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Ising universality in the two-dimensional Blume-Capel model with quenched random crystal field
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Using high-precision Monte Carlo simulations based on a parallel version of the Wang-Landau algorithm
and finite-size scaling techniques, we study the effect of quenched disorder in the crystal-field coupling of the
Blume-Capel model on a square lattice. We mainly focus on the part of the phase diagram where the pure
model undergoes a continuous transition, known to fall into the universality class of a pure Ising ferromagnet.
A dedicated scaling analysis reveals concrete evidence in favor of the strong universality hypothesis with the
presence of additional logarithmic corrections in the scaling of the specific heat. Our results are in agreement
with an early real-space renormalization-group study of the model as well as a very recent numerical work
where quenched randomness was introduced in the energy exchange coupling. Finally, by properly fine tuning
the control parameters of the randomness distribution we also qualitatively investigate the part of the phase
diagram where the pure model undergoes a first-order phase transition. For this region, preliminary evidence
indicate a smoothing of the transition to second-order with the presence of strong scaling corrections.
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I. INTRODUCTION

The effect of random disorder on phase transitions is one
of the basic problems in condensed-matter physics [1]. Ex-
amples include quantum Ising magnets such as LiHoxY1−xFx

[2,3], nematic liquid crystals in porous media [4], noise in
high-temperature superconductors [5], and the anomalous
Hall effect [6]. Understanding random disorder in classical
equilibrium systems is a crucial step towards solving the
more involved problems in quantum systems [7], for example
many-body localization with programmable random disorder
[8], and in nonequilibrium phase transitions [9].

The case of weak disorder coupled to the energy density
of systems with continuous transitions is relatively well un-
derstood: Uncorrelated disorder is relevant and leads to new
critical exponents if the specific-heat exponent α of the pure
system is positive, a rule known as the Harris criterion [10].
If long-range correlations in the disorder are present, this
rule can be generalized leading to interesting ramifications
[11–16]. These effects, and in particular the marginal case
of a vanishing specific-heat exponent as present in the two-
dimensional (2D) Ising model, have attracted a large research
effort over the past decades [17–26].

The situation is less clear for systems undergoing first-
order phase transitions. The observation that formally ν =
1/D and α = 1 for such systems in D dimensions suggests
that disorder is always relevant in this case, and the general
observation is that it indeed softens transitions to become
continuous [27]. Such a rounding of discontinuities has been
rigorously established for systems in two dimensions [28]
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but is believed to be more general—a view that is supported
by a mapping of the problem onto the random-field model
[29–31]. Still, a number of important questions have not been
answered in full generality [31–33], neither in two nor in three
dimensions, where the main platform model was the random
q-state Potts model [34–39].

Another fertile testing platform for predictions relating to
the universality principle of spin models under the influence
of quenched disorder is the Blume-Capel model [40,41]. This
model has a long history and is linked to a diverse spectrum
of actual experimental systems, including the prime nuclear
fuel uranium dioxide [40], Mott insulators [42,43], 3He - 4He
mixtures [44,45] and more general multicomponent fluids
[46]. The pure system features a tricritical point separating
second- and first-order lines of transitions [47–50] and it is
well known that several complications in the identification of
criticality may arise under the presence of quenched disorder,
as manifested by recent works on the topic [51–54]. Currently,
the prevailing view is that the disorder-induced continuous
transitions in both segments of the phase diagram of the model
belong to the universality class of the pure Ising ferromagnet
with logarithmic corrections, as shown in Ref. [55], where the
random-bond Blume-Capel model has been investigated using
high-precision numerical simulations. In fact, this appears to
be the physically most plausible scenario given that both tran-
sitions are between the same ferromagnetic and paramagnetic
phases (see also Fig. 1), supporting the strong universality
hypothesis [56–58].

In the current work we provide additional evidence in
favor of the strong universality hypothesis by studying the
Blume-Capel model but with a different type of quenched
randomness in the crystal-field coupling parameter. A site-
dependent crystal-field coupling has also been used in the past
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FIG. 1. Phase diagram of the pure (p = 0) 2D Blume-Capel
model in the crystal-field—temperature plane [50], showing the fer-
romagnetic (F) and paramagnetic (P) phases that are separated by
a continuous transition for small � (solid line) and a first-order
transition for large � (dotted line). The line segments meet at a
tricritical point (�t , Tt), as indicated by the black rhombus. The data
shown are selected estimates from previous studies.

by Branco and Boechat [59] and more recently by Sumedha
and Mukherjee [60] and is much closer to the experimental re-
ality, as it mimics the physics of random porous media (mainly
aerogels) in 3He - 4He mixtures [61]. We employed extensive
numerical simulations using a parallel implementation of the
Wang-Landau algorithm [62], as outlined in the following
Sec. II. The bulk of our simulations was performed in the
original second-order transition regime of the pure system and
our main result was reached not only by estimating the values
of the standard critical exponents of the transitions, but also by
inspecting the infinite-limit size extrapolation of the universal
ratio ξ/L, where ξ is the second-moment correlation length
and L the linear system size (see Sec. III). Some additional
preliminary results for the first-order transition regime of the
phase diagram and for small disorder strength are also given
at the end of Sec. III, illustrating the softening of the transi-
tion but also the existence of strong scaling corrections. This
contribution ends in Sec. IV where a summary of our main
findings alongside with an outlook for future work is given.

II. MODEL AND METHODS

We consider the 2D spin-1 Blume-Capel model [40,41] as
defined by the Hamiltonian

H = −J
∑
〈xy〉

σxσy +
∑

x

�xσ
2
x = EJ + E�, (1)

where J > 0 denotes the ferromagnetic exchange interaction
coupling, the spin variables σx ∈ {−1, 0,+1} live on a square
lattice with periodic boundaries, and 〈xy〉 indicates summation
over nearest neighbors. �x represents the crystal-field strength
and controls the density of vacancies (σx = 0). Following
Ref. [59] and the experimental motivation [61], we choose
in the current work a site-dependent bimodal crystal-field
probability distribution of the form

P (�x ) = pδ(�x + �) + (1 − p)δ(�x − �), (2)

where p ∈ (0, 1) is the control parameter of the disorder dis-
tribution.

For � = ∞ the model is equivalent to the random site
spin-1/2 Ising model, where sites are present or absent with
probability p or 1 − p, respectively [59]. This comes from the
fact that, for � = ∞, a +� crystal field acting on a given
site x forces that site to be in the σx = 0 state, while a −�

crystal field forces the site to be either in the state σx = +1
or in the state σx = −1. Thus, only for high enough p will an
infinite cluster of σx = ±1 states form and be able to sustain
order. Exactly at p = pc, there is such an infinite cluster but its
critical temperature is zero. In Ref. [59] pc has been estimated
to be 0.5 and not 0.5927 as expected for the site percolation
problem [63]. This discrepancy was attributed to the nature of
the small-cell real-space renormalization-group method used.

For p = 0 the pure Blume-Capel model is recovered (for a
review see Ref. [50]). The phase diagram of the pure model
in the (�, T ) plane is shown in Fig. 1: For small � there
is a line of continuous transitions (in the Ising universality
class) between the ferromagnetic and paramagnetic phases
that crosses the � = 0 axis at T0 ≈ 1.693 [51]. For large � the
transition becomes discontinuous and meets the T = 0 line
at �0 = zJ/2 [41], where z = 4 is the coordination number
(here we set J = 1, and also kB = 1, to fix the temperature
scale). The two line segments meet in a tricritical point es-
timated to be at (�t ≈ 1.966, Tt ≈ 0.608) [49,64,65]. The
crucial observation here is that, with the inclusion of disorder
(p > 0), it is expected that the value of �0 will increase. This
can be clearly seen from the results of Ref. [59], where for
p = 0.1 one obtains �0 ≈ 2.2, for p = 0.3, �0 ≈ 3.5, and
eventually �0 diverges for p = pc. For the bulk simulations
of the current work the control parameter p was set to the
value p = 0.5 (unless otherwise stated) and, as seen below, the
results obtained are fully consistent with this renormalization-
group prediction.

On the other hand, the expected effect of any small disorder
0 < p � 0.5 in the original first-order transition line would
be to either soften all to a continuous transition at once, see
Ref. [59], or to decrease its extent continuously with p for
temperatures below Tt up to a certain value p∗, above which
there is no first-order transition. This was observed in the
recent work of Ref. [60] for the present model in a fully
connected graph, where p∗ ≈ 0.1 was found. Irrespective of
the underlying graph topology of these analytical results, the
effect of disorder in the first-order transition regime of the
pure model can therefore only be addressed in transitions oc-
curring in the vicinity of the tricritical point or for the T < Tt

temperature range, or even in a more controlled set of param-
eters for simulations in the small-p limit (say for p � 0.1).
In view of this interesting observation we also qualitatively
probed this regime of the phase diagram in order to locate
signatures of first-order transition and any smoothing effects
due to the presence of quenched randomness.

To study the interesting phenomena discussed above we
employed Monte Carlo simulations and, in particular, the
well-known Wang-Landau algorithm [62]. This algorithm
is a valid choice for the present work because the model
under study is not expected to have any replica-symmetry
breaking—note that the ergodic hypothesis is equivalent
to the absence of replica-symmetry breaking [66]. In a
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Wang-Landau simulation random walks are performed in the
energy space and trial spin configurations are accepted with
a probability proportional to the reciprocal of the density of
states g(E ). During the simulation, the energy histogram is
also accumulated. If the histogram is “flat” (requirement that
the number of visits at each energy level is not less than
x% of the average histogram), the density of states is then
modified by a multiplicative factor f and the new density of
states is used in the next random walk. The final density of
states is then obtained at the end of the simulation and does
not depend on the temperature. Therefore, it is possible to
compute the full spectrum of the thermodynamic quantities
of interest such as the energy E and the magnetization M
(including their variance-related quantities: the specific heat
C and susceptibility χ ) at any temperature with a single run.

In special cases like the present one, where the energy of
the system can be split into two parts, one may also focus
on the computation of the joint density of states, g(EJ , E�),
that provides access to the wider phase space of the system.
However, Wang-Landau simulations for multi-energy vari-
ables cost significantly more in computational time than their
one-variable counterpart, and this is the reason why the simu-
lations of Ref. [49] for the pure 2D Blume-Capel model were
upper-bounded by sizes of L � 48. In the present work and
in order to obtain access to larger system sizes, we chose to
accumulate the one-dimensional (1D) density of states, with
the cost of repeating the simulations at different values of �.

To date, many efforts have been recorded in the relevant
literature with respect to understanding and further improving
the performance of the Wang-Landau algorithm [67]. One line
of research refers to the parallelization of the algorithm in
two different directions: (i) Dividing the total energy space
into smaller subspaces, each then being sampled by indepen-
dent random walkers [62,68], and (ii) several random walkers
work simultaneously on the same density of states by using
distributed memory [69], shared memory [70], and graphics
processing unit [71] architecture. In the present work, we
implemented the latter scheme and proposed a distributed
memory implementation of the Wang-Landau algorithm using
message-passing interface architecture.

Our parallel implementation performs the following steps:
(1) Every processor generates its starting configuration

and corresponding initial energy E0 using different random
seeds. In the beginning of the simulation, the modification
factor is set to ln ( f ) = 1 for every processor.

(2) The density of states and the histogram of every pro-
cessor are initialized follows: g(E ) = 1 and H (E ) = 0.

(3) All the processors involved in the simulation perform
standard Wang-Landau procedure as follows: A trial move is
made by randomly selecting a spin. If Eold and Enew are the
energies before and after the proposed move, respectively, the
transition to the new state is accepted via the Wang-Landau
probability,

	(Eold → Enew) = min [1, g(Eold )/g(Enew)].

If the trial state is accepted, the histogram is then updated
as H (Enew) → H (Enew) + 1 and the corresponding density
of states is multiplied by the modification factor: g(Enew) →
f g(Enew). If the proposed move is not accepted, the exist-
ing histogram is modified as H (Eold ) → H (Eold ) + 1 and the
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FIG. 2. Disorder distribution of the susceptibility χ and the spe-
cific heat C maxima for a system with linear size L = 48, where
p = 0.5 and � = 1. The running averages over the samples are
shown by the solid lines.

density of states is updated as g(Eold ) → f g(Eold ). The Wang-
Landau procedure is applied until one Monte Carlo sweep is
completed—one sweep is N spin-flip attempts, where N = L2

denotes the total number of spins on the lattice.
(4) After the completion of a Monte Carlo sweep, each

processor sends its density of states and the relevant histogram
to the master processor. Then, the master processor combines
the inputs in order to calculate the global density of states
and energy histogram. Then, the global density of states are
redistributed to all processors.

(5) The master processor also checks whether the flatness
is satisfied or not after every 104 Monte Carlo sweeps. If the
flatness criterion has been achieved, the modification factor is
reduced as fi+1 = √

fi. Then, the histogram of every proces-
sor is set to H (E ) = 0 and steps 3 and 4 are repeated for the
new modification factor.

For small system sizes, the above scheme has the disad-
vantage that the time required for the communication among
the processors may surpass the time needed for the actual
computation. Nevertheless, the method works predominantly
well with increasing system size, allowing us in the current
work to simulate efficiently linear sizes up to L = 96. The
flatness criterion for the histogram used was 80% for all the
lattice sizes considered. For the stopping criterion we used
ln ( ffinal ) = 10−8 for L < 96 and ln ( ffinal ) = 10−7 for L = 96.

We simulated the model defined in Eqs. (1) and (2) at three
values of the crystal-field coupling, namely, � = 0.5, 1, and
� = 2, fixing the control parameter p to the value 0.5. For
each value of � we considered the following sequence of
linear sizes L ∈ {6, 8, 12, 16, 24, 32, 48, 64, 96} and for each
pair (L, �) disorder averaging has been performed over 500
random realizations—see the characteristic running-average
tests of Fig. 2. For the particular case of � = 2 we also
varied the parameter p in the regime 0 < p � 0.1 using sizes
up to L = 48 and a moderate disorder averaging over 200
samples.
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FIG. 3. Main panel shows specific-heat curves as a function of
the temperature for the whole range of system sizes studied for
� = 1 and p = 0.5. Note the clear signs of a shift behavior of the
peak characteristic of a second-order phase transition. Inset shows
the corresponding susceptibility data for the same set of parameters
displayed using the data collapse method.

From this point on, all the figures shown below correspond
to the disorder-averaged data unless otherwise stated. Some
typical specific-heat and susceptibility curves are shown in
Fig. 3 for the case � = 1 and for p = 0.5. In particular, in the
inset of this figure the susceptibility data are plotted by using
the data collapse method, which allows the reader to judge
directly how well the data for different sizes are approximated
by the finite-size critical scaling function. Here, we have used
the Ising values ν = 1 and γ /ν = 1.75 for purely illustrative
reasons and our estimate Tc = 1.6473, see Fig. 5 below. As is
clear from the plot, the smaller sizes L � 16 slightly deviate
from the collapse due to the presence of the well-known
finite-size effects. These effects have been taken into account
in an effective way via the scaling ansatz used below and the
corrections-to-scaling exponent ω.

Finally, statistical errors have been estimated by using the
standard jackknife method [72] and, for the fitting proce-
dure discussed below, in cases needed we restricted ourselves
to data with L � Lmin. As usual, to determine an accept-
able Lmin we employed the standard χ2 test for goodness
of fit. Specifically, the p value of our χ2 test—also known
as Q, see, e.g., Ref. [73]—is the probability of finding a
χ2 value which is even larger than the one actually found
from our data. Recall that this probability is computed
by assuming Gaussian statistics and the correctness of the
fit’s functional form. We consider a fit as being fair only
if 10% < Q < 90%.

Before proceeding with the finite-size scaling analysis in
the following Sec. III we would like to underline that we are
undertaking a parallel implementation of the Wang-Landau
algorithm. Thus, one additional goal of our study was to show
the accuracy of the numerical scheme. For this purpose, we
present in Fig. 4 a comparative plot of the parallel and serial
simulation results of the energy E (main panel) and specific
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FIG. 4. Energy (main panel) and specific-heat (inset) curves as a
function of the temperature for a system with linear size L = 48, for
� = 1 and p = 0.5, by using a serial and a parallel version of the
Wang-Landau algorithm. The numerical data of the parallel version
have been obtained using 28 processes on equivalent CPU cores.

heat C (inset) as a function of the temperature for a linear
size L = 48 and crystal-field coupling � = 1 with p = 0.5.
These curves clearly show that the numerical data from the
two different implementations are practically indistinguish-
able. For the sake of completeness we have checked all the
remaining thermodynamic quantities as well and similar be-
havior was observed, but is not shown here for reasons of
brevity. We have also performed extensive test runs at var-
ious lattice sizes and crystal-field strengths. Based on these
tests we concluded that the number of CPU’s used in the
computation did not affect the numerical accuracy of our
results.

FIG. 5. Shift behavior of several pseudocritical temperatures de-
fined in the text as a function of the inverse system size for � = 0.5,
1, and � = 2, where p = 0.5 in all cases.
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FIG. 6. Estimation of the magnetic exponent ratios γ /ν (main
panel) and β/ν ( inset) for the case � = 2 and for p = 0.5, via the
finite-size scaling behavior of the susceptibility maxima (χ∗) and the
order parameter at the estimated critical temperature.

III. RESULTS

We start the presentation of our results with Fig. 5 where
we show the shift behavior of several pseudocritical tempera-
tures T ∗

L , corresponding to the maxima of the susceptibility
χ , the specific heat C, the derivative of the absolute or-
der parameter M with respect to inverse temperature (K =
1/T ), ∂〈|M|〉/∂K = 〈|M|H〉 − 〈|M|〉〈H〉, and the logarithmic
derivative of the second power of the order parameter with
respect to K , ∂ ln〈M2〉/∂K = 〈M2H〉/〈M2〉 − 〈H〉 [74]. Three
data sets are shown for the three values of � considered.
Lines of different colors correspond to separate joint fits for
each value of � with a common extrapolation to the expected
power-law behavior

T ∗
L = Tc + bL−1/ν (1 + b′L−ω ). (3)

In the above equation, Tc denotes the critical temperature
and is � dependent, whereas ν and ω are universal critical
exponents. In particular, ν is the critical exponent of the
correlation length and ω the corrections-to-scaling exponent,
which was fixed to the 2D Ising universality class value
7/4 (see also Fig. 6) [75,76]. The results for the critical
temperatures obtained from the fits shown in Fig. 5 are as
follows: Tc(� = 0.5) = 1.6854(9), Tc(� = 1) = 1.6473(7),
and Tc(� = 2) = 1.4907(6). The critical exponent ν was esti-
mated to be ν(� = 0.5) = 0.95(6), ν(� = 1) = 0.99(4), and
ν(� = 2) = 1.04(5).

A few comments are now in order:
i. For the values � = 0.5 and 1 we observe only a slight

decrease in the critical temperature with increasing �, and
only for � = 2 does a downward trend of the critical temper-
atures start to settle in. This is consistent with the qualitative
results shown in Fig. 4 of Ref. [59].

ii. The values for the critical temperatures of the disor-
dered model appear to be higher than those of the pure model
(see Fig. 1 for a comparison), especially for the case � = 2,
where the critical temperature rises from Tc = 0 → 1.4907.
This is also in full agreement with the results presented in
Figs. 3 and 4 of Ref. [59]. A simple argument supporting this

observed increase in the critical temperature is as follows:
The case p = 0 corresponds to the pure model for which
all crystal fields are +�, whereas the p = 0.5 case brings
to the model −� crystal fields which in turn favor the ±1
states.

iii. A similar enhanced ferromagnetic ordering has been
also highlighted in the scaling analysis of the 2D random-bond
Blume-Capel model [48].

iv. All our estimates for the critical exponent ν are com-
patible within error bars to the value ν = 1 of the 2D Ising
universality class.

Additional evidence in this respect is given in Fig. 6 where
the finite-size scaling behavior of the susceptibility max-
ima χ∗ (main panel) and the order parameter at the critical
point (inset) are shown as a function of the system size for
the case � = 2. The solid lines are fits of the form χ∗ ∼
bLγ /ν (1 + b′L−ω ) and M(T = Tc) ∼ L−β/ν (1 + b′L−ω ), re-
spectively. The estimated values of the magnetic exponent
ratios are γ /ν = 1.756(7) and β/ν = 0.122(4), both in agree-
ment with the 2D Ising universality values γ /ν = 7/4 and
β/ν = 1/8. Similar results have also been obtained for the
cases � = 0.5 and 1, but are omitted here for brevity. How-
ever, we find it useful for the reader to quote the fitting
results: [γ /ν, β/ν] = [1.754(5), 0.124(3)] for � = 0.5 and
[1.756(6), 0.126(3)] for � = 1.

All our results up to this point support the strong universal-
ity hypothesis according to which the effect of infinitesimal
disorder gives rise to a marginal irrelevance of randomness
and besides logarithmic corrections, the critical exponents
maintain their 2D Ising values. One of the most interesting ob-
servables in this framework is the specific heat that is expected
to slowly diverge with a double-logarithmic dependence of the
form

C∗ ∼ ln [ln (L)]. (4)

We have tested successfully this scaling ansatz for all the
available numerical data of the current work—see Fig. 7 and
the relevant discussion in the caption.

While universality classes are characterized by the entirety
of their critical exponents, other useful universal amplitudes
do exist and constitute additional strong evidence, allowing
in certain cases to monitor nonmonotonic scaling behavior in
the approach to the thermodynamic limit (see Refs. [55,56]).
Such universal ratios are the well-known Binder cumulant but
also the ratio ξ/L. In the current work we studied in detail
the ratio ξ/L and its size evolution for all range of parameters
considered. This is known to be universal for a given choice
of boundary conditions and aspect ratio. For Ising spins on a
square lattice with periodic boundary conditions as L → ∞ it
approaches the value [77](

ξ

L

)
∞, pure

= 0.905 048 829 2(4). (5)

It worth noting that the behavior of the pure and random-bond
square-lattice Blume-Capel model was found to be perfectly
consistent with Eq. (5) [50,55].

Following Ref. [55], for the estimation of ξ we used
its second-moment definition [78,79]: From the Fourier
transform of the spin field, σ̂ (k) = ∑

x σx exp(ik · x), we
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FIG. 7. Finite-size scaling behavior of the specific-heat maxima
for all values of � considered and for p = 0.5. The data are shown
as a function of the double logarithm of the system size L. The solid
lines are excellent linear fits using only the larger system sizes L �
Lmin = 24.

determined F = 〈|σ̂ (2π/L, 0)|2 + |σ̂ (0, 2π/L)|2〉/2 and ob-
tained the correlation length via [79] via

ξ ≡ 1

2 sin (π/L)

√
〈M2〉

F
− 1. (6)

To estimate the limiting value of ξ/L we relied on the quo-
tients method [80–82]: The temperature where ξ2L/ξL = 2,
i.e., where the curves of ξ/L for the sizes L and 2L cross
(see the inset of Fig. 8) defines the finite-size pseudocritical
points. Let us denote the value of ξ/L at these crossing points
as (ξ/L)∗. In the main panel of Fig. 8 we show (ξ/L)∗ for
all the three values of � and the five largest pairs of system
sizes as listed in the caption of this figure. The solid lines
are a joint polynomial fit, third order in L−ω [83], where as
usual ω = 7/4, with a shared infinite-limit size extrapolation,
leading to (

ξ

L

)
∞, random

= 0.904(3). (7)

This value is beyond doubt consistent to that of the 2D Ising
universality class, see Eq. (5) above.

In the final part of our work we try to elucidate the effect of
disorder on the first-order transition regime of the pure model
which as discussed above can be addressed in transitions
occurring in the small-p limit. We performed a qualitative
analysis of this part of the phase diagram by fixing the crystal-
field value to � = 2 and varying the control parameter p from
p = 0.1 to p = 0.06 and finally to p = 0.02. We simulated
moderate systems with linear sizes up to L = 48 and averaged
over 200 samples of the randomness distribution. The results
for the magnetic susceptibility are shown in Fig. 9 for the se-
ries of system sizes studied as outlined in the panel. There are
three sets of curves corresponding to the three values of p, as
indicated. A clear shift to smaller pseudocritical temperatures
is observed as p → 0. In fact we should note the follow-
ing values for the pseudocritical temperatures of the largest
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FIG. 8. Main panel shows finite-size scaling of the correlation-
length ratios at their crossing points, (ξ/L)∗, for the square-lattice
Blume-Capel model with a quenched random crystal field. Results
are shown for all three values of � and for the following pairs (L, 2L)
of system sizes: (12,24), (16,32), (24,48), (32,64), and (48,96). As
in all previous plots, p = 0.5. The horizontal dashed line shows the
asymptotic value for the square-lattice Ising model with periodic
boundaries, see Eq. (5). The solid lines show joint polynomial fits of
third order in L−ω with a common extrapolation. Inset shows typical
ξ/L curves as a function of the temperature for various system sizes
for the case � = 2. The temperature area of the crossings conforms
to the value Tc(� = 2) ≈ 1.49 of Fig. 5.

system size considered (L = 48): T ∗
48(p = 0.1) ≈ 0.88,

T ∗
48(p = 0.06) ≈ 0.76, and T ∗

48(p = 0.02) ≈ 0.58. We would
like to remind the reader that the tricritical point of the pure
model is located at the temperature T ≈ 0.608 [49] (see also
Fig. 1), indicating that for the case � = 2 the value p = 0.02
would correspond to the ex-first-order transition regime of the
model. Moreover, whereas for the cases p = 0.1 and p = 0.06
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FIG. 9. Main panel shows susceptibility curves as a function of
the temperature for p = 0.1, 0.06 (solid lines), and p = 0.02 (dashed
lines). Inset shows specific-heat curves as a function of the tempera-
ture for p = 0.02. In both panels � = 2.
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FIG. 10. Energy probability density functions of a system with
linear size L = 16 at � = 2 for p = 0.1, 0.06, and p = 0.02. The
curves have been computed at the pseudocritical points of the specific
heat.

the curves appear to be indicative of a continuous transition,
for p = 0.02 there is a pronounced increase of the peak which
may be reminiscent of a first-order transition. Accordingly,
in the inset of Fig. 9 we depict the specific-heat data for the
case of interest p = 0.02 where similar conclusions may be
drawn.

To corroborate these results in a more systematic way we
present in Figs. 10 and 11 some typical energy probability
density functions at the small-p limit. In particular, in Fig. 10
the first-order nature of the transition at � = 2 is manifested
as p → 0 for a system with linear size L = 16. Note the
single-peak structure of the energy density for the cases p =
0.1 and p = 0.06 in comparison to the double-peak structure
for the case with p = 0.02, characteristic of a first-order tran-
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FIG. 11. Energy probability density functions for the full range
of system sizes studied at � = 2 and for p = 0.02. As in Fig. 10,
the curves have been computed at the pseudocritical points of the
specific heat.

FIG. 12. Typical ξ/L curves as a function of the temperature for
various system sizes for the case � = 2 and for p = 0.1, 0.06 (solid
lines), and p = 0.02 (dashed lines). The temperature area of the
crossings conforms to the values identified in Fig. 9 from the maxima
of the susceptibility. The horizontal dashed line shows the asymptotic
value for the square-lattice Ising model with periodic boundaries, see
Eq. (5).

sition. However, as may be seen in Fig. 11, where the case
p = 0.02 is examined in detail, this double-peak structure is
a mere finite-size effect that prevails in the regime of small to
moderate system sizes. Clearly, with increasing system size
the energy density exhibits only a single, symmetric peak,
illustrating the second-order nature of the transition in the
limit L → ∞ and therefore the expected smoothing effect
of disorder. This is clear evidence that the randomness dis-
tribution (2) for p = 0.02 changes the pure first-order phase
transition at � = 2 into a disorder-induced continuous one,
but with a crossover behavior for small system sizes. This
crossover length appears to be of the order of L∗ ≈ 48, which
should be taken as the minimum size in any finite-size scaling
analysis of the model at this regime of the phase diagram.

Although such an analysis goes beyond the scope of the
present work, some instructive conclusions can already be
drawn simply by inspecting the finite-size scaling behavior
of the correlation length at the p � 0.1 regime, see Fig. 12.
For cases with p = 0.1 and 0.06 the (ξ/L)∗ values at the
crossing points approach the universal value of the Ising ferro-
magnet, as should be expected, and with rather small scaling
corrections. Similar results have been presented in Ref. [84]
for the two-dimensional random-bond eight-state Potts model,
where the randomness-induced continuous transition was also
shown to belong to the universality class of the pure 2D Ising
ferromagnet. However, the data for the case p = 0.02 are
affected by strong scaling corrections [note that, for the pair
(L, 2L) = (24, 48), (ξ/L)∗ ≈ 2.5] and this is in agreement
with the existence of the crossover length discussed above.
We expect that for this particular case the size evolution is
nonmonotonic and the true asymptotic behavior will settle
in for sizes L � 48 (similar observations have been made in
Ref. [55] for the random-bond version of the square-lattice
Blume-Capel model).
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FIG. 13. Selected critical and pseudocritical points of the pure
and disordered Blume-Capel model as defined in Eqs. (1) and (2).

IV. SUMMARY AND OUTLOOK

We have studied the two-dimensional Blume-Capel model
with a quenched random crystal-field coupling. On the
numerical side, our work demonstrated that a parallel imple-
mentation of the Wang-Landau algorithm based on distributed
memory architectures is an asset in the study of magnetic
spin systems under the presence of quenched disorder. On the
physical side, our results can be summarized in Fig. 13 upon
which we shall base our concluding remarks. In this plot we
have added several data points from the current work but also
from previous works to allow for an overview of the current
understanding of the system. The black open circles are se-
lected critical points of the pure (p = 0) model taken from
Ref. [48] for � = 0, 0.5, and � = 1 where the model falls
into the universality class of the pure Ising ferromagnet. Note
the value �0(p = 0) = 2. The black filled rhombus (with the
accompanying horizontal and vertical dashed lines) depicts
the tricritical point of the pure model, taken from Ref. [49].
The blue open triangles are critical points for the random
p = 0.5 model at � = 0.5, 1, and 2 estimated in the current
work. For these critical points Ising universality has been
established in terms of critical exponents and the universal
ratio ξ/L with the addition of logarithmic corrections at the
scaling of the specific heat. A simple argument has already
been given above in Sec. III that explains the increase of
the critical temperature of the random model in comparison
with that of the pure model, a behavior which is in agreement
with the renormalization-group results of Ref. [59]. The red
filled circles are pseudocritical points that correspond to the
maxima of the susceptibility of the size L = 48 of the disor-
dered system at � = 2 and for p = 0.1, 0.06, and p = 0.02

as obtained in the current work. These results indicate that, in
order to probe signatures of the first-order transition regime
of the model but also to identify the smoothing effects of the
disorder one should focus on the small-p limit and in fact
the set of parameters (� = 2, p = 0.02) may be a promising
choice. For this case, strong finite-size effects and crossover
phenomena make their appearance and obscure the applica-
tion of finite-size scaling. However, we do believe that the
softened continuous transition will also belong to the Ising
universality class, but very large system sizes will be needed
in order to arrive at a safe conclusion. Finally, the green filled
stars are estimates of �0 for p = 0.1 and p = 0.3 taken from
Ref. [59] that agree nicely with the overall trend of the critical
points for the different values of the control parameter p.

To conclude, although universality is a cornerstone in the
theory of critical phenomena, it stands on a less solid foun-
dation for systems subject to quenched disorder. An explicit
confirmation of the behavior of disordered models in this
respect is therefore of fundamental importance for the theory
as a whole (see also Ref. [80]). We hope that the findings
of the present work will trigger additional studies of similar
systems (i) in two dimensions, where for weak disorder the
appearance of crossover phenomena is unavoidable and their
dependence on the randomness parameters remains uncharted
[55,85], and, more importantly, (ii) in three dimensions,
where randomness is only relevant beyond a finite threshold
[29,30,36,38]. This still-unsettled field of research alongside
with a dedicated study of the effects of random-fields on the
critical behavior of the three-dimensional Blume-Capel model
are some of the main topics that we would like to pursue in the
near future. Finally, it might also be interesting to investigate
the effect of randomness exactly at the tricritical point of
the two-dimensional model. Perhaps there would be just an
effect on the width of the crossover region, e.g., changing
from a double-logarithmic behavior to a simple-logarithmic
one in the specific-heat scaling. In fact, a similar behavior has
been observed upon introducing a very weak randomness in
the Ising case [22]. Finally, it is worth noting that several
useful results on the implications of the scaling theory for
the crossover phenomena in disordered systems close to a
tricritical point can be found in Refs. [86,87].
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