parame-
ter when the temperature equilibration occurs most rapidly.
For smaller values of β, oscillations of temperature decay
slowly, and for larger β, the monotonic decay is slow; see
Fig. 7.

(3) Linear theory remains informative for weakly anhar-
monic chains when β < β∗, with β∗ defined as shown in
Fig. 8. As can be seen from Fig. 9, β∗ decreases with in-
creasing temperature modulation wavelength N . This means
that temperature modulation with short wavelength is less
affected by the anharmonicity or, in other words, linear theory
remains valid for larger values of β, as compared to the long-
wavelength temperature modulation.

Overall, our results have confirmed that (i) the continuum
Eq. (14) derived in [38] accurately describes the temperature
flow in linear chains, (ii) linear theory remains informative for
weakly anharmonic chains, and (iii) short-wavelength modu-
lations of temperature are less affected by the anharmonicity
and linear theory remains valid for larger values of β, as
compared to the long-wavelength modulations of temperature.

In this regard, the results presented in previous works
[18,44] have found their explanation. Oscillations of the short-
wavelength sinusoidal temperature modulation, observed by
the authors of those works, can be well explained by the
linear theory [38]. The oscillations were not observed by the
authors for long-wavelength temperature modulation because,
in this case, the effect of anharmonicity is much stronger.
The oscillations of long-wavelength temperature modulation
can be observed for smaller values of the anharmonicity
parameter.
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