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We present a method to renormalize stochastic differential equations subjected to multiplicative noise. The
method is based on the widely used concept of effective potential in high-energy physics and has already been
successfully applied to the renormalization of stochastic differential equations subjected to additive noise. We
derive a general formula for the one-loop effective potential of a single ordinary stochastic differential equation
(with arbitrary interaction terms) subjected to multiplicative Gaussian noise (provided the noise satisfies a certain
normalization condition). To illustrate the usefulness (and limitations) of the method, we use the effective
potential to renormalize a toy chemical model based on a simplified Gray-Scott reaction. In particular, we use
it to compute the scale dependence of the toy model’s parameters (in perturbation theory) when subjected to a

Gaussian power-law noise with short time correlations.
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I. INTRODUCTION

A variety of systems can be modeled using stochastic
differential equations (SDEs). Examples include population
dynamics (e.g., [1]), surface growth (e.g., [2,3]), pattern for-
mation (e.g., [4,5]), and financial markets (e.g., [6]), to name
a few (more applications can be found in Refs. [7-9]). In the
above examples, the noise term is often introduced by hand
to take into account the effects of unaccounted degrees of
freedom on the system (such as the environment) or appears
naturally as a result of intrinsic stochasticity (due to effects of
finite number of constituents, for example).

In addition to SDEs, there exist other approaches to theo-
retically study the effect of noise on a system, all with their
pros and cons. For example, the master equation [9,10] is
unwieldy, but it is well suited to study intrinsic noise, i.e.,
noise that is due to the discrete nature of the system and cannot
be shut off. By contrast, the degrees of freedom in SDEs are
assumed to be well-defined “macroscopic” quantities (e.g.,
concentrations). Consequently, approaches based on SDEs do
not take into account intrinsic noise at a fundamental level
—although intrinsic noise can be obtained from a more fun-
damental approach and then added by hand to the SDE (see
Ref. [11] for an explicit example related to reaction-diffusion
systems).

Our own interest lies in chemical systems externally driven
with noise, where the noise can either be viewed as a control
tool (that could be used to implement chemical logic gates
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[12,13] or force chemical systems into dynamical regimes
not otherwise easily attainable [14]), as a probe of chemical
mechanisms [15] or as an environment that influences the
behavior of the chemical system (with origins of life appli-
cations in mind, such as the appearance of homochirality in
biomolecules [16]). In the above applications, the noise is
external and the number of constituents is sufficiently large
for a description in terms of SDEs to be appropriate. We
concentrate on such systems in the following.

Common approaches to the study of noise in physical sys-
tems (SDEs, master equation, Fokker-Planck equation, etc.)
focus on determining the time evolution of the statistical prop-
erties of the solution directly. This can be a difficult task and
is not always necessary for all applications. For instance, we
show in Ref. [15] how measuring variations in a chemical sys-
tem’s parameters (e.g., reaction rates) due to tunable external
noise can be used as a probe of chemical mechanisms. This
is akin to the idea in particle physics of measuring variations
in a system’s parameters (coupling constants, charges, etc.)
with great precision in order to uncover details about the
underlying (high-energy) theory.

It is the complex interplay between fluctuations and inter-
actions that leads to scale dependence in the parameters and
couplings in stochastic systems, where the fluctuations can be
either thermal or statistical in nature. This scale dependence
can be unveiled by the renormalization group, whose aim
is to describe how the dynamics of the system evolves as
we change the temporal and or spatial scale at which the
phenomenon is being observed or measured.

Two broad categories of noise—additive and
multiplicative—are  particularly relevant for physical
applications. Noise in SDEs is considered additive when
it is added to terms containing the dynamical variables. The
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original Langevin equation describing Brownian motion
and the Kardar-Parisi-Zhang equation [2] are examples of
equations with additive noise. In contrast, multiplicative noise
is operative when the noise term multiplies the dynamical
variables, i.e., the effect of the noise depends on the state of
the system. Examples include the use of diffusion equations
with random sources and sinks to model directed polymers in
random media [17] and stochastic systems with an absorbing
state [18].

In Refs. [15,19-22], perturbative renormalization group
methods [3,23] are used to compute the running of parameters
for additive power-law noise in a simple cubic autocatalytic
reaction-diffusion model. In this toy model, the additive noise
represents possible fluctuations in the inflow of chemicals
into the system and constitutes a possible way for an exper-
imentalist to control the dynamic of the reaction. Another
interesting “control knob” is to use noisy light to influence
the rate of light-sensitive reactions [24-26]. Since the fluc-
tuating reaction rate now multiplies one of the degrees of
freedom of the system (i.e., concentration), the noise is multi-
plicative. However, applying the same methods developed in
Refs. [15,19-22] to SDEs subjected to multiplicative noise is
untenable, as there is no simple way of truncating the formal
solution to the differential equation. To our knowledge and
despite progress in analytical [27-31] and numerical [7,32—
34] techniques, the computation of running parameters for
stochastic differential equations subject to multiplicative noise
is still lacking (a notable exception is Ref. [35], where the
author uses the Martin-Siggia-Rose formalism to renormalize
two-point correlation functions in real time).

In this paper we propose a method to renormalize stochas-
tic differential equations subjected to multiplicative noise
based on the physical concept of the effective potential. In
the case of quantum field theory, the eminent role of the
effective action and its specialization to constant fields, the
effective potential, as fundamental constructs for obtaining
this scale dependence have been recognized and exploited for
a long time [36—41]. Yet it is only in the last 20 years that
the concepts of effective action and effective potential have
been defined, calculated, and applied successfully to quantify
the scale dependence for stochastic systems subject to additive
noise [42].

We here assume from the outset continuous and differ-
entiable degrees of freedom in order that the powerful field
concept can be applied directly to the study of fluctuation
phenomena. Starting from a rather general class of nonlinear
SDEs, an explicit construction was introduced in Ref. [42],
which maps the SDE into an associated characteristic func-
tional. This characteristic functional is then used to define
and calculate the effective action and the effective potential.
There it was demonstrated that the potential can be used to
quantitatively assess the impact that noise and random fluc-
tuations can have in altering the “ground” states of dynamic
fluctuating systems. By borrowing fundamental concepts from
quantum field theory, one can, by means of mapping of the
SDEs to its characteristic generating functional, set up and
calculate the effective action and its specialization to static
field, which yields the effective potential. As discussed in
Ref. [42], if some notion of a potential is available, then the
analysis of its extrema leads to the identification of the stable

and metastable states of the fluctuating system. These ideas
carry over to nonequilibrium systems and the effective poten-
tial constructed from Langevin equations contains two major
pieces: a “classical” contribution and a “fluctuating” contribu-
tion. Both contributions together determine the ground state of
the system in the presence of noise and therefore the effective
potential provides useful information and gives one another
way to understand out-of-equilibrium fluctuation phenom-
ena from a distinct vantage point. These ideas and concepts
have been applied to the Kardar-Parisi-Zhang equation (for
which dynamical symmetry breaking phenomena results in
one and two dimensions for white Gaussian noise) [43,44] and
reaction-diffusion equations [45].

The primary goal of this paper is to generalize the effective
potential method of Ref. [42] to multiplicative noise. The
expression for the effective potential obtained here is appli-
cable to a single ordinary differential equation (with arbitrary
interaction terms) subjected to multiplicative Gaussian noise,
provided the noise satisfies a certain normalization condition.
To illustrate the usefulness (and limitations) of the effective
potential in the context of SDEs, we use it to renormalize a
toy chemical model based on a simplified Gray-Scott reaction
subjected to multiplicative noise. In particular, we show that
for a Gaussian power-law noise with short time correlations,
the removal (or decay) rate of the reaction varies with scale
(provided perturbation theory is valid).

The rest of this paper is organized as follows. We first show
in Sec. II the difficulty in applying conventional perturbative
renormalization group (RG) techniques to SDEs subjected to
multiplicative noise. We then derive the main formula for
the effective potential generalized to multiplicative noise in
Sec. III and apply it to a toy model example in Sec. IV.

II. PERTURBATIVE RG AND MULTIPLICATIVE NOISE

One motivation for introducing the effective potential
method to renormalize SDEs subjected to multiplicative noise
is that the more conventional perturbative RG method [3,23]
seems to be ill suited for the task. To show this explicitly,
consider the following additive noise SDE:

d
ﬁit) = —r¢(t) + 2% (1) + (1), M
and a possible multiplicative noise variant:
d
(fzy) = —r() + 102 (1) + $(OON(1), @

where r and A are parameters and n(#) is a noise term.
Equation (1) represents a simplified version of the cubic au-
tocatalytic chemical reaction model studied in Ref. [22]. It
involves a certain chemical ¢ reacting with another chemical
U via the autocatalytic reaction 2¢p + U — 3¢, and the
removal of ¢ from the continuously stirred tank reactor (this is
a variant of the Gray-Scott reaction in which U is considered
very abundant and thus having a constant concentration). This
model can be seen as a crude form of metabolism, where the
“organism” (represented by the chemical ¢) produces more
of itself using the “food” U. The noise term in Eq. (1) could
correspond to some external factor that influences the rate of
production of ¢, while the noise term in Eq. (2) represents a

062142-2



RENORMALIZATION OF STOCHASTIC DIFFERENTIAL ...

PHYSICAL REVIEW E 102, 062142 (2020)

fluctuating removal rate. Note that in this paper we adopt the
Stratonovich interpretation for the noise (see Appendix 1 in
Ref. [42] for explanations on this choice).

To perform the perturbative RG analysis of the above toy
models, we insert the Fourier representation for the field and
noise (hats denote Fourier transformed quantities),

o(t) = / ) 3)
oo 2m)
* dw —iwt

n() = /_OO ) e (), 4)

into Egs. (1) and (2) to get

A o« dw; + a

P(w) = Ro(w)[f?(w) + k/ L B(wn)d(w — wl):| S
(2m)

|

for the additive noise case and

d R
O B — w)i(wr)

P(w) = Ro(w)[ )

[ s 6
+ m‘ﬁ(wl)ﬂw—wl)] (6)

for the multiplicative noise case, where Ro(w) =1 /(—iw+71)
is the free response function for both SDEs. Note that here
and in the following, all integration boundaries are from —oo
to 4-00, unless otherwise stated. Defining the full response
function as ¢(w) = R(w)ij(w), we can rewrite Egs. (5) and
(6) as

« « N do; N
R(w)ij(@) = Ro(w)ij(w) + ARo(w)/ (2—(;1)1?(0)1)13(&) — o)i(w)i(w — o) (7

for the additive noise case and

R R d R R d R R
R(@)i(@) = Ro(@) / 2O @ — o0 — o)) + MRo(@) / 29 DR — oDR@@ - o) (8
20 27)

for the multiplicative noise case. The iterative Egs. (7) and (8)
can be used as a starting point for a perturbative analysis of the
full response function. In order to implement a perturbative
renormalization program, it is necessary to truncate the above
infinite series at a finite order in some small parameter (typi-
cally involving the amplitude of the noise). This is relatively
easy to do in the additive noise case due to the presence of
a zeroth-order term that does not depend on the full response
function in Eq. (7) [i.e., R = Ry + O(R)]. The absence of such
zeroth-order term in Eq. (8) makes the task of truncating the
infinite series difficult (it at all possible) for the multiplicative
noise case. Thus a different approach is warranted.

III. EFFECTIVE POTENTIAL METHODS FOR
MULTIPLICATIVE NOISE

The effective potential for stochastic partial differential
equations subjected to additive noise is derived in detail in
Ref. [42]. Here we generalize this result to multiplicative
noise and outline the main steps below. For simplicity we
focus on ordinary differential equations, but spatial derivatives
can be added with minimal effort. We are interested in SDEs
of the form

do(t)
dt

= —F(¢)+ G(o)n(), ©)

where F(¢) and G(¢) are functions of the field ¢(r). Note
that the additive noise case is recovered for G(¢) = 1. The
first step in obtaining the effective potential for Eq. (9) is to
gain control over noise averaging. To do so it is possible to
use § functionals to represent the formal solution of Eq. (9) in
terms of a constrained path integral:

Gsol(tn) = /D¢¢8[¢_¢sol]v (10)

(

d
=/D¢¢5[d—?+F(¢)—G(¢)n]vJJT, (1)

where the Jacobian J(¢) is given by

d
J(¢) = det <E +F() - G/(¢)n), (12)

with primes denoting functional derivatives with respect to the
field ¢ and 7" corresponds to the Hermitian conjugate of the
operator 7.

For reasons that will become clear shortly, we define the
following functional:

f[¢sola J] = exXp </ dt J(t)¢sol(t))v (13)

where J(¢) is an arbitrary (source) function. (Note that here
and in the following, functionals are denoted by square brack-
ets []). By (functionally) Taylor expanding Eq. (13) and
substituting Eq. (10), we can show that

f[(bsol,-]]
=/D</>f[¢,J] 5[

Note that the solution ¢ (¢|n) (and thus f[¢so1, J]) depends
on the noise 1. Given that the noise has a distribution P[n]
(assumed to be normalized to unity), it is possible to average
the functional f[¢, J] over all realizations of the noise:

dé

dr

+F(¢) - G(¢)n]vjj"'. (14)

(flsor, J1) = /Dn P(nlfl¢sol, J1 15)

_ / Dn Pl / D flp, J]

d
x S[d—qf + F(¢) - G(¢)n]vJJT, (16)
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where we have inserted Eq. (14) in the last step. At this
stage we note that the integration over the random fluctuations
involves both the & functional constraint and the Jacobian
factor (12), as the latter also depends on the noise source n
(this is an important difference with the additive noise case,
see Ref. [42]). To proceed with the integration over noise, we
use the identity

dt

o (o
_detGS[” G(¢)( - (‘l’))} a7

Using the above § functional to integrate over the noise, we
obtain

1 d
Lo, J1) = / D¢ f1p.J1P [%(—"# (¢>)}¢

d¢
3[— +F(9) — G(¢)n}

(18)
where the Jacobian (solely written in terms of the field ¢) is

o I F@)\ G de
j(¢)_det<0<¢)dt+<c(¢>> GZ(¢)Z>' 19

Equation (18) can be used to average the functional (13) over
the noise.

The next step is to obtain the generating functional for
Eq. (9). The generating functional contains all the information
of a field theory and allows one to compute all correlation
functions. The effective action I'[¢] [and consequently, the
effective potential V(¢)] can thus be obtained from the gen-
erating functional. The generating functional also connects
probability distribution functions and the effective potential
(see Ref. [42] for details).

To obtain the generating functional, we first assume that
the noise is Gaussian, with the zero mean and second moment
given by

Ny(t,t") = (n()n@"))

where A is the amplitude of the noise and g(z, t’) is a shape
function. We further assume that the noise is time-translation
invariant: g(¢,t’) = g(t — t). The distribution function for a
Gaussian noise can be expressed in the following way:

= Ag(, 1), (20)

P[n] = Cexp [—%/dt/.dt/ n(t)Nn_](t,t/)n(t’):|, (21)

where C is a normalization constant. Second, following
Ref. [42], we define the generating functional of all correlation
functions in the presence of a source J as

ZlJ1 = (flg.J]) = <CXP </ dt J(t)¢(t)>>- (22)

The motivation for the above definition comes from quantum
field theory (e.g., Ref. [46]). Substituting Egs. (21) and (13)
into Eq. (18), one sees that the average has the same form as
the generating functional Z[J] with source J of field theory:

AN / D¢ e! ”’”“*”‘”P[%d))(d—d) +F<¢)>]¢ JJ.

(23)

with the Gaussian noise given by Eq. (21). This generating
functional (or partition function) Z[J] can be used to compute
averages, correlation functions, etc. and thus contains all the
physics of Eq. (9).

Following the usual procedure (e.g., [46]), one can obtain
the effective action from the generating functional:

82S[¢] >
Sp(t)dep(t')
— InJ[¢] —1In jT[w]} — (¢ = @), (24

A
I'le, pol = Sle]l + §|:lndet<

where the “classical” action is

1 (de()
Slel = /‘”/ [G()( +F("’)>}

1 1 [(de()
(tt)[G( )( o7 +F(¢)>] (25)

Note that the effective action now depends on the “classi-
cal” field ¢(¢) and not the field ¢(¢) (similar to the situation
in thermodynamics when changing variables using Legendre
transforms). The classical field is defined as the solution to the
classical equation of motion in the presence of a source J(z),
obtained by functional differentiation of the classical action:

S
5 p=¢

The notation (¢ — ¢g) in Eq. (24) indicates a second term
similar to the first with ¢ replaced by ¢y, where ¢, represents
the classical field defined in Eq. (26) when J(¢) = 0.

The effective potential is obtained by specializing to static
classical field configurations (i.e., ¢(¢#) = constant) in the
effective action. Some tedious algebra finally gives (see
Appendix A for details)

1(/F 2
V(‘P:¢o)=5<%> / dr g\0)

N 2)G()F (9)(52)"
o+ C[(E9) T
— (9 = o), 27)

where the term proportional to (%)2 is the “classical” con-
tribution to the potential (i.e., the term that does not depend
on the noise amplitude A) and the term proportional to
the noise amplitude A is the “fluctuation” contribution (i.e.,
the one-loop correction to the classical potential due to the
noise). Note that due to the specialization to static classical
field configurations, the effective potential is now a function.
Equation (27) gives the effective potential corresponding to
differential equations of the type (9) subjected to multiplica-
tive Gaussian time-translation invariant noise. It is one of
the main results of this paper, and we illustrate the use (and
comment on the physical significance) of Eq. (27) in Sec. IV.

A few comments are in order here. First, it is easy to check
that the effective potential for the additive noise case (origi-
nally derived in Ref. [42]) is recovered by setting G(¢) = 1
in Eq. (27), as expected. Second, note the appearance of the
integral of the inverse noise shape function in the “classical”

=J(@). (26)

A dw
— | ——In
(2m)
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term in Eq. (27). Its origin can be traced back to the classical
action (25) specialized to static field configurations. In the
following we require that the shape function g(¢) satisfies

/dt gl =1, (28)

or in Fourier space §~!(w = 0) = 1. This requirement serves
two purposes. First, it allows one to give a precise meaning to
the noise amplitude A and the shape function g(¢). In principle,
the decomposition (20) is arbitrary, so normalizing g(7) fixes
the value of A (as discussed in Ref. [42]). The second purpose
is to remove any remnant of the noise in the tree-level part of
the effective potential. In ordinary quantum field theory, the
tree-level part of the effective potential does not depend on
fluctuations. Similarly, when A = 0 (no fluctuations), the SDE
(9) becomes a deterministic differential equation, and thus its
potential should also not depend on the shape of the noise.
Thus to complete the analogy with ordinary quantum field the-
ory we impose the condition (28). Third, Eq. (27) represents
the first two terms in a loop expansion in the noise amplitude A
(in analogy to the 7 expansion in quantum mechanics) and the
only assumptions entering into it is that the noise is Gaussian
and satisfies the normalization condition (28). It is possible
to perform analytical computations with Eq. (27) within per-
turbation theory, but that does not necessarily mean that A is
small; an explicit example of this is provided in Sec. IV.

The effective potential is a construct that is widely used in
particle physics to study symmetry breaking in the presence
of quantum fluctuations [46]. Its construction and interpreta-
tion in the context of stochastic partial differential equations
subjected to additive noise has been carefully laid out in
Refs. [42-45]. Some salient physical interpretations and prop-
erties (in the context of SDEs) include (i) stationary points of
the effective action correspond to the stochastic expectation
values of the field in the absence of an external current; (ii)
the effective potential governs the probability that the time-
average of the field takes on specific values (read: space-time
average, when spatial dependence is included); (iii) the effec-
tive potential can be used to obtain the effective “equations of
motion” in the presence of noise. This latter result is perhaps
the most interesting application from the point of view of
SDEs, since it implies that we can calculate exactly how
the noise shifts the values of the fixed points (we show that
explicitly in a toy model example in Sec. IV). The effective
potential has many applications in the context of SDEs. See,
for example, Ref. [43] for an application to the Kardar-Parisi-
Zhang equation, where a hydrodynamical interpretation of the
dynamical symmetry breaking is discovered and treated using
the one-loop effective potential.

In this paper we instead use the effective potential (27)
to renormalize the parameters appearing in certain classes
of Langevin equations (see Sec. IV for an explicit example).
Said differently, we are not interested in actually solving the
said Langevin equations. The solutions themselves are not
relevant to the application of our renormalization objectives.
The constant (stationary) fields that appear in the argument of
our effective potential construct are the static solutions of the
classical equations of motion, obtained from the first variation
of the classical action (as discussed in details in Ref. [42]).
Our effective potential is expanded about static deterministic

classical field configurations, and then the one-loop correc-
tion is calculated in perturbation theory. We expand our
effective potential around stable stationary deterministic con-
figurations, which guarantees the convexity of our effective
potential. Note that stationarity is defined exactly thus and not
via stationary probability distributions of the stochastic field
(i.e., not via solutions of the Fokker-Planck equation). We do
not require nor need the stochastic field ¢ to be stationary but
instead the classical field ¢, as it is defined above.

IV. APPLICATION OF EFFECTIVE POTENTIAL
METHODS TO A TOY MODEL

The existence of noise in concert with (nonlinear) inter-
actions leads to temporal (and/or spatial) scale dependence in
the parameters of SDEs. And this scaling can be accounted for
quantitatively by solutions of the corresponding RG equations
(see Refs. [20-23] for examples of computation of running
parameters using perturbative RG techniques). Just as in quan-
tum field theory, our one-loop effective potential for stochastic
field theories (27) can be used to identify and then calculate
these renormalization group equations and hence to obtain the
scaling in the SDE parameters. The scientific significance is
this, namely, the dynamics of a stochastic system is modified
as we change the scale at which the phenomenon is being
observed (probed, measured). Since the dynamics is governed
by the stochastic equation of motion (i.e., the Langevin equa-
tion), we are interested in seeing how the parameters in the
Langevin equation scale. Note that our entire analysis is fo-
cused on the differential equation itself and not on its solutions

To illustrate the use of effective potential methods to renor-
malize SDEs subjected to multiplicative noise, we consider
the following toy model:

Y e —rp 297+ 0, (29)
dt
where r and A are parameters and 7(¢) is a noise term. The
toy model is the same as the one presented in Sec. II, except
that the noise term multiplies ¢% instead of ¢. In chemistry,
fractional exponents in rate laws could represent the pres-
ence of intermediate chemical steps happening at rates that
are faster compared to the “slow” reaction 2¢p + U — 3¢.
Assuming that some of those intermediate chemical steps
are light sensitive, then one could subject the chemical reac-
tion to noisy light and measure its effects on the dynamics.
Comparing these measurements to the predictions from the
renormalization group, it might be possible to gain insight into
those intermediate steps (see Ref. [15] for details on how the
renormalization group can be used to find clues about internal
mechanisms of chemical reactions).

Again, for the purpose of illustration, we choose the noise
to be Gaussian with second-order moment given by Eq. (20),
or in Fourier space,

(H(@)i(@")) = Ag(w)s(w + o) (30)
with
8(w) = 1+M, (€1))
wo
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where w( is some reference frequency scale. It can be
checked that the noise shape function (31) satisfies the
condition (28). This Gaussian power-law colored noise has
short time correlations and is the simplest noise that leads
to ultraviolet (UV) divergences in the effective potential
(as we show explicitly below). These UV divergences re-
quire renormalization and lead to the running of parameters

J

(such as the removal rate r, see below). Note that white
noise does not lead to any UV divergences and thus can-
not be used as an illustration of our effective potential
method.

To renormalize this toy model, we first obtain the effective
potential using Eq. (27), with F(¢) = r¢ — A¢? and G(¢p) =
4)%. The result is

2)(Z2)(re — 2p?)

2 2
0)2 4 r ’%r)L + 9A 2

V(p, o) = —(r @ —2rag* + A2ph) + = / (Czlw) In [1 + } — (¢ = @o)- (32)

The first term is the “classical” potential, and the second term (proportional to A) is the noise correction to the classical potential.
One way of renormalizing the toy model (29) is to first expand the logarithm in the effective potential (32):

oo

do 1y [ @) () g~ 1%)
(2m )Z n [ 2 — (¢ = ¢o). (33)

r2 2
@+ 54— Bo + 2og?

V(. g0) > —(r ¢ = 2rig® + 3297 +
Since g(w) ~ |w|, we see that only the n = 1 term in the above expansion is UV divergent (i.e., it is the only term for which
the integral is divergent for large frequencies). Recall that UV divergences are due to short time correlations, and the program
of renormalization is to absorb these UV divergences into the parameters of the model. This “sweeping under the rug” of these
divergences leads to the running of those parameters with scale (e.g., [46]). Keeping only the divergent term, we have

30 [ do 3(w)(—rp + 1p?)
Vg, 9o) ~ —(r 0 =22’ + 22N + == | = & ) - S| = (@~ o). (34)
8 J @) TPt T

The field-dependent terms in the denominator correspond to infinite resummations of self-energy diagrams in the propagators

(as expected from one-loop effective potentials, see, for example, Ref. [46]). Expanding the propagator, we obtain

(g, 9o) ~ —(r @ —2rag* + 2297 + =

Since g(w) ~
obtain

30A
(g, 9o) ~ —(r @ — 2rhg* + 227 + ——

8

To obtain the corrections to the parameters, we look at the
coefficients in front of each power of the field. The coefficient
in front of ¢ is

1 3)A d g
Lp YA [ Ao s©) (37)
2" T8 e etz

and the one in front of ¢ is

1 3124 do 2w)
—E(Zrk) + . (38)
4

8 Q2m) w?+

From corrections (37) and (38), we infer that only the removal
rate r gets a correction at one loop. The bare removal rate r
can thus be written as (e.g., Ref. [46])

(+9

rn=r+C = Z.r, 39)

3.4 de)ro + WA (e + %9
<2n> W+

2 2 )+ i|_(§0_>(p0)
+4

(35)

|w|, we see that only the first term in the second bracket is UV divergent. Keeping only this divergent term, we

do [g(wx—rso + Ag?)

— ) 36
) w2+% } (¢ — @o) (36)

(

where C is the minimal counterterm necessary to cancel the
divergence:
3)0A dw |a)|

C= 8a)0 (271) _. (40)

Regulating the integral using dimensional regularization (e.g.
Ref. [46]) and performing the integration, we get

34D [ dw o
8wo J Qn) w2tz
1
2

NAD 1 (2}
= @r(1) F@meEy

where A® is to indicate that the noise amplitude has engi-
neering dimensions that depend on the analytically continued
time dimension. Expanding around the logarithmic pole using
z=1—¢€, we get

C=-—

(41)

3AA@ 1
C=-— — + finite, 42)
8wy €
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where “finite” means terms that are finite as ¢ — 0 and which
can be dropped for the purpose of finding the running of r.
Using the above, the Z, factor can be written as

3n@ 1
Z, =1- -, (43)
8 €
with the effective dimensionless rate
2A® A
" = = 71! hTe!, (44)
ra rwgo

where T is some arbitrary temporal scale. To find the running
of h, we start from

LAY 1A 1
B =220 T = —hT™. (45
rowo er(,()() Z,

Taking the derivative with respect to the arbitrary scale 7 on
both sides of Eq. (45) and using the fact that the bare effective
rate hy cannot depend on the arbitrary temporal scale T, we
obtain the running of the effective rate with scale:

(46)

Reverting to the original parameters of the model, we finally
obtain the running of the removal rate r at one loop:

T dr n 3 0 @7
— = —€r+ ——.
dT 87 wo
The solution to Eq. (47) in the € — 0 limit is
3 )0A T
r(T)y=r(T*)+ ——1In{—), (48)
81 wy T*

where T* is some timescale at which r(7T*) is known and can
be measured. This result is valid when perturbation theory is
valid, i.e., when the effective dimensionless rate /4 is smaller
than 1 [see Eq. (44)]. Note that this not necessarily implies
that the noise amplitude is small but that the combination of
parameters in 4 is small.

The physical significance of Eq. (48) can be understood by
an analogy with particle physics. For instance, the properties
of an electron (e.g., its electric charge e) can be inferred by
probing it using a beam of particles with a certain energy.
Since the vacuum surrounding the electron is filled with vir-
tual particles (quantum fluctuations), the electric charge of
the electron is screened by this cloud of virtual particles.
Consequently, the measured electric charge depends on how
much the beam of particles penetrates into the cloud and thus
on the probing beam energy. Said differently, the charge of the
electron depends on the beam energy e(E), and its variation
with energy is given by an equation similar to Eq. (48). Since
the charge varies with the energy at which it is probed, it can
only be defined at a certain reference energy E* at which it
can be measured experimentally. In our example we use the
noise itself as a probe of the chemical reaction represented
by Eq. (29). The arbitrary timescale T is akin to the energy
E in our particle physics analogy and represents the coarse-
graining scale of the noise.

For fixed values of the noise amplitude A, rate of catalysis A
and reference frequency wy, Eq. (48) shows how the removal
rate r varies with the “probing” timescale T. The scaling of
the system can be seen from Eq. (48): when the timescale T

0.45
0.40 |
0.35
0.30
—~ 0.251,~
T 0.20
0.15
0.10
0.05

0.00 T T T .
0.0 0.2 0.4 0.6 0.8 1.0

TIT

FIG. 1. Plot of the running removal rate as a function of the scale
T /T* (dashed blue line) compared to the situation without noise (red
solid line). We used A, = 0.5, L = 0.05, wy = 0.2, r(T*) = 0.3 for
the plotting. The shaded region indicates breakdown of perturbation
theory (i.e., h > 1 for r < 0.13).

---- With noise
—— Without noise

——

is rescaled from say 7; to 7, and the removal rate from (7))
to r(T3), then the system dynamics remains unchanged.

A plot of the running of the removal rate is shown in Fig. 1.
The results indicate that noise decreases the removal rate
at smaller temporal scales, which constrains possible “fast”
chemical mechanisms. The corresponding effective potential
can be obtained by substituting the running removal rate (48)
into the “classical” potential %(g)z [see Eq. (27)]. A plot of
this effective potential is shown in Fig. 2. As explained in
Sec. VII of Ref. [42], the effective potential governs the proba-
bility distribution of the time average of the fluctuating field ¢,
and minima of the effective potential correspond to maxima of
the probability density of the time-averaged field. As shown in

0.200
—— Classical potential I

0.1757 ____ Effective potential ;

0.1501 '
0.1251 ;
§ 0.100 1 J
0.075 g
0.050 1 /
0.0254{ em====~- - /

0.000 - —= .
0 2 4 6 8 10

FIG. 2. Plot of the effective potential as a function of the field
¢ for T/T* = 0.1 (dashed blue line), compared to the “classical”
potential (red solid line). Note the presence of a shifted minimum (or
“ground state”) for the effective potential. We used A, = 0.5, A =
0.05, wy = 0.2, r(T*) = 0.3 for the plotting.

062142-7



GAGNON, HOCHBERG, AND PEREZ-MERCADER

PHYSICAL REVIEW E 102, 062142 (2020)

Ref. [45] for additive noise, a shift in the effective potential’s
minima implies a shift in the fixed points of the original SDE
(without the noise term) and can have important effects on
the stability of patterns in reaction-diffusion systems. In the
present toy model example, Fig. 1 shows that the removal
rate is influenced by the noise, and the shift in the effective
potential minimum shown in Fig. 2 indicates the extent by
which concentration fixed points are modified by the noise.
Note that the effective potential method used here cannot
be used to obtain wave-function renormalization due to the
restriction to static classical fields when going from Eq. (24)
to Eq. (27). This situation is similar to quantum field theory.
For a full treatment of wave-function renormalization it is
necessary to analyze the effective action [cf. Eq. (24)].

V. DISCUSSION AND CONCLUSION

A vast range of physical, chemical, and biological phe-
nomena subject to noise and random fluctuations can be
investigated by straightforward applications of path integral
methods adapted to handle stochastic phenomena. Provided
the phenomenon under study admits a mathematical model-
ing via nonlinear SDEs subject to additive or multiplicative
noise, then a very useful construct known as the effective
potential can be defined and explicitly calculated which is
intimately related to the probability distribution function of
the coarse-grained degrees of freedom. Note that although we
only consider stochastic ordinary differential equations in this
paper, the effective potential formalism we developed here
for multiplicative noise has been generalized and applied to
stochastic partial differential equations subjected to additive
noise [42-45].

Normally, out-of-equilibrium SDEs do not admit a descrip-
tion in terms of potentials (although see the discussion below),
but it has been shown in Refs. [42-45] (for additive noise) and
in the present paper (for multiplicative noise) that a parallel
can be established with the situation in quantum field theory
and a potential derived that has two major pieces: a “classical”
contribution plus a “fluctuation” contribution. The classical
contribution plus the fluctuation contribution determine the
ground state of the system, and therefore the effective poten-
tial allows for the determination of the effects of the noise and
fluctuations on the ground state of the system, which could be
useful in the study of patterns of symmetry, for example.

The fluctuation-dependent piece of the potential involves
integrations over frequency (and wave-number domains,
when generalized to partial differential equations). These in-
tegrals require the introduction of a cutoff, which through
renormalization leads to a scale dependence of the parameters
of the reaction-diffusion equation and therefore has an effect
on the type of instability which controls the behavior of the
system. This is illustrated with a toy chemical model in the
present paper, where we show explicitly that a specific pa-
rameter of the model (i.e., the removal rate) develops a scale
dependence when multiplicative power-law noise with short
scale correlations is present. Although the results are obtained
in perturbation theory, it shows how the effective potential can
be used to incorporate the effects of nonlinearities and random
fluctuations in the dynamics of out-of-equilibrium systems
described by SDEs.

To summarize, the existence of fluctuations (noise) to-
gether with interactions leads to scale dependence in the
parameters and couplings of stochastic systems, in which case
the physical and/or chemical effects of these fluctuations can
be accounted for quantitatively by solutions of the correspond-
ing RG equations. These RG equations, which govern the
above-mentioned scale dependence in the model parameters,
can be conveniently obtained from an effective action and
effective potential construct. The explicit solutions of the SDE
are not needed in order to set up and calculate (perturbatively,
at one-loop order) these effective actions or potentials. This is
one clear benefit of this approach insofar as we are only inter-
ested in uncovering the scale dependence of the model param-
eters but not the solutions per se of the SDE. Thus the purpose
of performing these “formal manipulations” is to obtain the
effective potential whose divergence structure leads directly
to obtaining the desired RG equations. Finally, the solutions
of these RG equations yield the scale dependence or running
parameters, giving us insight into how the fluctuations to-
gether with the (generally nonlinear) interactions induce scale
dependence in one or more of the model parameters. Such a
scale dependence implies that the value of the parameter de-
pends on the scale of (the temporal and/or spatial) resolution
at which the measurement or observation is made. Hence the
dynamics of a (chemical) system evolves as we change the
scale at which the (chemical) phenomenon is being observed.

It is important to mention that the effective potential
construct discussed here [see Eq. (27)] is only valid when
condition (28) is satisfied and for Gaussian noise [see
Eq. (20)]. Note that this does not imply Gaussian fluctuations
of the fields, and although this limits the scope of the method,
it is sufficient for many practical applications (especially if the
noise is external and under the control of the experimentalist).
In addition, the same limitations that apply to the description
of phenomena in terms of SDEs also apply to the present
method. For instance, when effects due to a low number of
constituents are important (intrinsic noise), an approach based
on the master equation (e.g., [11,47,48]) is more appropriate
(see also [49,50] for a mapping between field theory and
the master equation, with applications to the renormalization
group).

The notion of effective potential in particle physics is well
developed and is derived from a field theory viewpoint. Its
generalization to SDEs is subtle, but it has been shown in
Ref. [42] that the main characteristics of the effective potential
that are found useful in particle physics carry over to the SDE
case. On the other hand, there exists other ways of defining
a potential for dissipative systems and SDEs [51-53]. These
other stochastic potentials have been studied extensively, and
it has been shown that they are not analytic in general (e.g.,
derivatives of the potential diverge near a bifurcation [54]).
Whether or not there is a direct connection between stochastic
potentials and the effective potential construct presented here,
and that it is subject to the same limitations, is interesting and
left for future work.
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APPENDIX: OBTAINING THE EFFECTIVE POTENTIAL
FROM THE EFFECTIVE ACTION

To obtain the final expression for the effective potential
(27), we start from the effective action (24):

5*S[¢] )

A
Fle. g0l = Slol + 5 [m det (W

—InJl¢] —In i*[w]} — (¢ = @), (AD)

and specialized to constant classical field configurations. For
¢ = constant, the classical action becomes

/dt/dt [m<—+ (¢ ))}
e ”[G(l >(%+ (*")ﬂ

3 [ fa (GEQ) e
= %(%) /dt g @), (A2)

where we used Eq. (20) and the fact that the noise is time-
translation invariant in the last step. The 7 factor represents an
infinite time volume that cancels when defining the effective
potential (see below).

S(e)

J

8’Slgl _ GF

To obtain the one-loop correction to the classical action,
we need to compute the various terms in the square bracket
of Eq. (Al). Let us start with the first Jacobian term. For
¢ = constant, the logarithm of the Jacobian term becomes [cf.

n (p = Indet| —— + N

where we suppressed the dependence on ¢ for F (¢) and G(¢)
to simplify the notation. To evaluate the logarithm of the
determinant, we use the standard formula (e.g., [46])

Indet X (¢, t)_T/ﬁ InX (w), (A4)
valid for any time-translation invariant operator. Again, the 7
factor represents an infinite time volume. Using Eq. (A4), the
logarithm of the Jacobian becomes

—iw F\
In j(fﬂ) T/ 27 [7 + (5) ] (AS)

The Hermitian conjugate of the Jacobian term is done in a
similar way:

Foy= T [ 42 e (EY
1nJ(<p)—T/(2n) ln[G+<G>:|. (A6)

To compute the first term in the square bracket of Eq. (Al),
we need to functionally differentiate the classical action S[¢]
twice with respect to the classical field ¢ and then specialize
to constant classical field configurations. This gives

1 4 —1
r[a’[g gt/ T)J}S( )+GFd[g " —1)]

Sp)sp(t)  G3 G? dt’
L[ dg (' —olds -0l _ F dlg™ @ —1)]
—— [dt _
G? dt’ dt G2 dt’

+5<5>”/d gt — D)8 —1) — G/—F<E> 1 —1)
c\G T8 ’ \c)¢

1 (F\ _ d[é(t —1)] F'(F\ _
—\| = d ! t— 1) ——= —| = ! t'—t s A7
XG(G)/T[g( 7) e }JrGGg( ) (AT)
where we used the chain rule:
ax X [plde(t
le] _ $Xlglde() (A8)
dt de() dt
To compute the logarithm of the determinant of §2S[¢]/8¢(t)8¢(t'), we apply formula (A4) to Eq. (A7), which gives
8%S[e] dw G'F 1 1 25! 1 F(F\"
Indet| ——— ) = — —iw)g~ —w g ———' g~ —(=) & =0
nde (8(p(t)8(p(t’)> T @) n[ o (Tl (@) + Zeg (@) - (—ie)d (w)+G<G> § (=0
G e+ L(EY Ciog @+ E (£ &) (A9)
o \c & (w a\c iw)g (v o\ G & (w)|.
In analogy with quantum field theory, we define the effective potential as (e.g., [46])
Ll, wol = TV(9, ¢0), (A10)

where we specialized to static classical field configurations (which is why the effective potential is now a function instead of a
functional), and the factor 7 is equal to the time volume over which the functional integral is taken. Collecting all pieces [i.e.,
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Egs. (A2), (A5), (A6), (A9)], we can write down the effective potential:

1/F\? A d GF | .
(_> Jasos | (2_:){1“[ (i) (@) + 50 @) = o (i) @)

V(g 9o) = \G e

F(F\" GF(FY,_, L(F\ . . F' (FY .,
+5<5) _F<5>g (a))+5<5) (—iw)g (w)+6(5>g (w)i|

L] ()] e

where we used the normalization condition (28). Simplification of the above expression gives the effective potential in Eq. (27).
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