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Virial–potential-energy correlation and its relation to density scaling for quasireal model systems
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In this paper, we examine the virial- and the potential-energy correlation for quasireal model systems. This
correlation constitutes the framework of the theory of the isomorph in the liquid phase diagram commonly
examined using simple liquids. Interestingly, our results show that for the systems characterized by structural
anisotropy and flexible bonds, the instantaneous values of total virial and total potential energy are entirely
uncorrelated. It is due to the presence of the intramolecular interactions because the contributions to the
virial and potential energy resulting from the intermolecular interactions still exhibit strong linear dependence.
Interestingly, in contrast to the results reported for simple liquids, the slope of the mentioned linear dependence is
different than the values of the density scaling exponent. However, our findings show that for quasireal materials,
the slope of dependence between the virial and potential energy (resulting from the intermolecular interactions)
strongly depends on the interval of intermolecular distances that are taken into account. Consequently, the
value of the slope of the discussed relationship, which enables satisfactory density scaling, can be obtained.
Interestingly, this conclusion is supported by the results obtained for analogous systems without intermolecular
attraction, for which the value the slope of the virial–potential-energy correlation is independent of considered
intermolecular distances, directly corresponds to the exponent of the intermolecular repulsion, and finally leads
to accurate density scaling.
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I. INTRODUCTION

The first report on the density scaling of a real material
[1,2], which had been published at the turn of the century, sig-
nificantly stimulated studies on this property of supercooled
liquids. The main reason for researchers’ continuing fasci-
nation with phenomenon is the fact that it straightforwardly
links the thermodynamics and dynamics of liquid based on
the simple relationship,

X = F (T υγ ), (1)

where X is a dynamic quantity characterizing the system (e.g.,
structural relaxation time, viscosity, or diffusion constant),
T is the temperature, υ denotes specific volume, and γ is
material-dependent constant. Extensive experimental works
confirm that the presented form of the scaling is successfully
fulfilled for more than 100 materials [3]. It must also be noted
that despite remarkable universality, the form of scaling has
another great virtue. The density scaling gives insight into
the nature of intermolecular interactions occurring within the
system because the scaling exponent, γ , is directly related to
the repulsive part of intermolecular potential [4–8]. The latter
implies that the density scaling is reflected in liquid proper-
ties such as reported virial- and potential-energy correlation
[9,10], pressure densification [11], as well as in the physical
aging of the glasses [12].
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Among the aforementioned features of supercooled liq-
uids, the virial- and potential-energy correlation deserves
particular attention because it constitutes the framework of the
isomorphs concept and relates it to the R-simple (Roskilde-
simple) liquids [13]. Moreover, it finally led to the proposition
of the redefinition of the classical term of the simple liquids
[14]. R-simple systems exhibit strong correlation between
fluctuations of virial and potential energy, where the γ is
a proportionality constant [10,15–18]. These liquids possess
curves in their phase diagram linking isomorphic states at
which several dynamic and statistic properties are identical.
Consequently, the commonly examined particle distribution
functions, normalized time-autocorrelation functions, as well
as the transport coefficients, are invariant along the isomorphs,
when they are expressed in so-called reduced units. Since the
difference between scaling employing unreduced and reduced
units is negligible in the supercooled regime, the density scal-
ing rule, given by Eq. (1), is commonly fulfilled for the model
as well as real liquids. Therefore, it is not surprising that a
huge scientific effort has been made to examine the virial-W
and potential-energy U correlation. The computational exper-
iments on model systems revealed that in general γ varies
with the thermodynamic conditions [6,19]. However, given
that many real liquids accurately fulfill the density scaling rule
with a constant value of γ even for a very wide temperature-
pressure range [20,21], a passionate debate on the constancy
of γ is permanently ongoing in the literature [8,22–25].

Although the exact definition of R-simple liquids is intro-
duced in Ref. [13], their initial name, i.e., “strongly correlating
liquids,” is used in the series of five papers devoted to the
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pressure-energy correlations in liquids [10,15–18]. In the first
paper, the authors introduced strongly correlated liquids as
those exhibiting strong correlation between fluctuations of
virial �W and potential-energy �U . The correlation is sug-
gested to be quantified by the Pearson coefficient R of the
equilibrium fluctuations

R = 〈�W �U 〉√
〈(�W )2〉〈(�U )2〉

, (2)

where � denotes instantaneous value of given quantity minus
its average value and 〈〉 means constant-volume canonical
averages [10]. Liquids which exhibit R � 0.9 are recognized
as strongly corelated and for them �W is a linear function
of �U with the slope equal to γ . The latter can be directly
calculated from [17]

γ = 〈�W�U〉
〈(�U )2〉 , (3)

which simultaneously gives the least squared of linear regres-
sion best-fit slope of W (U ). However, at this point, we would
like to recall that the perfect correlation between virial- and
potential-energy fluctuations is a case for the system with
pure inverse power-law (IPL) pair potential [14], for which
pair potential is proportional to r−n

i j (ri j is a distance between
two molecules, n is a potential parameter). This fact results
directly from internal virial definition,

W = −1

3

N∑

i=1

ri ∇iU , (4)

where ri is a position of the ith particle and U is a total
potential energy [26,27]. Nevertheless, considering more re-
alistic models, e.g., system described by the Lennard-Jones
potential, a standard potential for liquids, one should take into
account that the vast majority of �W and �U comes from
molecules separated by the relatively short distances, i.e.,
distances at which Lennard-Jones potential can be accurately
approximated by IPL. Hence, systems with an attractive part
of intermolecular potential may also exhibit strong correlation
[10]; e.g., density scaling is observed for the van der Waals
liquids or ionic liquids [3,28]. A different scenario might be
observed in the case of associated liquids. The presence of the
hydrogen interactions essentially modifies intermolecular po-
tential leading to the breakdown of the discussed correlation
[29,30]. However, in the case of the real materials one crucial
problem must be noted. The direct experimental examination
of the correlation between �W and �U is not accessible, and
therefore its existence can be concluded only on the basis of its
consequences, e.g., validation of the density scaling [defined
by Eq. (1)].

In this paper, we unify the results of computational stud-
ies made on simple-model systems with those obtained by
examinations of the real materials. Based on computer sim-
ulations of quasireal molecules, which exhibit the simplicity
of the common model systems but simultaneously mimic the
crucial features of the real molecules, we examine in details
the correlation between instantaneous W and U . Our findings
show that, in general, �W and �U are entirely uncorrelated if
one considers “realistic” molecules. However, instantaneous
contributions to W and U originating from intermolecular

interactions might still exhibit strong mutual dependence. In-
terestingly, the value of the slope of this linear relationship
is different than the density scaling exponent. Hence, the
presented herein observations not only change the general
understanding of WU correlation, but they also question its
direct relation to the density scaling.

The existence of isomorphs naturally is connected with
the form of the intermolecular potential of simple liquids
[26,31–33]. Nevertheless, the reasons for the existence of a
strong WU correlation for real materials are not evident. It is
mainly because the real molecules possess anisotropic shape,
which means that IPL cannot describe their (anisotropic) in-
termolecular potential. Taking this fact into account we would
like to briefly recall that the correlation between �W and �U
has been previously examined for a few model systems com-
prising molecules of nonspherical shape. Performed research
revealed that the asymmetric and symmetric dumbbell-shaped
molecules [34,35], Lewis and Wahnström model of ortho-
terphenyl (OTP) [36,37], and freely joined chain of atoms
[11,38], exhibit the strong �W and �U correlation and they
obey the density scaling law [5,11,38]. However, at this point,
we have to note that all of those systems possess rigid bonds,
which is crucial for WU correlation because bond interactions
contribute to the virial as well as to the potential energy of
the system. The problem is indirectly taken up in Ref. [35],
where contribution to W resulting from the constraint of
bonds is estimated for rigid dumbbells and an entirely rigid
model of OTP. The exclusion of contribution resulting from
constraints decreases γ values and increases R value. Hence,
it improves �W and �U correlation. Interestingly, through
the last decades, the direct examination of WU correlation
for the system with the flexible bonds has been shown only
for two model systems [39,40]. The authors pointed out that
the existence of the flexible bonds destroys the correlation
between �W and �U for the 10-bead chain of Lennard-
Jones (LJ) particles and the asymmetric dumbbell molecules.
However, both systems obey the density scaling law, and
therefore the existence of the pseudoisomorphs in liquids with
the intramolecular degrees of freedom has been suggested
[40]. Then, the dynamics of liquid with lack of the WU corre-
lation remains unchanged along pseudoisomorph, which can
be determined from a single equilibration configuration. The
thermodynamic states characterized by the same dynamics are
characterized by the identical low-frequency vibrational spec-
tra of the inherent structure expressed in the reduced units.
However, finding thermodynamic states of interest using the
suggested method is complex, and requires determination
of the inherent structure spectra for many states, which are
subsequently compared to the reference one. Moreover, the
form of the connection between intermolecular potential, WU
correlation, and density scaling exponent remains unclear.

II. RESULTS

Taking the above into account, we use our recently pro-
posed model of rhombuslike molecules (RMs) [7,8,41] and
we study the WU correlation in order to propose an alternative
approach to the relation between W , U , γ , and the intermolec-
ular potential. At this point, it is worth mentioning that the
difference between a typical model system and the quasireal
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system used here is that the parameters of the intra- and inter-
molecular potentials of quasireal molecules are defined on the
basis of the real atoms. Consequently, the relation between
intra- and intermolecular forces has a practical justification.
The difference between the real and quasireal molecules is the
kind of atoms used and the modeled structure of the molecule.
For example, RM is constructed of four identical atoms ar-
ranged in the rhombus shape, which is characterized by the
ratio between diagonals equal to two. This scenario cannot
be realized in reality. However, since the created molecule
possesses only one type of atom, which implies only one
type of interatomic interaction, it is much more convenient
for examination than the real molecule of a similar structure;
see Supplemental Material [42] for the scheme of the RM.
The interactions between nonbonded and bonded atoms are
set using the parameters of the OPLSAA force field defined for
carbon atoms in aromatic ring [43]. Based on our previous
results [7,8], we chose three isochoric conditions, i.e., condi-
tions at which molecular volume υm = V/N (N is a number of
molecules, V is the volume of the system) equals 0.075, 0.085,
and 0.095 nm3. Subsequently, we simulated RM at conditions
of constant temperature and volume using Nosé-Hoover ther-
mostat implemented in GROMACS software [44–49]. Data are
collected from the half of a total simulation time, which is
10 ns (time step equals 0.001 ps). The applied cutoff for
intermolecular interactions is set to distance rc = 1.065 nm,
which is 3 times longer than the σ parameter of LJ potential
describing nonbonded interactions. The chosen temperatures
vary from 50 to 200 K, which results in a pressure range of
1.2 GPa (see Supplemental Material [42] for the temperature
dependence of the pressure).

In order to confirm the density scaling for RM, the
diffusion constants, D (determined from mean-square dis-
placement), and relaxation times, τ (estimated on the base
of incoherent intermediate scattering function of molecules’
centers of mass) expressed in the reduced units, which are
denoted by ∗ and defined as D∗ = (υ−1/3

m

√
m/kBT )D and

τ ∗ = τ/(
√

m/kBT υ1/3
m ) (where m is the molecule mass and

kB is the Boltzmann constant) are plotted as a function of
T υ

γ
m in Fig. 1. As one can see, being consistent with the

isomorph theory [17], D∗ and τ ∗ accurately scale with the
same γ = 6.173. The value of the density scaling exponent
has been estimated using the linear dependence of log10(T )
on log10(υm) resulting from Eq. (1) at a constant value of D∗;
see Refs. [7,8] for details. The error of γ value is equal to
0.163.

Since the RM satisfies the density scaling and the value
of the density scaling exponent is known, we can examine
the correlation between instantaneous W and U . However,
the total potential energy Utotal of RM consists of the term
related to the interaction between nonbonded and bonded
atoms. Hence, the potentials of intermolecular, bond, bond-
angle, and dihedral-angle interactions must be taken into
account. At this point, we have to stress that the contribu-
tion of purely angle-dependent terms to the virial is zero
[50]. Hence, Utotal = ULJ + Ubond + Uangle + Udihedral, whereas
Wtotal = WLJ + Wbond.

The WU correlation is examined on the example of the
following thermodynamic conditions, T = 200 K and υm =
0.0075 nm3. In the panel Fig. 2(a) one can clearly see that

FIG. 1. The density scaling for RM with constant value of γ

determined as a slope of linear dependence of log10(T ) on log10(υm )
at constant value of D∗.

there is not any correlation between instantaneous Utotal and
Wtotal. On the other hand, instantaneous values of WLJ and ULJ

resulting from nonbonded interactions are almost perfectly
correlated, R = 0.993; see Fig. 2(b). Hence, we can suspect
that WLJULJ correlation is broken by the contributions orig-
inating from intramolecular interactions, similarly to results
presented in Refs. [39,40]. It is because the intramolecu-
lar interactions are described by harmonic potentials, which
cannot be approximated by an IPL. It has to be noted that
the harmonic form of intramolecular potentials is not only a
matter of choice but it has a theoretical basis. Consequently,

FIG. 2. The dependence of the instantaneous values of total virial
on total potential energy is presented in (a). The contributions to Wtotal

and Utotal resulted from intermolecular interactions and from bond
interactions are shown in (b) and (c), respectively. The red line in
(b) represents the fit linear function. In (d) the sums of contributions
shown in (b) and (c) are depicted.
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FIG. 3. The values of γLJ (top) and corresponding to them R
(bottom) calculated at various thermodynamic conditions are shown
in (a). In (b) the dependence of γLJ on the radius of the sphere
embracing interacted atoms are presented. In (c) the values of the
γLJ obtained for the interatomic distance located within the interval
of width equals 0.02 nm is plotted as a function of the positions of
the interval centers. The vertical dotted lines represent the borders
between subsequent intervals. Solid lines are fits to the exponential
function of the obtained results.

no correlation can be expected between instantaneous con-
tributions to W and U from intramolecular interactions; see
Fig. 2(c), where results for bond interactions are presented.
Moreover, it can be seen in Fig. 2(d) that the addition of
even one intramolecular interaction to W and U completely
destroys the correlation between them. Summarizing, from
Fig. 2 it is evident that WtotalUtotal correlation cannot hold for
real liquid. Hence, only intermolecular interaction would be
responsible for the density scaling, if its relation with WU
correlation is valid for the real materials.

III. DISCUSSION

In Fig. 3(a) we present R and γLJ values estimated on
the base of WLJULJ correlation for all studied thermodynamic
conditions. It is worth noting that only at T = 60 K and υm =
0.0095 nm3 is R less than 0.9 and hence it does not satisfy
the proposed definition of R-simple liquids. Nevertheless, as
we present in Fig. 1, τ ∗ and D∗ determined at mentioned ther-
modynamic conditions can be accurately scaled together with
all remaining data. However, the most puzzling observation
which can be drawn from Fig. 3(a) is that although VLJ and ULJ

are almost perfectly correlated, none of γLJ values calculated
from Eq. (3) exceeds 6.0. It implies that the average γLJ cannot
be equal (or even close) to the expected 6.173. Consequently,
density scaling using values shown in Fig. 3(a) is not valid;
see Supplemental Material [42] for the density scalings with
a state-dependent γLJ, the average for each isochrone, and
the average over all studied thermodynamic conditions. The
key finding is that none of those scalings can be recognized
as valid. Hence, one can suspect that despite the correlation
between VLJ and ULJ occurring for the quasireal liquids it

is not directly responsible for its density scaling. On the
other hand, all the progress which has been achieved due to
the studies on the simple liquids leading to constitution that
W = γU + const. cannot be simply ignored. Therefore, we
would like to again point out the cardinal difference between
typical simple liquids and the real materials, which is the
shape and then the interaction anisotropy. Since simple liquids
comprise monatomic molecules their intermolecular potential
is entirely spherically symmetrical. Then, it does not vary
when relative orientation of molecules changes. This means
that it can be approximated by an inverse power law with
constant parameters independent of the relative orientation
of molecules and distance between them. As a consequence,
atoms occupy positions determined solely by the atom-atom
intermolecular potential. This situation does not take place
for real molecular systems and for the quasireals system con-
sidered herein. In these cases, interactions between molecules
result from the many atom-atom interactions. It means that
the intermolecular potential depends on mutual orientations of
molecules. The latter implies that at given distances some mu-
tual orientations of the molecules are more probable. Taking
the above into account, we test the dependence of γLJ values
on the interatomic distance. For this purpose, we determine
γLJ considering only interactions occurring within the sphere
of radius rsphere starting from a given atom. Importantly, the
described analysis implies that the number of atoms giving
rise to the VLJULJ correlation is not identical for each rsphere.
Therefore, we divided the obtained VLJ and ULJ by a num-
ber of considered interactions. The results are presented in
Fig. 3(b), where notable oscillations of γLJ during increasing
of rsphere can be observed. However, it is worth noting that
for νm = 0.075 nm3 (red points) even the highest value of
γLJ is considerably smaller than 6.173. Nevertheless, for all
presented isochrones γLJ initially increases up to its maximal
value (a small minimum can be observed but it does not
occur for all studied thermodynamic conditions), which sug-
gests that omitting the shortest interatomic distances would
lead to higher values of γLJ. Consequently, we decided to
consider subsequent intervals of distances characterized by
width 0.02 nm. Then γLJ can be expressed as a function of the
position of the interval center, rrc; see Fig. 3(c). Consistently,
with the results shown in Fig. 3(b), at short intermolecular
distances the increase in interatomic distance causes a gain
in γLJ values. It is worth mentioning that for consecutive
intervals the obtained values are even a few times higher than
6.173 (results not presented).

At this point, we would like to draw readers’ attention to
the following important issue. The invariance of the estimated
dependences for all considered thermodynamic conditions
[Fig. 3(c)] is a consequence of the interval width, which is
relatively narrow in this case. For wider intervals, the evident
γLJ dependence on the thermodynamic conditions is observed;
see Fig. 3(b) where the interval from 0 to rsphere is considered.
The latter is a consequence of the fact that the local density
is not constant within the system. Hence, we have to stress
that the proposed herein width of the intervals is not binding.
Even more, we might suspect that the interval width should
not be identical for all types of molecules, but more probably,
it would seem to be an inherent feature of the molecular
structure (further works are required).
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FIG. 4. The radial distribution functions for atoms calculated for
the thermodynamic conditions analyzed in Fig. 3(c). The vertical
dotted lines correspond to the intermolecular distance interval within
which analysis of WLJULJ correlation results in the γrc value close
to 6.173.

Nevertheless, the sought after value of γLJ (= 6.173) could
be obtained if one considered a specific interval of intermolec-
ular distances. For example, based on the result presented
in Fig. 3(c), the centers of the intervals corresponding to
γLJ = 6.173 can be estimated describing γLJ(rrc) by the fol-
lowing function: γLJ = A exp(rrc/B) + C, where A, B,C are
the fit parameters. The solid lines in Fig. 3(c) represent re-
sults. It is worth noting that the predicted centers of the
sought after interval are obtained at practically the same
rrc. The estimated values of rrc vary from 0.3572 nm (T =
50 K and υm = 0.0085 nm3) to 0.3578 nm (T = 200 K and
υm = 0.0075 nm3) and correspond to the interatomic dis-
tances shorter than or comparable to the position of the first
peak of radial distribution function for atoms; see Fig. 4.
Thus, the interactions between the very closest atoms seem
to be responsible for the density scaling. Subsequently, the
value of γrc can be estimated taking into account interatomic
distances within intervals characterized by 0.02 nm of width,
the centers of which are placed in the predicted rrc. Con-
sidering the WLJULJ correlation within above distances, the
smallest γrc = 6.119 ± 0.009 is established for T = 50 K and
υm = 0.0085 nm3, whereas the highest one is registered for
T = 90 K and υm = 0.0075 nm3 and equals 6.160 ± 0.009.
Naturally, all obtained values are very close to each other and
are close to 6.173. Consequently, it is not surprising that all
of them lead to the satisfactory density scaling of τ ∗ and D∗
(results not presented). Additionally, it is worth mentioning
that R > 0.999 for all thermodynamic conditions considered
in Fig. 3(c). Thus, within the examined intervals, instanta-
neous WLJ and ULJ are perfectly correlated.

Concluding, the analysis of the WLJULJ correlation could
still be a useful method to establish the density scaling ex-
ponent value. However, one has to remember that a specific
interval of interatomic distances must be considered. Then,
instead of performing complex studies, which lead to the
determination of some effective intermolecular potential and

FIG. 5. The density scaling for RMIPL with a constant value of
γIPL = 4.

subsequent approximate its part by the IPL (which is analo-
gous to the method valid for simple liquid), one can directly
consider the dependence of instantaneous values of WLJ on
ULJ at only one thermodynamic condition. However, the above
statement could be accepted only if a crucial test is passed.
Namely, it must be noted that WIPL is always a linear function
of UIPL with an identical value of the slope independently
of the selected interval of intermolecular distances for the
system with a single IPL intermolecular potential. As a con-
sequence, for IPL systems, the choice of the intermolecular
distances interval is not necessary, and those systems should
obey the density scaling law with γIPL = n/3, where n is the
exponent of IPL potential. To verify this scenario, we test
RM with the intermolecular potential of single IPL form, i.e.,
RMIPL. The new system is obtained by omitting the attrac-
tive part of the LJ potential. All other characteristics of the
molecule remain unchanged. Hence, taking into account that
n for RMIPL is equal to 12, the studied system should scale
with γIPL = 4. The results are presented in Fig. 5. One can
clearly see that γIPL = 4 leads to the density scaling, with
satisfactory accuracy within a range of pressure from 670
to 2733 MPa. Additionally, we estimate the value of γ in
the way corresponding to that applied for RM, i.e., we have
analyzed the linear dependence of log10(T ) on log10(υm),
which results from Eq. (1) The obtained value of the density
scaling exponent is γ = 4.044 ± 0.071. At this point, it is
worth mentioning the work by Berthier and Tarjus [51], where
the important role of the attractive forces in the quality of the
density scaling is noted. Consequently, the tiny inaccuracies in
the density scaling, which could be seen in Fig. 5, would be a
result of the entire neglection of the intermolecular attraction.

However, at this point we have to draw the reader’s atten-
tion to important consequence of γ estimation on the basis
of WIPLUIPL correlation. Since the described above analysis
does not consider structure of the molecules [the slope of
WIPL(UIPL) is always the same if the identical form of single
IPL is used], all quasireal molecules constructed from the
same atoms should be scaled with the same γIPL, indepen-
dently of their structures. The latter conclusion seems to be
abnormal; however, when molecules can freely rotate it would

062140-5



K. KOPERWAS, A. GRZYBOWSKI, AND M. PALUCH PHYSICAL REVIEW E 102, 062140 (2020)

FIG. 6. The density scaling for TMIPL with a constant value of
γIPL = 4.

be justified. Therefore, we would like to mention that the
discussed situation could not take place for big and complex
molecules as well as in case of thermodynamic conditions
close to the glass transition. Nevertheless, for simple and
small molecules, we have to expect the accurate density scal-
ing with the same γIPL. To verify obtained conclusion, we
use another quasireal system, i.e., tetrahedronlike molecules
system with the intermolecular potential of the IPL form
(TMIPL). The tetrahedronlike molecules comprise five iden-
tical atoms, the same as for RMIPL. The lengths of bonds
and angles between them are identical. Similarly to RM they
are defined by the parameters of OPLSAA force field defined
for carbon atoms of aromatic ring [8]. We examined three
isochoric conditions and the temperature from 80 to 200 K
for TMIPL, which result in the pressure range from 311 to 881
MPa. Interestingly, in Fig. 6, we show that indeed TMIPL can
be accurately scaled with the γIPL = 4. The independent anal-
ysis of the dependence of log10(T ) on log10(υm) leads to γ =
3.959 ± 0.095. Thus, the results of the analysis described in
the previous paragraph do not disprove our outcomes obtained
for RM. The examination of the correlation between W and U
resulting only from intermolecular interactions at a specific
interval of the intermolecular distances enables us to estimate
the density scaling exponent. However, the formulation of the
exact prescription for the position of the interval center as well
as its width requires further intensive investigations.

IV. CONCLUSIONS

Summarizing, based on the results for RM, we have shown
that for quasireal model systems, the WU correlation is not
observed. Consequently, a similar situation should be ex-
pected for the real liquids instead of that which is commonly
suggested in the literature. However, contributions to the virial
and potential energy resulting from intermolecular interac-
tions (WLJ and ULJ) still exhibit the strong mutual dependence.
Through the wide range of examined thermodynamic con-
ditions, the correlation coefficient only once falls below the
requested value of 0.9. Unfortunately, in contrast to previ-
ously studied simple model systems, the evident linear WLJULJ

correlation does not correspond to the slope, which leads to
satisfactory density scaling. The reason for mentioned dif-
ference would be the structural anisotropy of the quasireal
molecules, which makes the effective intermolecular potential
exhibit complex behavior. As a consequence, the effective
intermolecular potential cannot be described by single IPL
over a wide range of intermolecular distances. Consistent with
this hypothesis, we found significant variations of γLJ when
different intervals of intermolecular distances are considered.
Then, the γLJ = 6.173, which enables accurate density scal-
ing, would be achieved at specific interval of intermolecular
distances. This interval of intermolecular distances, i.e., its
position and width, would be an inherent part of the molecular
structure. However, for the examined model systems in which
the IPL describes intermolecular potential, the density scaling
is accurately realized with the identical value of the scaling
exponent independently of the structure. This fact indicates
the crucial role of the intermolecular attraction in the density
scaling. Hence, our results suggest that the molecular structure
would become crucial for the value of the density scaling
exponent, and consequently, for the WLJULJ correlation, but
only in the presence of the intermolecular attraction. Then,
the WLJULJ correlation analysis could be a useful method for
determining the density scaling exponent for real materials;
however, the knowledge about the relevant intermolecular
distances is required.
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