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Model of magnetic friction with infinite-range interaction
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We investigate a model of magnetic friction with the infinite-range interaction by mean-field analysis and a
numerical simulation, and compare its behavior with that of the short-range model that we considered previously
[Komatsu, Phys. Rev. E 100, 052130 (2019)]. This infinite-range model always obeys the Stokes law when the
temperature is higher than the critical value, T, whereas it shows a crossover or transition from the Dieterich-
Ruina law to the Stokes law when the temperature is lower than 7,. Considering that the short-range model in
our previous study shows a crossover or transition irrespective of whether the temperature is above or below the
equilibrium transition temperature, the behavior in the high-temperature state is the major difference between

these two models.
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I. INTRODUCTION

Friction is an important subject in solid-state and applied
physics [1,2]. The Amontons-Coulomb law, in which fric-
tional force F is independent of relative velocity v, has long
been used for the friction between solid surfaces. However,
Coulomb himself pointed out that actual materials violate
this law slightly [3]. This violation was studied several
decades ago, and the empirical modification of the Amontons-
Coulomb law known as the Dieterich-Ruina law [1,2,4-8] was
established. In the steady state, this law is expressed as

F =Alogv + B, (D

where A and B are constants. The term A log v is the difference
from the Amontons-Coulomb law.

Despite these phenomenological or empirical studies, the
microscopic mechanism of the friction is not fully understood,
and various factors affecting friction, such as lattice vibration
and the motion of electrons, have been considered [9-13].
In particular, magnetic friction, which is the frictional force
caused by the magnetic interaction between spin variables, has
attracted much interest [14—16], and several types of statistical
mechanical models of this phenomenon have been proposed
[17-29].

In these models, the important behaviors of the system,
such as the relation between the frictional force and the rel-
ative surface velocity, differ. Depending on the model, the
system may obey the Amontons-Coulomb law [17-20] or the
Stokes law [27,28], while in some models the relation shows
a crossover between these two laws [29]. In our previous
model, the relation shows a crossover or transition from the
Dieterich-Ruina law to the Stokes law [30]. To compare these
studies with the friction of actual magnetic materials or typical
solid surfaces, the reason this difference appears should be
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considered first. However, these models differ from each other
in many ways, such as the form of spin variables, the definition
of the dynamics, and the interaction range. Hence, we need to
investigate how each factor affects the friction.

In this study, we introduce a model in which the spins
interact with each other by the infinite-range interaction. This
model resembles the short-range model in our previous study,
except for the interaction range. Namely, we use Ising spin
variables, and the system creates an “antiferromagnetic order,”
which prevents the relative motion of the lattices as if the
magnetic order is the potential barrier, and the dynamics are
defined by mixing the Metropolis method and the Langevin
equation. Comparing this model and our previous model, we
investigate how the interaction range affects the magnetic
friction. In the realistic magnetic systems, the dipolar interac-
tion is more important example of the long-range interaction.
However, considering the relation between this interaction and
the magnetic friction is thought to be difficult because it makes
complicated magnetic structures depending on the condition
[31-33]. Furthermore, general long-range interaction systems
need O(N?) computational complexity, so the numerical sim-
ulation of a large system itself is difficult. Indeed, previous
research on the magnetic friction caused by the dipolar inter-
action has been limited to the relatively simple systems, such
as the system with one tip and one chain [27]. In the case
of the infinite-range interaction system, on the other hand,
consideration is easier because the computational complexity
of the numerical simulation is O(N), and the behavior at
the thermodynamic limit can be investigated by mean-field
analysis. Moreover, as we will explain in the next section,
we can construct the infinite-range interaction model which
constructs the magnetic structure similar to the antiferromag-
netic order of the short-range model. This point enables us
to consider the effect of the interaction range, without con-
cern about the difference of the magnetic structures from our
previous model. Hence, to develop theoretical considerations,
the infinite-range interaction is an important example of the
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long-range interaction as the first step of the consideration.
The outline of this paper is as follows. We introduce the model
and define its time development in Sec. II, investigate the
thermodynamic limit and finite-size system in Secs. III and
IV, respectively, and summarize the study in Sec. V.

II. MODEL

To consider the effect of the interaction range, we introduce
the present model, which resembles that of our previous study
[30] but differs in having an infinite-range interaction. The
model in this study is composed of the two Ising spin lattices
adjacent to each other, as in our previous model. We also
let the magnetic order of this model behave as the potential
barrier, which prevents the relative motion of lattices like the
antiferromagnetic order of our previous model does. In the
short-range model of magnetism, antiferromagnetic order is
composed of two sublattices that have oppositely directed
magnetization. To consider the infinite-range model without
destroying this structure, we first divide each lattice into two
sublattices and assume that the coupling constant between
spins depends only on the sublattices to which they belong,
not on the distance between them, as we explain next. We
name the sublattices in the upper lattice Uy and Up, and
those in the lower lattice D4, and Dg. Each sublattice has
N/4 lattice points with Ising spin variables o;. In each lattice,
lattice points of two sublattices are arranged alternately, and
the distance between adjacent lattice points is normalized as
the unit length. We introduce the shift of the upper lattice, r,
and let the pair of sublattices, Uy and D4 (or Ug and Dp),
be closest to each other when r =0. When 0 <r < 1, Uy
(Up) goes away from D4 (Dp) and approaches Dg (D4) with
increasing r, and when 1 < r < 2, the opposite occurs. The
positional relation between sublattices reverts to that of r = 0
when r = 2, then repeats the pattern of 0 < r < 2 periodically
when r > 2. We do not need other geometrical restrictions
in this model because the infinite-range interaction does not
decay by the distance between spins.

We let the coupling constant between the spins of the same
sublattice be 271/, that between the spins of different sublattices
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and that between the spins of different lattices be the periodic
function of r, % or % Here we let hy(r) and hy(r) be
the periodic and piecewise linear function, which takes its
maximum value, 1, when the two sublattices are closest, and
its minimum value, 0, when they are farthest, that is,

1—r if 0<r<1,
hl(r)z{r—l i 1<r<2, (22)

. rif 0<r<l,
hZ(’)—{z—r if 1<r<2. (2b)

The periods of i, and h, are given as 2: hy(r + 2) = hy(r),
hy(r + 2) = hp(r). We can also consider the model with dif-
ferent forms of 4; and h,. However, to discuss the effect of
the interaction range by comparing this model with the short-
range model in our previous study, Egs. (2a) and (2b), which
coincide with the periodic extension of the intersurface inter-
action of the previous model except for the constant 1lv’ are the
appropriate form. Under this coupling constant, sublattices of
different lattices tend to be closer if their spins are oriented
oppositely, and farther apart if their spins are oriented in the
same direction. This effect acts as a potential barrier, which
prevents lattice motion. Sublattices with different directions
have an important role in preventing the lattice motion in
our model. Considering this point, it is difficult to develop a
similar discussion in the ferromagnetic model where uniform
magnetization appears. According to previous studies, such
as Ref. [17], it is fluctuations of the spins that prevent the
lattice motion of the ferromagnetic models. However, in the
case of the infinite-range interaction, even the contribution of
the fluctuation is small because it is averaged over the whole
system. This is why we use the antiferromagnetic model even
though the structure with sublattices is complicated.

The difference between the short-range model of our pre-
vious study and this model is shown in Fig. 1. The relation
between different sublattices in this model resembles that of
the short-range model, even though the interaction range is
lengthened. There is no interaction between the spins of same
sublattice [purple (dark gray) dashed lines in Fig. 1] in the
short-range model. This interaction is added to generalize the
discussion.

The Hamiltonian of this system is given as

Jhy(r)
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Here the coupling constant between the spins of the same sublattice is halved considering the double counting in the summation.

o . . -1
We let the magnetizations of the sublattices per one spin be my, , my,, mp,, and mp,, namely, e.g., my, = (%) > ivet, Oia-

Using these parameters, Eq. (3) is simplified as
NJ

H = —{(mUAWZUB + mDAmDB) + hl(r)(mUAmDA —+ mUBmDB)

16

+ by (r) (my,mp, + my,mp, )} + —— (mg, +mi, +mp, +mp, ).
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Note that the number of spins of each sublattice is %’, and the
magnetizations defined above are not the ensemble averages.
As in our previous study [30], we define the time development
of this model by updating of the Metropolis method and let the
unit of time be one Monte Carlo step (MCS). The proposed
updating at each step is the reversal of one randomly chosen
spin. Note that this dynamics changes only one spin at each
step of updating. Hence, we cannot impose the symmetry
stemming from the antiferromagnetic order, i.e., my, = —my,
or mp, = —mp,, on the Hamiltonian itself, because this impo-
sition requires the complicated updating of the system, which
changes more than two spins simultaneously.

We fix the lower lattice and consider the motion of the
upper lattice by imposing an external force, F, on it. This
force balances the frictional force in the steady state. The
shift of the upper lattice, r, obeys the overdamped Langevin
equation under given temperature 7. In this work, we let the
Boltzmann constant kg = 1 by adjusting the unit of tempera-
ture. Assuming that any elastic deformation of the lattices can
be ignored, the Langevin equation is written as

N\dr oH
E)—+F——+

0= —y(
where R is the white Gaussian noise fulfilling (R(#)R(t")) =
8(t — t'). Using the external force per lattice point f = 2F /N,
we transform Eq. (5) as

dr _f 2]
a=yt yN[ - +\/yTNR<z>}. ©)

III. THERMODYNAMIC LIMIT

The mean-field approximation describes the behaviors of
infinite-range models well, and it becomes exact at the ther-
modynamic limit. Hence, in this section, we consider this
model by using the mean-field approximation. In the mean-
field approximation, fluctuations of thermodynamic quantities
are ignored and these quantities nearly coincide with the en-
semble averages of themselves, for example, (my,) >~ my,.
Hence, we do not distinguish the expressions of these two
quantities.

The probability that one up (down) spin of sublattice Uy is
reversed at each step of updating, P,_, q(Py—y), i given as

1/1
Piq = Z (#) min [1, exp (=BdHu-a)], (72)

Pyy =

%(%) min [1, exp (—B8Ha—y)]. (7b)

In these equations, % liZ’UA is the probability that each up or
down spin is chosen as the candidate for updating, and the
minima are the acceptance rates of the proposal. The change
in the magnetizaton of U4 when an up or down spin is reversed

is F2, so the corresponding change in my, is given as

Ny~ 8
g ==2-(3) == ®
dmy oy = —8my_q. (8b)
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FIG. 1. Comparison of the short-range model in our previous
study [30] (top) and the infinite-range model in this study (bottom).
In the top panel, the red (dark gray), blue (dim gray), and green (light
gray) lines indicate the pairs of spins with coupling constants of J,
J(1 —r), and Jr, respectively. In bottom panel, the red (dark gray),
blue (dim gray), and green (light gray) solid lines and purple (dark
gray) dashed lines indicate the pairs of spins with coupling constants

J @) Jhi(r) 2y ;
f £, =h, S0 and 2, respectively.

Hence, the change in the Hamiltonian caused by each update
is given as

NJ 8
SHysa = E(—N)[mug + hi(rymp, + hy(rymp, |

NJ 8
+g (- ) e

J
- E[mug + hi(r)mp, + hy(rymp, |

—J'my,, (9a)
8Hd—>u = _aHu—>d- (9b)

The change in the Hamiltonian at each step is described by
the mean value of the magnetization, my, , my,, mp,, and mp,,
because we use the infinite-range model described by Eq. (4).
Using Egs. (8a) and (8b), the total change of my, per time
interval §t = 1%,, namely, the one-step updating, is expressed
as

dmy, = Pyugdmy_q + Paudmy_y

8
= N(_Pu—>d+Pd—>u)~ (10)

From this relation, the time development of my, is given as

deA (SW[UA
— >~ —= =8(—Pumd + Pisu)- 11
dt St ( u—d + Fa u) ( )
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Substituting Egs. (7a), (7b), (9a), and (9b) into Eq. (11), we finally get
dm . J /
TUA = — (1 + my, ) min |:1, exp {'B?[mUB + hy(rmp, + ha(rymp, | + BJ 'my, ”

+ (1 — my,) min |:1, exp {—%[muﬂ + h(r)mp, + hg(r)mDB] — BT my, H (12)

The time development equations of my,, mp,, and mp, are derived in a similar way,

d msu

dt

= — (1 + mg,) min |:1, exp {'%][ s, +hi(rmg, + hz(l’)n’lgu] + ﬂ]’msu }:|

+ (1 — mg, ) min |:1, exp {—'B—zj[msﬂ + hl(r)mgH + hz(r)mgﬁ] — ﬂ‘]’msu ” (13)

Here S=U,D,S=D,U, u=A, B, and i = B, A. Note that § # S, i # 1 in every case. We assume that the two sublattices
of each lattice have the opposite magnetization, that is, my, = —my, and mp, = —mp,. Furthermore, from the symmetry
between the upper and the lower lattice, we can infer that my, is equal to mp, or mp,. Choosing the latter case, we obtain the
relation

my, = —mMyy = —Mp, = Mp, = M. (14)

To confirm that Eq. (14) is valid, we investigated some initial conditions which slightly break the symmetry of this equation by
the numerical calculation of Eqs. (6) and (13), and found that the difference from the symmetric solution always attenuated like
the example shown in Fig. 2.

We should also refer to the possibility that the antiferromagnetic order itself does not appear. Generally speaking, even in
the antiferromagnetic model, it is possible that the lattice motion introduces the effective ferromagnetic interaction and the
ferromagnetic order appears, i.e., my, = my, and mp, = mp,. However, in the case of this model, the interactions between
different lattices are so weak that the energy of the ferromagnetic state cannot be more stable than that of the antiferromagnetic
one at any r.

Using Eq. (14), Eq. (13) is simplified as

dm . B 4
ar = — (1 + m)min [1, exp {5[(—1 —h(r)+ ha(r)J +2J ]m}:|
+ (1 — m) min [l, exp {—g[(—l —hi(r)+ hy(r))J + 2J/]m}:|. (15)

(

The time development of r is described by Eq. (6). transformed as
Considering that the random force term of this equation
disappears at the thermodynamic limit, this equation is

expressed as

min [1, exp (—5{[—1—hi(r) + ha(r)]J + 27'}m)]
min [1, exp {2 (=1 — hi(r) + ha(r))J + 27" )m}]

14+m

1—m

ar _f 2 0H = exp (—g{[—l — i (r) + ha (1)1 + 21’}m>. (18)
dt y yN or
J , Using this equation, we get
= % + E[hl(r) — hy(r)Im?. (16)

Using Eqgs. (15) and (16), we can discuss the time develop-
ment of the whole system at the thermodynamic limit. The
trivial solution of these equations is the case where the mag-
netizations do not exist,

m=0, — =

dr f
iy 17)

In this case, the upper lattice moves with constant velocity
f/v, so the system obeys the Stokes law.

One more important solution is the case where
the magnetizations have a nonzero constant value,

namely, m # 0, and ‘2—’:’:0. In this case, Eq. (15) is

m = tanh <_§{[_1 —h(r)+ hy(NJ + 2J/}m>. (19)

Equation (19) is the self-consistent equation that determines
the values of magnetization m. From these equations, r
should also be constant to keep the magnetizations constant.
However, Eq. (16) usually does not have a solution that si-
multaneously fulfills % =0 and m # 0. This seems to be
a contradiction, but we can avoid this problem if r has the
value near the discontinuous point of /) (r) and h(r), that is,
r >~ 0 or 1. This result means that the upper lattice is perfectly
trapped by the potential barrier created by the magnetic inter-
action. First, we consider the case of r >~ 0. In this case, the
term /| (r) — hy(r) that appears in Eq. (16) has the value —2
or +2 when r is slightly larger or smaller than 0, so Eq. (16)

062131-4



MODEL OF MAGNETIC FRICTION WITH ...

PHYSICAL REVIEW E 102, 062131 (2020)

1.0
8
&
%
.§ 0.5 Mya—
@ -Myg-—-
§ “Mpa-—-

m .........

<§ DB
&

0-0 5 10

t

FIG. 2. An example of the time dependence of parameters my,
(blue solid line), —my, (green dashed line), —mp, (red dash-dotted
line), and mp, (black dash-double-dotted line) obtained by the nu-
merical calculation of Eqgs. (6) and (13) using the fourth-order
Runge-Kutta method. In this example, we let T =0.4, f =0.2,
J=1,J'=0,and y = 1, and the initial state is given as my, = 0.9,
my, = —0.6, mp, = —0.5, mp, = 0.8, and r = 0.1. To confirm that
the solution converges to the symmetric one obeying Eq. (14), we
plot —my, and —myp,, instead of my, and mp, themselves.

can be transformed as

d J
ar_ L ren. (20)
dt y 2y
To keep the value of r near 0, the right-hand side of Eq. (20)
should be negative when r > 0 and positive when r < 0. This

condition is satisfied when and only when
J
Il < 5m? 2L

so we call this upper limit f,., that is, f. = Jm?/2. In the case
where » >~ 1, we can transform Eq. (16) as

dr f J 5

— ==+ —msgn(r — 1 22

0 y+2ymg(r ) (22)
by a similar calculation. Equation (22) shows that r = 1 is the
unstable point because the right-hand side of this equation is
always positive when r > 1. Hence, r ~~ 0 is the only case we
should consider. Substituting r >~ 0 into Eq. (19), we get

m = tanh [gu - J’)m:|. (23)

This self-consistent equation has the nonzero solution only
when

4

2
This inequality is equivalent to T < T, = (J — J')/2. If the
temperature is higher than the critical value, T, the system
cannot have nonzero magnetization and f, = 0. In particular,
in the case where J' > J, nonzero magnetization never ap-
pears because 7, < 0.

We investigate the actual dependence of m and velocity
V= % on f in the steady state of the system that obeys
Egs. (15) and (16) by the fourth-order Runge-Kutta method.
In this calculation, we let J = 1,J' = 0, and ¥ = 1, and start
from the initial state m = mg, r = 0. Here several cases with

J-J)>1 (24)

(@ 1.0
fo
m/
mo=1 00—
: > mg=0.5---
mg=0.01----
0.0
00 02 04 06
f
(b)
0.5+ f,
m0=1 00—
- mg=0.5---
yd my=0.01----
0.0 | |
0.0 0.2 0.4 06
f

FIG. 3. f dependence of (a) magnetization m and (b) veloc-
ity v at T = 0.4 (= 0.8T,) at the thermodynamic limit. The blue
solid, green dashed, and red dash-dotted lines represent cases where
my = 1.0, 0.5, 0.01, respectively. In each case, m is equal to m’, the
nontrivial solution of the self-consistent equation (23), when f is
small. The value of f, is defined after Eq. (21). In the case of T = 0.4,
these values are given as m’ >~ 0.710, and f, >~ 0.252.

different my are investigated. Each measured quantity is av-
eraged over 1.0 x 10* <t < 5.0 x 10*. The result is shown
in Figs. 3 and 4. Here the graph of m at T = 0.5 is not
plotted because m is always zero at this temperature. Seeing
these graphs, two types of states are observed. In one, mag-
netization m coincides with m’, the nontrivial solution of the
self-consistent equation (23), and velocity v is zero. In the
other, m = 0 and v obey the Stokes law; v = f/y. Hence,
there are no other steady state solutions of Eqs. (15) and (16)

0.5¢
> m0=05 """"
Mg=0.01----
0.0 : : -
0.0 0.2 04 0.6

f

FIG. 4. f dependence of velocity v at T = 0.5 (=T7,) at the
thermodynamic limit. The meanings of the lines are the same as in
Fig. 3. In this case, the system obeys the Stokes law. The graph for m
is not plotted because it is always zero.
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than the two types discussed above. When the temperature
is lower than the critical value, T, both of these states are
observed, and the value of f where they interchange depends
on the initial value of my within the range of f < f.. In
contrast, when T > T, the system always obeys the Stokes
law and does not have the magnetization. It is notable that
the hysteresis dependence is observed in the low-temperature
state.

The discussion of this section is valid only when N =
oo. In a finite-size system, the magnetizations do not coin-
cide with the ensemble averages of themselves, namely, e.g.,
(my,) # my,. The fluctuations of the magnetizations, which
is the difference between their real values and ensemble aver-
ages, is O(1/+/N). Therefore, the effect of this fluctuation is
comparable to the random force term of the Langevin equation
(6), which we could ignore in this section. This fact makes the
analytical discussion of the finite-size system difficult, so a
numerical simulation is necessary.

IV. SIMULATION

In this section, we investigate the behavior of this model
by a numerical simulation. r is updated after every At MCSs
(= NAr steps) by applying the stochastic Heun method to
Eq. (6). Welet J =1,J' =0,y =1 and At = 0.01; thus, r
is updated after every N/100 steps of updating the spin vari-
ables. Velocity v of the upper lattice is defined as the change
in r per MCS. We begin the simulation from the perfectly
ordered state and increase f gradually. At each value of f,
the first 1.0 x 10% MCSs are used for relaxation and the next
4.0 x 10° MCSs are used for measurement, and after that, f
is increased by Af = 0.002. The initial value of r is given
as 0. We first investigate the v-f curve at T = 0.4 (= 0.87),
where T, is the critical value discussed in the previous section.
At each calculation, we take the average over 48 independent
trials to obtain the data with error bars. The result is given
as Figs. 5(a) and 5(b). Based on these graphs, the system
shows a crossover or transition from the Dieterich-Ruina law
to the Stokes law. To consider the mechanism explaining why
the Dieterich-Ruina law appears, we rescale these v-f curves
with a relation similar to that in our previous study [30]. The
equation we used for the rescaling in our previous study was
derived by applying the discussion in Ref. [7] to the magnetic
friction model. This discussion is based on the assumption that
v is determined mainly by the competition between external
force and the potential barrier. In this study, the equation is
expressed as

logv =aF’ +c, (25)

where F' = N(f — f)). (26)

The change from the corresponding equation in our previous
study is that the parameter expressing the contact area be-
tween surfaces is replaced by N. This is because the height
of the potential barrier is proportional to the contact area in
our previous model, and to the total number of spins, N, in the
present model. The rescaled curves are plotted in Fig. 5(c).
Here we change the value of A f, which is the gradual in-
crease of f after measurement, into Af = 0.8§/N. Namely,
Af is made inversely proportional to N to take sufficient

N=400-=-

N=800-<-
N=1600+-
N=2400+ .
Stokes—-

FIG. 5. v-f relation at T = 0.4 plotted on a (a) linear graph and
(b) semilogarithmic graph. The red open squares, green open circles,
blue closed circles, and black open triangles indicate data at N =
400, 800, 1600, and 2400, respectively, and the black dotted line of
(a) represents the Stokes law v = f/y. (c) Rescaled v-F’ curves at
T = 0.4. The symbols are the same as in (a) and (b), and the black
dotted line is the fitting curve. The fitting parameters are given as
a =0.204 £0.004, f/ = 0.155 £ 0.004, and ¢ = 0.88 + 0.13.

data even when N is large. The fitting parameters, a, f/, ¢, are
determined by the least-squares fitting, in which we use data
points that satisfy 107® < v < 1072, The graph at N = 2400
has a larger error than the other graphs. Hence, we impose the
same weight at every point, regardless of the error bar, to fit
this graph well. The rescaled graphs overlap with the fitting
curve, so the mechanism explaining why this model obeys the
Dieterich-Ruina law resembles that of our previous study.

We also investigate the v-f relation at T = 0.5(= T.), the
temperature at which the self-consistent equation (23) does
not have the nonzero solution. The result is plotted in Fig. 6.
We investigate the v-f relation of N < 1600 at this temper-
ature, but we show the plot for only N = 2400 because the
shape of the v-f curve is almost unchanged by N. This graph
shows that the system always obeys the Stokes law. This be-
havior is similar to that of the case of the thermodynamic limit

062131-6
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0.2
N=2400+-
Stokes—-
S 0.1
0.0 1
0.0 0.2

f

FIG. 6. v-f relation at T = 0.5 and N = 2400. The data in-
dicated by the red open triangles coincide with the Stokes law
represented by the black dotted line.

discussed in the previous section, but quite different from that
of the short-range model of our previous study [30], which
shows a crossover or transition from the Dieterich-Ruina law
to the Stokes law regardless of the temperature. This differ-
ence results from the point that the frictional force of the
present model depends directly on the long-range order and
disappears when the order becomes zero.

Comparing this section and the previous one, the results
of the simulation and the mean-field analysis are qualitatively
different from each other if T < T.. In the case of the simu-
lation of the finite-size system, the v-f curve is divided into
two domains, the domain where the lattice motion is trapped
by the magnetic structure and that where the magnetic order
disappears and the lattice can move. The value f evaluated
by the finite-size scaling of this section is the approximate
value of the border between these domains. The result of the
mean-field analysis, on the other hand, the system shows the
hysteresis dependence. Namely, if f is smaller than a certain
value f, given in the previous section, the system has the two
types of steady states corresponding to the two domains of
finite-size system, and which one of them appears depends on
the initial condition. Note that these two quantities f, and f,
have different values from each other. In the case of T = 0.4,
for example, f, >~ 0.155 and f, >~ 0.252. (See the captions of
Figs.3 and 5.)

As we have pointed out in the previous section, the
mean-field analysis is thought to become exact in the ther-
modynamic limit N — oo, so the difference between these
two investigations seems to be a contradiction. To consider
why this difference occurs and see how the result of simula-
tion approaches that of the mean-field analysis in N — oo,
we calculate the time dependence of the order parameter for
several system sizes and conditions. In the actual simulation,
we prepare the three cases, (a), (b), and (c). At each calcu-
lation, we take the average over 4800 independent trials to
obtain the data with error bars. In the case (a), f is given
as f =0.1(< f!), and the initial condition is set as my, =
—myp = —mpy = mpg = 0.1, and r = 0. In the cases (b) and
(c), fisgivenas f = 0.2 (which fulfills f, < f < f.)and f =
0.3(> f.), respectively. Initial conditions of these two cases
are the perfectly ordered states mys = —myp = —mpy =
mpp = 1, with r = 0. We also calculate the same value un-
der the same conditions by the mean-field analysis using

) 1.0

N=1600 --
N=3200 ©-
N=4800-+

1P 107 10* 10
t
(c) 1.0 N=1600-
o N=3200-<-
", N=4800-+
LY N=6400-+
—S( Eé N=oo
0.5 ]
S ‘
=5

10° 10" 167 10°
t

FIG. 7. Time dependence of my, in three cases, (a) f = 0.1,
(b) f =0.2, and (c) f = 0.3. The initial condition for each case is
explained in the main text. The red open squares, green open circles,
blue closed circles, and black open triangles indicate the simulation
data at N = 1600, 3200, 4800, and 6400, respectively, and the black
dotted lines are the result of the mean-field analysis using Eqgs. (15)
and (16).

Egs. (15) and (16), and compare the results with those of the
simulation.

The results are shown in Fig. 7. Judging from Figs. 7(a)
and 7(b), relaxation of the system slows down with increas-
ing system size N when f < f.. In the thermodynamic limit
N — oo, the relaxation time diverges, and the new steady
state which is not observed in the finite-size system appears.
This is why the result of mean-field analysis has the hysteresis
dependence. The symptom of this new steady state is observed
as the plateaus of finite N graphs of Figs. 7(a) and 7(b). Note
that the reason why my4 has the slightly different value from
zero in the plateau of Fig. 7(a) is the effect of the O(1/ VN )
fluctuation. In the case of f > f,, on the other hand, according
to Fig. 7(c), the time dependence of the system hardly depends
onN.

From these graphs, we can confirm that the qualitative
difference between finite- and infinite-size systems is caused
by the divergence of the relaxation time, and two values f7,
the border of the domains in the finite-size system, and f,, the
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TABLE 1. v-f relation of the short-range model in Ref. [30] and
the infinite-range model in this study. “D-R to Stokes” means that the
model shows a crossover or transition from the Dieterich-Ruina law
to the Stokes law, “Stokes” means that the model always obeys the
Stokes law, and “hysteresis” means that the model has hysteresis de-
pendence. For the short-range model, 7, is the equilibrium transition
temperature.

Short-range Infinite-range

N < o0 N < 00 N — o0
T <T, D-R to Stokes D-R to Stokes Hysteresis
T>T, D-R to Stokes Stokes Stokes

upper limit of f at which the hysteresis dependence exists in
the thermodynamic limit, can be defined without contradic-
tion.

V. SUMMARY

We introduced a model of magnetic friction and inves-
tigated its behavior, including the v-f relation. This model
resembles our previous model, but has an infinite-range in-
teraction instead of a short-range interaction. We used two
methods for different situations, namely, the mean-field analy-
sis for the thermodynamic limit and the numerical simulation
for the finite-size system.

The v-f relation in this model is summarized in Table I.
Note that we do not know the behavior at the thermodynamic
limit, N — oo, for the short-range model because we cannot
derive the exact result of this case. Hence, we cannot de-
termine whether the existence of the hysteresis dependence
observed in this study is related to the interaction range. The
main difference between this model and the short-range model
in our previous study is the temperature dependence of the
behavior. When the temperature is higher than the critical
value, T, the present model always obeys the Stokes law,
whereas the short-range model shows a crossover or transition
from the Dieterich-Ruina law to the Stokes law even when the
temperature is higher than the equilibrium transition tempera-
ture. This is because the frictional force of the present model
depends directly on the long-range order and disappears when
the order becomes zero. When the temperature is lower than

T., the model shows a crossover or transition similar to that
of the short-range model when N < oo, whereas it shows
hysteresis dependence when N — oo. According to the last
discussion of Sec. IV, divergence of the relaxation time at
N — oo is the cause of this hysteresis dependence. The dif-
ference between the finite- and infinite-size systems results
from the random force term of the Langevin equation and
the fluctuations of the sublattice magnetizations. To consider
the finite-size system, we cannot ignore either the random
force term or these fluctuations because they make the con-
tributions comparable to each other, namely, O(1/+/N).

Studies such as Ref. [18] point out that the sufficiently fast
motion of the lattice lets the short-range interaction system be-
have like a mean-field system, so the short-range model may
have the dynamical transition temperature we could not find in
our previous study and show the qualitatively same behavior
as the infinite-range model. However, considering that the
lattice motion in our model is slow when the lattice is trapped
by the potential barrier made by the magnetic structure, it is
unclear whether this inference is correct.! It is also unclear
whether the behavior of the systems with realistic long-range
interactions, such as the dipolar interaction, resembles the
infinite-range interaction system or the short-range system.
These problems should be investigated in future work.
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!'Strictly speaking, in the case of the model considered in Ref. [18],
the critical value of the velocity, which divide the mean-field-like
and non-mean-field-like behaviors, shows the power-law decay with
increasing the contact area at least when the spatial dimension d =
2. It means that this model shows the mean-field-like behavior at
any finite velocity in the thermodynamic limit. This fact seems to
be contradictory to the discussion of Sec. V. However, in the cases
of our models of this paper and Ref. [30], the velocity in the low- f
domain shows exponential decay, the faster decay than the critical
value of the model of Ref. [18], with increasing the contact area.
[See Egs. (25) and (26) of this paper or Eq. (11) of Ref. [30].] Hence,
the velocity of these cases is small compared with the upper limit
of the non-mean-field-like domain of Ref. [18], if the system size is
sufficiently large.
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