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All local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions,
d = 3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the
density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice.
Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering
the temperature, the value of the density first increases and then decreases to its zero value at zero temperature.
For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models
is found and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models,
the renormalization-group flows of up to 20 energies are used.
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I. INTRODUCTION: TOTAL RENORMALIZATION-GROUP
SOLUTION OF TWO FAMILIES OF MODELS

Although originally introduced for critical phenomena,
renormalization-group calculation gives the total thermody-
namics of a system at and away from phase transitions [1].
To effect this, the recursion relations of the local densities are
needed, causing the calculation to be more complicated than
that for phase boundaries and critical exponents. This calcula-
tion is carried out here for two families of models, namely
the Potts [2–4] and clock models [5], each with q states
on a hierarchical lattice [1,6,7] in three spatial dimensions,
d = 3. The calculation is exact for the hierarchical lattice
and is considered approximate for a cubic lattice [8,9]. The
temperature functions and symmetry-breaking behaviors of
dozens of local densities are derived, and interesting behaviors
are found and explained, such as a reentrance behavior in the
interface densities. The models are similarly defined but they
exhibit different behaviors, such as the q saturation of the
magnetization and the phase transitions as q goes to infinity,
which is also explained.

II. POTTS AND CLOCK MODELS, AND DENSITIES
CALCULATION

A. The q-state models and their set of densities

These general q-state models are simply defined by the
following Hamiltonians. For the Potts models,

−βH =
∑
〈i j〉

Jδ(sis j ), (1)

where β = 1/kBT . At site i, the spin si = a, b, . . . can be
in q different states, the delta function δ(sis j ) = 1(0) for
si = s j (si �= s j ), and 〈i j〉 denotes summation over all nearest-

neighbor pairs of sites. For the clock models,

−βH =
∑
〈i j〉

J cos(−→s i · −→s j ), (2)

where at site i the spin −→s i can point in q different directions
θi = 2πni/q in the xy plane, with ni = 0, 1, . . . , q − 1 pro-
viding the q different possible states. The limit q → ∞ of the
clock model gives the XY model, which we also explore here,
with results (physically explainably) quite different from the
q → ∞ limit of the Potts model (Fig. 1).

Our aim is to calculate all of the bond-state densities [there
are q(q + 1)/2 of them],

U (nin j ) = 〈δ(sini )δ(s jn j )〉, (3)

where (i, j) are the sites on each end of the bond, and ni des-
ignates one of q possible states of the spin si. These bond-state
densities are obtained from the partition function Z ,

U (nin j ) = 1

N

∂ ln Z

∂E (nin j )
, (4)

where N is the number of nearest-neighbor pairs in the system,
and E (nin j ) is the energy assigned to the bond when its sites
are in states (ni, n j ). Before any renormalization, these bond
energies are given by Eqs. (1) and (2),

E (nin j ) = Jδ(nin j ) and J cos(2π (ni − n j )/q), (5)

for the Potts and clock models, respectively. The E (nin j ) are
the (large number of; see below) renormalization-group flow
variables, and Eqs. (5) give the initial conditions, parametrized
by temperature J−1, of the renormalization-group flows. The
forms in Eqs. (5) are of course not conserved during the flows.
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FIG. 1. Calculated critical temperatures J−1
c of the Potts and

clock models as a function of the number of states q in d = 3. From
this figure and from Table I, it is seen that the clock model quickly (at
as low as q = 5) settles to its q = ∞ (which is the XY model) value
of J−1

c = 7.4. The dashed line for the Potts critical temperatures is
J−1

c = 7/ ln(q), derived here for strong coupling.

B. Energy recursion relations of the renormalization group

For our renormalization-group calculation, we use
the Migdal-Kadanoff approximation, which, as shown in
Fig. 2(a), consists in bond-moving followed by decimation
[8,9]. This operation is equivalent to constructing the
q × q transfer matrix T (nin j ) = exp (E (nin j )), taking
the bd−1th power of each element of the matrix (this is
bond-moving) and multiplying the resulting matrix with
itself (this is decimation). For numerical convenience at the
low-temperature sink of the flows, after every decimation
(and before first starting the first renormalization), we subtract
E (aa) (for the Potts model) or E (00) (for the clock model)
from all E (nin j ), thus setting E (aa) = 0 or E (00) = 0 and
introducing the additive constant NG in the Hamiltonian,
which has the renormalization-group recursion relation

G′ = bd G + G̃, (6)

where, here and everywhere, a prime refers to the renormal-
ized system, the first term is the additive constants that the
renormalized bond inherits from the bd bonds it replaces, and

bond-moving decimation

K bd-1K K'

(a)

(b)

...

bd-1K

FIG. 2. (a) Migdal-Kadanoff approximate renormalization-
group transformation for the d = 3 cubic lattice with the
length-rescaling factor of b = 2. (b) Construction of the
d = 3, b = 2 hierarchical lattice for which the Migdal-Kadanoff
recursion relations are exact. The renormalization-group solution
of a hierarchical lattice proceeds in the opposite direction of its
construction.

the second term comes from compensating for the subtraction
of E (aa) or E (00). These recursion relations are then in terms
of the elements [or equivalently their logarithms E (nin j ) =
ln (T (nin j ))] of the diagonal and upper left triangle of the
transfer matrix (since this matrix is symmetrical). The number
of these elements can be somewhat reduced by noting those
identically equal by symmetry and not to be distinguished by
possible spontaneous symmetry breaking, as is illustrated for
the clock models below, but it will be seen that the number
of the flow variables for the clock models increases rapidly
with q. A large q calculation, such as the one we perform
here for q = 360 to probe the q → ∞ XY model limit, is
best carried out by directly performing numerically the matrix
operations described above on the 360 × 360 transfer matrix.
By contrast, for any q, by using the (partially broken under
ordering) permutation symmetry of the Potts variables, we can
reduce the number of renormalization-group flow variables
to four, which makes it possible to treat any q, including
q = ∞, as seen below. The recursion relations obtained by
the Migdal-Kadanoff approximation are exactly applicable to
the exact solution of the hierarchical lattice shown in Fig. 2(b)
[1,6,7]. Thus, a “physically realizable” and therefore robust
approximation is used. Physically realizable approximations
have been used in polymers [10,11], disordered alloys [12],
and turbulence [13]. Recent works using exactly soluble hier-
archical lattices are in Refs. [14–19].

C. Density recursion relations of the renormalization group

In each renormalization-group transformation, the densi-
ties obey the recursion relation

U = b−d U′ · R, (7)

where the densities U ≡ [1,U (nin j )] are conjugate to the
fields E ≡ [G, E (nin j )], and the recursion matrix is R =
∂E′/∂E. The exact Eq. (7) is obtained by using the deriva-
tive chain rule on U = (1/N )∂ ln Z/∂E, where Z is the
partition function and N is the number of nearest-neighbor
pairs of spins, and it is used to calculate densities from
renormalization-group theory [1,20,21]. In these defined vec-
tors, the E (aa) or E (00) and U (aa) or U (00) are missing,
since these energies are set to zero by the additive constant and
therefore do not recur. U (aa) and U (00) are found from the
sum rule �ni,n jU (nin j ) = 1. The other densities are calculated
by iterating Eq. (7) until a stable fixed point (the sink of the
thermodynamic phase) is reached. The densities U∗ at the sink
are the left eigenvectors of R with eigenvalue bd and conclude
the calculation by insertion to the right-hand side of Eq. (7).
These will be discussed below specifically for each model.
The unstable fixed point dividing the renormalization-group
flows to the phase sinks, parametrized by J , yields the phase
transition temperatures given in Fig. 1 and Table I.

III. RESULTS: q-STATE POTTS MODELS

A. Potts recursion relations

Because of the permutation symmetry of the model,
namely that given the δ function, with respect to a given
state, all other states are equivalent (unlike the clock model
involving the product of slightly or more aligned vectors), the
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TABLE I. Calculated critical temperatures of the q-state Potts
and clock models. The clock-model results have been found numer-
ically by doing the sums in the renormalization-group decimation
over a very large number of states, up to q = 360.

q Potts J−1
c Clock J−1

c

3 6.062 9.093
4 5.206 7.661
5 4.660 7.416
6 4.277 7.395
7 3.990 7.391
8 3.764 7.388
10 3.431 7.384
15 2.936 7.381
20 2.652 7.379
360 1.278 7.377
∞ 7/ ln(q)

q × q transfer matrix manipulations of the recursion relations
given above can be reduced to four simple equations,

eE ′(ab)+G̃ = x(ab) + x(ab)x(bb) + (q − 2)x(ab)x(bc),

eE ′(bb)+G̃ = x(ab)2 + x(bb)2 + (q − 2)x(bc)2,

eE ′(bc)+G̃ = x(ab)2 + 2x(bb)x(bc) + (q − 3)x(bc)2,

eG̃ = 1 + (q − 1)x(ab)2,

(8)

where the Potts state a has been singled out for possible
spontaneous symmetry breaking, b represents any Potts state
that is not a, and c represents any Potts state that is not a or the
state in b, and x(ab) ≡ ebd−1E (ab), etc. In the latter equation, the
factor bd−1 represents bond-moving, and Eqs. (8) bring about
the decimation with the bond-moved energies. The recursion
matrix R is the 4 × 4 derivative matrix of Eqs. (8), and the
density calculations can be done for any number of states
q, including infinity. By a derivative matrix, we mean the
derivatives of the renormalized quantities with respect to the
unrenormalized quantities.

The recursion relations of Eqs. (8) flow to one of two phase
sinks. On the high-temperature side, the sink of the disordered
phase is

E (aa)∗ = E (ab)∗ = E (bb)∗ = E (bc)∗ = 0, (9)

where * denotes the fixed point value. The left eigenvector,
with eigenvalue bd , of the recursion matrix R at this sink is

U∗ = [1,U (ab)∗,U (bb)∗,U (bc)∗]

= [1, 〈δ(sia)δ(s jb)〉 + 〈δ(sib)δ(s ja)〉,
〈δ(sib)δ(s jb〉, 〈δ(sib)δ(s jc)〉]

= [1, 2(q − 1)/q2, (q − 1)/q2, (q − 1)(q − 2)/q2].

(10)

Capping with Eq. (10) from left the repeated applications of
Eq. (7), the densities U (ab),U (bb),U (bc) are obtained over
the entire temperature range of the high-temperature disor-

dered phase. Finally,

U (ab) = U (ab)/U ∗(ab), (11)

etc. gives the density for a specific pair of states (a, b).
On the low-temperature side, the sink of the ordered phase

is

E (aa)∗ = E (bb)∗ = 0, E (ab)∗ = E (bc)∗ → −∞. (12)

A left eigenvector, with eigenvalue bd , of the recursion matrix
R at this sink is

U∗ = [1, 0, 0, 0]. (13)

Calculation, as described after Eq. (10) above, gives the den-
sities over the entire temperature range of the low-temperature
ordered phase, showing spontaneous symmetry-breaking in
favor of state a. This result is described in detail in the next
subsection.

Another left eigenvector, with eigenvalue bd , of the recur-
sion matrix R at this sink is [1,1,0,0]. This eigenvector gives
symmetry breaking in favor of one of the states b, namely
one of the states that is not a. With the permutation mapping
of the Potts model, this leads to results that are identical
to the results involving symmetry breaking in favor of a. A
linear combination of these two degenerate eigenvectors is of
course also an eigenvector with the eigenvalue bd , physically
corresponding to the macroscopic coexistence of differently
symmetry-broken phases.

It is noteworthy that throughout the renormalization-group
flows,

E (aa) = E (bb), E (ab) = E (bc). (14)

However, these interactions have to be distinguished in the re-
cursion relations, enabling construction of the 4 × 4 recursion
matrix R, to calculate distinctly U (aa),U (bb), and to see the
symmetry breaking. This calculation is also going to lead to
the full determination of the magnetization, as seen below.

B. Potts densities and interface density reentrance

The calculated nearest-neighbor densities of the
q-state Potts models in d = 3 are given, for q =
3, 4, 5, 6, 7, 10, 15, 20, in Fig. 3. (For easy comparison,
the densities for the clock models are given in the
adjoining Fig. 4.) The upper curve is U (aa) and U (bb),
which coincide in the disordered high-temperature phase
and split in the low-temperature phase where symmetry
is spontaneously broken in favor of state a. The lower
curve is U (ab) and U (bc), which also coincide in
the disordered high-temperature phase and split in the
symmetry-broken low-temperature phase. It is seen that the
interface density U (ab), between the symmetry-breaking
and non-symmetry-breaking states, exhibits reentrance as
temperature is lowered in the ordered phase, first increasing
in value and then receding to zero at zero temperature. In
Fig. 5, for comparison, the densities are plotted together for
the different q values (and similarly for the clock models
in the adjoining Fig. 6). The interface density reentrance is
pronounced in the low q states, but continues for high q.
As temperature is lowered through the phase transition, the
reentrance relies on the following: (i) Due to the increase
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FIG. 3. The calculated nearest-neighbor densities of the q-state
Potts models in d = 3. The upper curve on the right is Uaa and Ubb,
which coincide in the disordered high-temperature phase and split in
the low-temperature phase where symmetry is spontaneously broken
in favor of state a. The lower curve on the right is Uab and Ubc, which
also coincide in the disordered high-temperature phase and split in
the symmetry-broken low-temperature phase. The interface density
Uab exhibits reentrance as temperature is lowered in the ordered
phase, first increasing in value and then receding to zero at zero
temperature.

in the sizes of the domains of the favored stated si = a,
the numbers increase for the (si = a, s j �= a) pairs at the
boundaries of these domains. (ii) As the sizes of the domains
of the favored state si = a increase further, upon further
lowering the temperature these domains merge, eliminating
the boundaries. This reentrance is less pronounced for higher
q, since the phase transition is at lower temperature and (ii)
sets in before (i) develops.

Reentrance is the reversal of a thermodynamic trend as the
system proceeds along one given thermodynamic direction.
Since its observation in liquid crystals by Cladis [22], this
at-first-glance strange phenomenon has attracted attention due
to the need for a physical mechanistic explanation, which has
been disparate in disparate systems. Thus, in liquid crystals
the explanation has been the relief of close-packed dipolar
frustration by positional fluctuations (librations) [23,24], in
closed-loop binary liquid mixtures the explanation has been
the asymmetric orientational degrees of freedom of the com-
ponents [25], and in surface adsorption the explanation has
been the buffer effect of the second layer [26]. In spin-glasses,

FIG. 4. The calculated nearest-neighbor densities of the q-state
clock models in d = 3. The curves are for Um ≡ Uk,k−m, for k =
0, 1, . . . , q − 1 and m = 0, 1, . . . , from the top down in each figure
panel. Thus, m measures the angular difference θi − θ j = 2πm/q
between the states of neighboring spins. For each m, the curves
for different k coincide in the disordered high-temperature phase.
In the low-temperature phase, for each m, the densities involving
k = 0 and the densities involving k > 0 split under the symmetry
breaking favoring the state 0. The interface densities involving k = 0
exhibit reentrance as temperature is lowered in the ordered phase,
first increasing in value and then receding to zero at zero temperature.

where there is orthogonally bidirectional reentrance, the effect
of frustration in both disordering and changing the nature of
ordering (to spin-glass order) is the cause [27]. In cosmol-
ogy, reentrance is due to high-curvature (black hole) gravity
[28,29]. In the current case of Potts (and clock; see below)
interfacial density, in lowering the temperature, when the sys-
tem orders in favor of state a, the preponderance of the latter
also increases its interface with the other states. However, as
this preponderance increases further and in fact takes over the
system, the other states are eliminated and their interface with
a is thus also eliminated. This happens for all q-state Potts and
clock models.

The calculated bond-state densities also readily yield mag-
netizations, which will be discussed in Sec. VI, as well as the
different behaviors of the two models in the q → ∞ limit.

IV. RESULTS: q-STATE CLOCK MODELS

Clock models do not have permutational symmetry, so the
recursion relations for the diagonal and the top triangle of
the q × q energies cannot be reduced to four equations [as
in Eqs. (8) above]. Using the different symmetries for each
q, the number of these energies that under renormalization
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FIG. 5. Comparison with respect to the number of states q =
3, 4, 5, 6, 7, 10, 15, 20, from the top down in each panel, of the
nearest-neighbor densities of the Potts models in d = 3. The right
panel shows the curves for neighboring unlike states Uab and Ubc,
which coincide in the disordered high-temperature phase and split in
the symmetry-broken low-temperature phase. The interface density
Uab exhibits reentrance as temperature is lowered in the ordered
phase, first increasing in value and then receding to zero at zero
temperature. This reentrance is pronounced in the low-q states and
decreases for high q. The left panel shows the curves for the like-
state neighbors Uaa and Ubb, which also coincide in the disordered
high-temperature phase and split in the low-temperature phase where
symmetry is spontaneously broken in favor of state a.

group recur separately can be reduced, but still increase with
q, eventually numerically burdening the algebra.

A. Renormalization-group calculation and six-energy
renormalization-group flows for q = 4

In the three-state clock model, since with respect to any
one state the other two states are equivalent, for q = 3 the
clock and Potts models are identical, up to a factor of 1 −
cos(2π/3) = 3/2 in the coupling constant J .

In the four-state clock model, the six energies that need to
recur separately under renormalization group are

E (11) = E (33), E (22), E (12) = E (23),
(15)

E (01) = E (03), E (02), E (13),

where E (mn) is the energy of neighboring spins with angles
2πm/q and 2πn/q. The equalities result from the symmetries
of the q = 4 state clock model, as the state with m = 0 is
singled out for possible symmetry breaking. When, as we do
here, the same energy label is assigned to different states that
should have the same energy by symmetry, the derivative in
Eq. (4) gives the sum of the densities of these states, as seen
below.

The recursion relations are, similarly to Eqs. (8),

eE ′(mn)+G̃ =
q−1∑
k=0

ebd−1E (mk)+bd−1E (kn),

eG̃ =
q−1∑
k=0

ebd−1E (0k)+bd−1E (k0). (16)

The renormalization-group flows and the calculation of the
thermodynamic densities proceed as for the Potts models
above. The recursion matrix is the 7 × 7 derivative matrix of
[G, E (mn)], where E (mn) are the six energies of Eq. (15) and
G is the additive constant as in Eq. (6), a captive variable of

FIG. 6. Comparison with respect to the number of states q =
3, 4, 5, 6, 7, 8 of the nearest-neighbor densities of the clock models,
Um ≡ Uk,k−m for k = 0, 1 and m = 0, 1, . . . , shown in decreasing
q on the high-temperature side in each panel. m measures the an-
gular difference θi − θ j = 2πm/q between neighboring spins. The
top right panel shows the curves for neighboring unlike states with
m = 1. The bottom left panel shows the curves with m = 2, and
therefore q = 4, 5, 6, 7, 8. The bottom right upper panel shows the
curves with m = 3, and therefore with q = 6, 7, 8. The bottom right
lower panel shows the curves with m = 4, and therefore q = 8.
For each m, the curves for different k coincide in the disordered
high-temperature phase. In the low-temperature phase, for each m,
the densities involving k = 0 and the densities involving k > 0 split
under the symmetry breaking favoring the state 0. All interface den-
sities involving k = 0 exhibit reentrance as temperature is lowered in
the ordered phase, first increasing in value and then receding to zero
at zero temperature.

the renormalization-group flows of the E (mn). By a derivative
matrix, we again mean the derivatives of the renormalized
quantities with respect to the unrenormalized quantities.

The left eigenvector with eigenvalue bd of the recursion
matrix at the phase sinks has the form [1,U (mn)], where
U (mn) are the density sums conjugate to the recurring E (mn).
At the high-temperature disordered phase sink, all energies
equal E (00), namely zero, and U (mn) = z(mn)/q2, where
z(mN ) is the degeneracy of E (mn), namely z = 2, 1, 4, 4, 2, 2
for the energies in Eq. (15), also taking into account the
degeneracy for label interchange when m �= n. Repeated ap-
plication of Eq. (7) then yields the six density sums U (mn)
in the entire temperature range of the disordered phase. The
densities for individual states are obtained from the sums by
〈δ(mn)〉 = U (mn) = U (mn)/z(mn). For example,

U (01)/z(01) = 〈[δ(01) + δ(10) + δ(03) + δ(30)]〉/4

= 〈δ(01)〉 = U (01). (17)

Thus, when we reduce the number of the recurring energies
using symmetries as in Eq. (15) and label interchange symme-
try, the renormalization-group calculation yields the density
sum U (01), which is then subjected to Eq. (17). At the low-
temperature sink, in the left eigenvector with eigenvalue bd ,
all U (mn) = 0, and therefore U (00) = 1 − �mnU (mn) = 1,
symmetry is broken in favor of state 0. Repeated application
of Eq. (7) then yields the six density sums U (mn) in the
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entire temperature range of the ordered phase. [The other left
eigenvector with eigenvalue bd is U (00) = 1, where 0 is a
state other than 0, and all other recurring U (mn) = 0, giv-
ing an equivalent phase and completing the picture of phase
coexistence, as for the Potts models above.]

The calculated nearest-neighbor densities of the four-state
clock model in d = 3 are shown in Fig. 4. The densi-
ties U (00),U (11),U (33) coincide in the disordered high-
temperature phase, and in the low-temperature phase U (00)
splits from U (11),U (33) under the symmetry breaking favor-
ing the state 0. Similarly, U (01),U (03),U (12),U (23) coin-
cide in the disordered high-temperature phase, and in the low-
temperature phase U (01),U (03) splits from U (12),U (23)
under the symmetry breaking. Similarly, U (02),U (13) co-
incide in the disordered high-temperature phase, and in the
low-temperature phase U (02) splits from U (13) under the
symmetry breaking. The densities involving the 0 state split
from their symmetric counterparts in the low-temperature
phase, increasing their values. This is spontaneous symmetry
breaking. Furthermore, the interface densities involving the
0 state exhibit reentrance as temperature is lowered in the
ordered phase, first increasing in value and then receding to
zero at zero temperature.

B. Renormalization-group flows of 8, 12, 15, and 20
energies for q = 5, 6, 7, 8

The calculations for q = 5, 6, 7, 8 are more extensive. Us-
ing symmetries grouping the same values of |n − m|, but
grouping separately for positioning with respect to state 0,
for the possibility of spontaneous symmetry breaking, q =
5, 6, 7, 8 have renormalization-group flows in 8, 12, 15, and
20 energies, respectively. These constitute very extensive
renormalization-group calculations.

The results are shown in Fig. 4. Direct comparison between
different q is shown in Fig. 6, showing a striking evolution
with respect to q. The characteristic behavior is seen here
as well. The curves are for Uk,k−m for k = 0, 1, . . . , q − 1
and m = 0, 1, . . . . Thus, m measures the angular difference
θi − θ j = 2πm/q between the states of neighboring spins. For
each m, the curves for different k coincide in the disordered
high-temperature phase. In the low-temperature phase, for
each m, the densities involving k = 0 and the densities in-
volving k > 0 split under the spontaneous symmetry breaking
favoring the state 0. The interface densities involving k = 0
exhibit reentrance as temperature is lowered in the ordered
phase, first increasing in value and then receding to zero at
zero temperature.

V. MAGNETIZATIONS AND INFINITE q
(NON)SATURATION OF THE CRITICAL TEMPERATURE

The magnetizations M are directly obtained from the
nearest-neighbor densities. For the Potts models,

M = 〈δ(sia)〉 =
q−1,q−1∑
m=0,n=0

U (mn) δ(ma). (18)

FIG. 7. Calculated magnetizations of the Potts and clock models
as a function of temperature J−1 in d = 3 for different values of
the number of states q. It is noteworthy that, in the clock models,
the magnetization quickly (at as low as q = 5) settles to its q = ∞
(which is the XY model) value along the entire temperature range of
the low-temperature ordered phase, not only at the value of J−1

c as
was seen above in Fig. 1 and Table I.

For the clock models,

M = 〈cos(θi)〉 =
q−1,q−1∑
m=0,n=0

U (mn) cos(2πm/q). (19)

These equations are obtained by including a magnetic field
term (to be taken to zero after differentiating) in the E (mn),
differentiating ln(Z ) with respect to the magnetic field, and
using the chain rule with E (mn) as intermediary.

The results for the magnetizations and the critical temper-
atures are given in Figs. 1 and 7 and Table I. It should be
noted that these results are exact for the d = 3 hierarchical
lattice. They are approximate for the cubic lattice. Specifi-
cally, by allowing effective vacancies to be generated by the
renormalization-group transformation, the Potts model transi-
tion correctly becomes first order for q > 2 [2–4].

It is of interest to see the magnetization curves for the clock
models in Fig. 7 settle to their q → ∞ value for as low as
q = 5. This is of course reflected in the essentially constant
value of the clock critical temperatures as q is increased.

Such is not the case for the Potts models. Directly writing
down the recursion relation for J in Eq. (1),

J ′ = ln
[
e2bd−1J + (q − 1)

] − ln
[
2ebd−1J + (q − 2)

]
, (20)

setting the fixed point condition J ′ = J = Jc, and expanding
for large J and q, we find the critical temperatures

J−1
c = 7/ ln(q). (21)

This curve is plotted as a dashed curve in Fig. 1 and gives a
good fit even for finite q. As q → ∞, the critical temperature
goes to zero.

There is a physical explanation for the contrast between
the Potts and clock models. In the Potts models, the states
neighboring si = a do not contribute to the magnetization and
they are entropically favored as q is increased. (In fact, in
the permutationally symmetric Potts models, the concept of
“neighboring” state has no meaning: every state is equally
positioned with respect to a chosen state.) By contrast, in
the clock models, the states neighboring θi = 0 give almost a
full contribution, namely 〈cos(2πni/q)〉 to the magnetization,
where ni 
 q for large q. Thus, in all spatial dimensions d , the
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critical temperature for Potts models should go to zero inverse
logarithmically as q → ∞.

VI. CONCLUSION

In this study, we have calculated all of the bond-state
densities of the q-state Potts and clock models in d = 3. This
was done for all q for the Potts models by reducing the recur-
sion relations to four, using symmetries, modulo singling out
one state for possible spontaneous symmetry breaking, which
happens for both models. Although the number of recursion
relations in clock models can be reduced by symmetry, their
number grows, for example to 20 different energies for our
treated eight-state clock model. However, we have presented a

robust method that would make the calculation for any number
of states q feasible.

A reentrant behavior of all of the symmetry-broken inter-
face densities was found for both models, and was physically
explained. A surprising saturation with increasing q was found
in the clock models, but not in the Potts models. We also
found qualitatively different phase transition behaviors in the
q → ∞ limit, which was physically explained by entropy and
alignment arguments.
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