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Quantum Brownian motion: Drude and Ohmic baths as continuum limits of the Rubin model
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The motion of a free quantum particle in a thermal environment is usually described by the quantum Langevin
equation, where the effect of the bath is encoded through a dissipative and a noise term, related to each other via
the fluctuation dissipation theorem. The quantum Langevin equation can be derived starting from a microscopic
model of the thermal bath as an infinite collection of harmonic oscillators prepared in an initial equilibrium state.
The spectral properties of the bath oscillators and their coupling to the particle determine the specific form of
the dissipation and noise. Here we investigate in detail the well-known Rubin bath model, which consists of a
one-dimensional harmonic chain with the boundary bath particle coupled to the Brownian particle. We show
how in the limit of infinite bath bandwidth, we get the Drude model, and a second limit of infinite system-bath
coupling gives the Ohmic model. A detailed analysis of relevant equilibrium correlation functions, such as the
mean squared displacement, velocity autocorrelation functions, and response function are presented, with the
aim of understanding the various temporal regimes. In particular, we discuss the quantum-to-classical crossover
time scales where the mean square displacement changes from a ∼ ln t to a ∼t dependence. We relate our study
to recent work using linear response theory to understand quantum Brownian motion.
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I. INTRODUCTION

A good effective description for the motion of a classical
Brownian particle in a thermal environment at temperature T
is given by the Langevin equation [1]. Considering motion in
one dimension this is given by

Mv̇ = −γ v + η(t ), (1)

where v = ẋ is the velocity of the particle, x its position, γ

the dissipation constant, and η(t ) a Gaussian noise term with
mean 0 and correlations given by the fluctuation-dissipation
relation 〈η(t )η(t ′)〉 = 2γ kBT δ(t − t ′). Some of the most im-
portant properties of this effective dynamics are that the
particle reaches thermal equilibrium with its velocity given by
the Maxwell distribution with 〈v〉 = 0 and 〈v2〉 = kBT/M. On
the other hand, the mean square displacement (MSD) shows
diffusive growth at long times, �(t ) = 〈[x(t ) − x(0)]2〉 =
2Dt (for t → ∞), with a diffusion constant D = kBT/γ .

The quantum version of this equation was first written by
Ford, Kac, and Mazur [2]. Unlike the classical case, where
the Langevin equation can be established using a purely phe-
nomenological approach (see [3]), the quantum case requires
a microscopic modeling of the heat bath. The standard model
for a heat bath is to treat it as an infinite collection of os-
cillators which is coupled to the system of interest, namely,
the Brownian particle. Eliminating the bath degrees, it can
be shown that the effective dynamics of the particle is de-
scribed by a quantum generalized Langevin equation, where
the dissipation term has memory. A special choice of bath

*avijitds74@gmail.com

leads to the so-called Ohmic form [4] of Eq. (1), with the noise
correlations changed to the form

〈η(t )η(t ′)〉 = γ

π

∫ ∞

0
dωh̄ω[2 f (ω, T ) + 1] cos ω(t − t ′),

(2)

where f (ω, T ) = [eβ h̄ω − 1]−1 is the phonon distribution
function. In particular, we note that in the quantum case, the
noise is always correlated and there is no Markovian limit.
Interestingly, even at zero temperature there is noise arising
from quantum fluctuations and it has been shown that this
leads to a logarithmic growth of the MSD with time: �t ∼
(h̄/γ ) ln(tγ /M ) [5,6]. A pecularity of the quantum system
is that the kinetic energy of the particle diverges [7]. This
divergence arises due to the contribution of high-frequency
modes to the zero-point energy and can be avoided by con-
sidering a finite-bandwidth bath which leads to a damping
term with memory. Since the original work in [2], quan-
tum Brownian motion has been investigated using multiple
approaches including quantum Langevin equations [8], path
integral methods [9,10], equilibrium dynamical correlations
[11], and linear response theory [11]. Other relevant refer-
ences are [12–25].

In the present work, we discuss one of the simplest models
of a quantum heat bath, the so-called Rubin bath [14]. In
general it corresponds to a bath with a dissipation kernel with
long-time memory, decaying as a power law. However, we
point out that as special limits it leads to the Ohmic bath
(the dissipation kernel is a delta function in time) and the
Drude bath (the dissipation kernel decays exponentially in
time) [4]. A different limiting procedure to obtain the Ohmic
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bath has been discussed in [26]. For the three bath models
we discuss in detail the form of the MSD, as well as the
velocity autocorrelation function and the response function,
all computed in the thermal equilibrium state. We try to un-
derstand interesting physical aspects and highlight some of
the qualitative differences. In recent years an approach based
on linear response and fluctuation-dissipation theorem [27,28]
has been used to study Brownian motion at zero temperature.
We point out here that this approach is exact for the case of
the Rubin model of bath.

We note that quantum Langevin equations were discussed
in the most general setting in [8], where the authors first
discuss these equations without resorting to a microscopic
model of the bath and state the necessary conditions on the
memory kernel that appears in the dissipation term. The paper
then discusses how the independent oscillator model of a heat
bath can be used to derive the quantum Langevin equation
of the most general form. It is also pointed out that various
bath models that were studied earlier are special cases of the
independent oscillator model. Some of the linear coupling
models that do not fall in this class do not satisfy the so-
called positivity condition and are unphysical. The choice of
frequencies of the bath oscillators and their coupling to the test
particle fix the memory kernel and the complete dynamics.
However, the work in [8] discusses the general formalism but
does not investigate the interesting physical properties that
are observed for specific choices of bath models. The present
paper explores precisely these aspects for a particular choice
of bath, namely, the Rubin model, which naturally falls in the
class of independent oscillator models. For completeness here
we first briefly outline the steps which lead from the Rubin
model to the independent oscillator model and then to the
quantum Langevin equation. As mentioned above, our other
important contribution is to point out that special limits of
the Rubin model lead to two physically relevant bath models,
namely, the Ohmic and Drude models. The corresponding dis-
sipation kernels for these models are simple and so are widely
used, and a natural question is whether the use of these mod-
els as approximate descriptions of the original Rubin model
preserves some of the observable properties. Our comparative
study of the properties of various physical obsrvables for the
three models throws light on this question.

This paper is organized as follows. In Sec. II we intro-
duce the Hamiltonian and derive the generalized Langevin
equation for the system by integrating out the bath degrees
of freedom. We have also discussed a continuum limit of the
model and shown that the conventional and simpler models
of the bath, Drude and Ohmic, emerge. In Sec. III we define
the relevant correlation functions: mean square displacements,
velocity autocorrelation functions, and the response functions.
In Sec. IV we compute these correlations and compare the
different models in detail. We end the paper with a few con-
cluding remarks in Sec. V.

II. HAMILTONIAN AND DERIVATION OF THE
GENERALIZED LANGEVIN EQUATION

Our setup, consisting of a single particle coupled to the
Rubin bath, is schematically shown in Fig. 1. We consider a
particle of mass M with position and momentum operators

FIG. 1. Setup of the problem.

specified by x and p, respectively, while the bath consists of
N particles of mass m and position and momentum operators
given by {x j, p j}, j = 1, 2, . . . N , that are coupled by har-
monic springs of stiffness k. The Hamiltonian of the coupled
system and bath is given by

H = p2

2M
+ k′

2
(x − x1)2 +

N∑
n=1

p2
n

2m
+ k

2

N∑
n=1

(xn − xn+1))
2,

(3)

where we consider the right boundary to be fixed, xN+1 = 0.
Even though our test particle (x, p) is tied to the bath, we see
that in the limit N → ∞, the effective motion corresponds to
that of a free particle. For our analysis, it is convenient to write
the above Hamiltonian in the following form:

H = HS + HB + HSB, (4)

where HS = p2

2M
+ k′

2
x2, HSB = −k′xx1,

HB =
N∑

n=1

p2
n

2m
+ k′

2
x2

1 + k

2

N−1∑
n=1

(xn − xn+1))
2 + k

2
x2

N+1.

The bath Hamiltonian can be written in the compact form
HB = pT m−1p/2 + xT φx/2, where x = (x1, x2, . . . , xN ),
p = (p1, p2, . . . , pN ), and φ is the force matrix. Let
us consider a linear transformation X = m1/2Ux and
P = m1/2Up, where U is an orthogonal transformation
which diagonalizes the force matrix, i.e., UφU T = m
2,
where 
2 is the diagonal matrix with elements given by
the normal-mode frequencies of the bath 
2 = {
2

s }, with
s = 1, 2, . . . , N . Note that the column vector formed by the
matrix elements Usi gives the normal-mode eigenfunction
corresponding to the eigenvalue 
2

s . Using the normal-mode
coordinates Xs and momenta Ps the system-bath coupling and
the bath Hamiltonian can be written as

HSB = −k′xx1 = −k′
N∑

s=1

CsxXs, where Cs = m−1/2Us1,

HB =
N∑

s=1

P2
s

2
+ 
2

s X 2
s

2
. (5)

To derive the effective Langevin equations for the system, one
starts by writing the Heisenberg equations of motion of the
system and the bath degrees of freedom given by

Mẍ = −k′x + k′
N∑

s=1

CsXs, (6)

Ẍs = −
2
s Xs + k′Csx, s = 1, 2, . . . , N. (7)

The bath equations of motion, Eq. (7), can be solved formally,
assuming the initial conditions {Xs(t0), Ps(t0)} that are chosen,
at time t0, from the Boltzmann distribution e−βHB/Tr[e−βHB ]
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at temperature T = (kBβ )−1. This gives

Xs(t ) = cos {
s(t − t0)}Xs(t0) + sin {
s(t − t0)}

s

Ps(t0)

+ k′Cs

∫ t

t0

dt ′ sin {
s(t − t ′)}

s

x(t ′). (8)

Plugging this into the equation of motion of the system we get

Mẍ = −k′x +
∫ t

t0

dt ′�(t − t ′)x(t ′) + η(t ), (9)

where

�(t ) = k′2
N∑

s=1

C2
s

sin(
st )


s
,

η(t ) = k′
N∑

s=1

Cs

[
cos {
s(t − t0)}Xs(t0)

+ sin {
s(t − t0)}

s

Ps(t0)

]
. (10)

Equation (9) is in the form of a generalized Langevin equa-
tion, with �(t ) the memory kernel and η(t ) the random
force term. The information about the baths is completely
contained in these two terms. To get a valid bath it is nec-
essary to take the limit N → ∞ since otherwise we would hit
Poincaré recurrences [4]. Indeed, apparent dissipation arises
in a Hamiltonian system because of the flow of energy into
the infinite degrees of freedom of the bath. Next, since we
are interested in equilibrium properties we take the t0 → −∞
limit (after the N → ∞ limit). This ensures that at any finite
time the Brownian particle has reached thermal equilibrium.
Mathematically the t0 → −∞ limit allows us to use Fourier
transforms and equilibrium correlations can be readily com-
puted. It is instructive to write the above equations in the
usual form of Langevin equations where the dissipation term
involves the velocity rather than the positional degree of free-
dom. For this we define the dissipation kernel

γ (t ) = k′2
N∑

s=1

C2
s

cos(
st )


2
s

, (11)

so that

�(t ) = −dγ (t )

dt
. (12)

We plug this into Eq. (9) and perform an integration by parts.

Then, using the identities γ (0) = k′2 ∑N
s=1

C2
s


2
s

= k′2[φ−1]11 =
k′ and γ (∞) = 0, which can be proved in the N → ∞ limit
(for a reasonable choice of bath properties which are indeed
satisfied by the baths we have considered here), and setting
t0 → −∞, we get

Mẍ = −
∫ t

−∞
dt ′γ (t − t ′)ẋ(t ′) + η(t ), (13)

where we now see that the pinning potential does not appear,
which is what one would like for a free particle. We now
compute the bath properties in the N → ∞ limit. It is useful

to define the bath spectral functions:

�+(ω) =
∫ ∞

0
dt�(t )eiωt = k′2 ∑

s

C2
s

−(ω + iε)2 + 
2
s

,

(ω) = Im[�+(ω)]

= k′2 ∑
s

πC2
s

2ω
[δ(ω − 
s) + δ(ω + 
s)]. (14)

The statistical properties of the noise term can be obtained
using the fact that at t = t0 the bath is at thermal equilibrium
at temperature T . Thus we find that 〈η(t )〉 = 0 while the
noise correlations are easiest to state in the Fourier domain.
Defining η̃(ω) = ∫ ∞

−∞ dtη(t )eiωt , we find [4]

〈η̃(ω)η̃(ω′)〉 = 4h̄π (ω)[ f (ω, T ) + 1] δ(ω + ω′), (15)

where f (ω, T ) = [eβ h̄ω − 1]−1 is the phonon distribution
function. To compute �+(ω), we note that it is precisely
given by k′2g+

1,1, where g+ = [−m(ω + iε)2 + φ]−1 is the
phonon Green’s function of the heat bath and g+

11 refers
to its diagonal element at site n = 1, corresponding to the
particle that is coupled to the system. The computation of
g+(ω) becomes a bit involved because of the presence of the
“impurity” term in the bath Hamiltonian HB in Eq. (4). How-
ever, this can still be obtained explicitly and one eventually
obtains [29]

�+(ω) = k′2 eiq

k + (k′ − k)eiq
, (16)

where q is given by the solution of the dispersion ω2 =
(2k/m)(1 − cos q). In the frequency range |ω| � 2

√
k/m, we

get real values for q and then we have

(ω) = k′2k sin q

|k′ − k + ke−iq|2 = k′2

k

ω
√m

k

√
1 − mω2

4k(
k′
k

)2 + (1 − k′
k

)
mω2

k

, (17)

while for |ω| > 2
√

k/m, we get (ω) = 0. The real part of
�+(ω) is the following:

Re[�+(ω)] =

⎧⎪⎪⎨
⎪⎪⎩

k′2
k

k′
k − mω2

2k

( k′
k )

2+(1− k′
k ) mω2

k

, |ω| � 2
√

k
m ;

k′2
k

k′
k − mω2

2k + mω2

2k

√
1− 4k

mω2

( k′
k )

2+(1− k′
k ) mω2

k

, |ω| > 2
√

k
m .

(18)

Note that Re[�+(ω)] is even with respect to ω, whereas
(ω) = Im[�+(ω)] is an odd function of ω. �+(ω) decays to
0 for |ω| → ∞, which is necessary for its Fourier transform
�(t ) to exist. These expressions of �+(ω) become particu-
larly simple for the case k = k′. Finally, we note that γ̃ (ω) =∫ ∞

0 dtγ (t )eiωt is given by

iωγ̃ (ω) = �+(ω) − k′. (19)

Continuum string limit

An interesting special case is to consider the limit corre-
sponding to the bath’s being a continuous string. This has
been discussed in [26] but in a somewhat different setting.
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We introduce a lattice spacing a and define the mass density
σ = m/a, Young’s modulus E = ka. The lattice parameter
can be introduced in Eqs. (17) and (18) in a consistent way
by substituting m = σa, k = E/a, etc. The continuum limit is
obtained by taking a → 0, m → 0, and k → ∞ while keeping
E and σ constant. This then gives

(ω) = γ0ω

1 + ω2τ 2
, γ̃ (ω) = γ0

1 − iωτ
,

where γ0 = (σE )1/2, τ = γ0/k′. (20)

This corresponds to the so-called Drude model of the bath,
corresponding to a dissipation kernel γ (t ) = (γ0/τ )e−t/τ .
Taking the strong-coupling limit k′ → ∞, so that τ → 0,
gives us the Ohmic bath model, with

(ω) = γ0ω, γ̃ (ω) = γ0, (21)

which gives us a memoryless dissipation kernel, γ (t ) =
γ0δ(t ). We note that the presence of the phonon distribution
function f (ω, T ) in the quantum system ensures that the noise
in Eq. (15) is still correlated and has memory. However, in
the high-temperature limit, β h̄ω → 0, we achieve the strictly
Markovian limit 〈η(t )η(t ′)〉 = 2γ0kBT δ(t − t ′). The authors
in [26] obtained the Ohmic bath starting from a continuum
field description of the bath and using a different limiting
procedure.

In the next section we discuss the behavior of various
physical observables for the quantum Brownian particle that
are obtained from the Rubin model and its limiting forms.

III. MEAN SQUARE DISPLACEMENT, VELOCITY
AUTOCORRELATION FUNCTION,

AND RESPONSE FUNCTION

In the long-time limit the particle reaches the equilibrium
state and we focus on properties in this state such as the mean
square displacement, velocity autocorrelation function, and
response functions. The mean square displacement and the
velocity autocorrelation function are defined as

�(t ) = 〈(x(t ) − x(0))2〉, C(t ) = 1
2 〈{v(t ), v(0)}〉,

where {. . .} denotes the anticommutator. The response func-
tion R(t ) and velocity response function R̄(t ) are defined
through the equations for the average displacement and av-
erage velocity in the presence of a driving force f (t ),

〈�x(t )〉 := 〈x(t )〉 f − 〈x〉 f =0 =
∫ t

−∞
dt ′R(t − t ′) f (t ′), (22)

〈v(t )〉 =
∫ t

−∞
dt ′R̄(t − t ′) f (t ′), (23)

where 〈· · · 〉 f is the expectation value in the presence of the
force and 〈· · · 〉 f =0 in the absence of it. By definition, R̄(t ) =
Ṙ(t ). All three of these quantities can be obtained through the
Fourier transform solution of Eq. (9) (after taking the limits
N → ∞ and t0 → −∞) and Eq. (13). The transform x̃(ω) =∫ ∞
−∞ dtx(t )eiωt is given by

x̃(ω) = G(ω)η̃(ω), where (24)

G(ω) = 1

−Mω2 + k′ − �+(ω)
= 1

−Mω2 − iωγ̃ (ω)
. (25)

Using this and the noise properties leads immediately to

�(t ) = 2〈x2(0)〉 − 〈{x(t ), x(0)}〉 (26)

= h̄

π

∫ ∞

−∞
dω coth(β h̄ω/2)(ω)G(ω)G(−ω)(1 − e−iωt )

= 2h̄

π

∫ ∞

0
dω coth(β h̄ω/2)(ω)G(ω)G(−ω)(1− cos ωt )

= 2h̄

π

∫ ∞

0
dω coth(β h̄ω/2)Im[G(ω)](1 − cos ωt ),

(27)

where we have used the Green’s function identity
(ω)G(ω)G(−ω) = [G(ω) − G(−ω)]/(2i).

The velocity autocorrelation function can be obtained from
�(t ) as

C(t ) = 1

2

d2�(t )

dt2
(28)

= h̄

π

∫ ∞

0
dω coth(β h̄ω/2)(ω)G(ω)G(−ω)ω2 cos ωt

= h̄

π

∫ ∞

0
dω coth(β h̄ω/2)Im[G(ω)]ω2 cos ωt . (29)

The velocity response function is given by

R̄(t ) = 1

2π

∫ ∞

−∞
dω

e−iωt

−iωM + γ̃ (ω)
(30)

= 1

2π

∫ ∞

−∞
dω(−iω)G(ω)e−iωt , (31)

whereas the relation R̄(t ) = Ṙ(t ) gives us an expression of the
position response function,

R(t ) =
∫ t

0
dt ′R̄(t ′) = 1

2π

∫ ∞

−∞
dω G(ω)(e−iωt − 1) (32)

= 1

π

∫ ∞

0
dω(Re[G(ω)][cos(ωt )−1]

+ Im[G(ω)] sin(ωt )), (33)

where we have used the symmetry properties of G(ω):
Re[G(−ω)] = Re[G(ω)] and Im[G(−ω)] = −Im[G(ω)]. On
the other hand, the positional correlation function is given by

1

ih̄
〈[x(t ), x(0)]〉 = 1

π i

∫ ∞

−∞
dω(ω)G(ω)G(−ω)e−iωt

= −1

2π

∫ ∞

−∞
dω[G(ω) − G(−ω)]e−iωt

= −1

π

∫ ∞

−∞
dωIm[G(ω)] sin(ωt ). (34)

Using the Kramer’s Kronig identity,
∫ ∞
−∞ dω Im[G(ω)]

sin(ωt ) = ∫ ∞
−∞ dω Re[G(ω)][cos(ωt ) − 1], we verify explic-

itly that the linear response formula,

R(t ) = − 1

ih̄
〈[x(t ), x(0)]〉, (35)

holds exactly. This is expected since the dynamics of the
system and bath is completely linear.
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IV. COMPARISON OF THE FORMS OF γ (t ), �(t ),
AND C(t ) FOR THE THREE MODELS

A. Form of γ (t )

1. Rubin model

In this case one can obtain the expression of γ̃ (ω) using
Eq. (16) and Eq. (19),

Re[γ̃ (ω)] = k′2

k

√
m

k

√
1 − mω2

4k(
k′
k

)2 + (
1 − k′

k

)(
mω2

k

) , (36)

for |ω| � 2
√

k
m and Re[γ̃ (ω)] = 0 for |ω| > 2

√
k
m .

Im[γ̃ (ω)] = mω

k′
k − 1

2

(
k′
k

)2

(
k′
k

)2 + (
1 − k′

k

)(
mω2

k

) (37)

for |ω| � 2
√

k
m and

Im[γ̃ (ω)] = mω

k′
k − 1

2

(
k′
k

)2[
1 +

√
1 − 4k

mω2

]
(

k′
k

)2 + (
1 − k′

k

)(
mω2

k

) (38)

for |ω| > 2
√

k
m .

Note that Re[γ̃ (ω)] is an odd function of ω, while
Im[γ̃ (ω)] is even. This property is common for various re-
sponse functions in physical systems. For the special case
k = k′, it is possible to evaluate γ (t ) = 1

2π

∫ ∞
−∞ dω γ̃ (ω)e−iωt

to obtain

γ (t ) =
√

kmJ1
(
2
√

k
mt

)
t

, (39)

where Jn is the Bessel function of the first kind. Since Jn(x) ∼√
2

πx cos [x − (n + 1/2)π
2 ] at large x, we get the leading-order

asymptotic behavior γ (t ) ∼ t−3/2. This leading asymptotic
form can be seen as arising from the branch point at ω =
2
√

k/m in the integrand in Eq. (36). For the general case,
k 	= k′, we note that the integrand has additional poles at

ω = k′/
√

m(k′ − k). For k > k′, this is imaginary and gives
rise to an exponentially decaying part in γ (t ). Thus we expect
that for k > k′, γ (t ) should initially have a fast exponential
decay ∼e−wpt , where ωp = k′/

√
m(k − k′). After a time scale

tc ≈ 2π/ωp, this is followed by a ∼t−3/2 decay. This feature
is clearly seen in the numerical evaluation of γ (t ) and is
presented in Fig. 2 for two parameter sets. In [30] the authors
have addressed this question of crossover time scales in a
similar system heuristically.

2. Drude bath and Ohmic bath limits

From Eq. (20) one obtains γ (t ) = γ0

τ
e−t/τ and �(t ) =

γ0

τ 2 e−t/τ . An Ohmic bath is obtained simply taking the limit
τ → 0 and gives γ (t ) = γ0δ(t ).

In Fig. 3 we show a comparison of the forms of γ (t )
obtained from the Rubin and Drude models. As expected
we see that for the weak-coupling case (k′ = 0.5), we ex-
pect an exponentially decaying regime for the Rubin model
over the time scale tc ≈ 2π/ωp ≈ 25.3, and here we see
agreement with the Drude model. On the other hand, when
k′ = 4.0, we see that tc ≈ 1.5, and correspondingly one finds
that there is no regime where the Drude approximation is
good.

We next explore the question how well the behavior of
other physical observables such as �(t ) and C(t ) are repro-
duced by the Drude and Ohmic approximations.

B. Form of �(t )

To compute �(t ),C(t ), and R(t ) we need information on
Im[G(ω)]. Using Eqs. (25), (36), and (37) we get

Im[G(ω)]

=
k′2
k

1
mω3

√
1

mk

√
1 − mω2

4k

([
k′
k

]2 + mω2

k

[
1 − k′

k

])
[

Mω2

k

[
1 − k′

k

] + k′2
k2

[
M
m + 1

2

] − k′
k

]2 + k′4
mω2k3

[
1 − mω2

4k

]
(40)

for |ω| � 2
√

k/m and 0 for |ω| > 2
√

k/m.

FIG. 2. Rubin model. Log-log plot of |γ (t )| for a set of values of m, k, and k′ to show that γ (t ) initially decays rapidly and then as a power

law, ∼t−3/2. We propose that the crossover time, t∗, can be estimated from the location of the branch point of γ̃ (ω): t∗ ∝
√

m
k′ ( k

k′ − 1) when

k > k′ and t∗ ∝ √
m
k when k � k′. (a) k > k′; if we decrease just k′ by a factor of 4, keeping other parameters fixed, t∗ increases by 4 times. (b)

k = k′; m is increased by 10 times, which results in a shift of t∗ by a factor of
√

10. These observations support our claim about the crossover
time.
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FIG. 3. Comparison of γ (t ) between the Rubin and the Drude models: (a) weak-coupling case, k′ = 0.5; (b) strong-coupling case with
k′ = 4.0. Other parameters are taken as M = 1, m = 0.1, k = 5. These data support the fact that the Drude approximation of the Rubin bath is
good when k is large but k′ is not. If both k and k′ are made large, the Ohmic approximation is better than the Drude.

The corresponding form for the Drude bath is given by

Im[G(ω)] = γ0

ω[M2ω2 + (Mω2τ − γ0)2]
. (41)

An Ohmic bath is obtained from the above expression by
letting τ → 0. Most of the integrals of �(t ) and C(t ) for
the Rubin model are intractable analytically but can be done
numerically to extract some limiting behaviors.

Numerical results from the evaluation of the integral,
Eq. (27), and a comparison with results from the correspond-
ing Drude and Ohmic limits is shown in Figs. 4, 5, 6, 7, and
8. Some of the interesting observations can be summarized as
follows:

(1) At long times we see a linear growth of �(t ) with
time, at all finite temperatures, as expected for a diffusive
system. We note that the integrand has an oscillatory fac-
tor [1 − cos(ωt )], so at large t the major contribution to
the integral comes from ω  1/t . Hence, for any nonvan-

ishing β, we take coth ( β h̄ω

2 ) → 2
β h̄ω

to get (in the t → ∞
limit)

�(t ) = 4

πβ

∫ ∞

0
dω(ωIm[G(ω)])ω→0

1 − cos(ωt )

ω2

= 2

β
√

mk
t = 2Dt, (42)

where

D = 1

β
√

mk
= kBT

γ0
(43)

can be identified as the usual diffusion constant satisfying the
Stokes-Einstein relation. In Figs. 7(b) and 4(b), we verify that
�(t )/t does converge to this limit at finite temperatures. As
shown in these figures, the long-time asymptotics of �(t ) and
the diffusion constant are thus correctly obtained by both the
Drude and the Ohmic limits. The diffusion constant values
are specified in Fig. 7(b) for two β values and other parameter
choices. Note that D vanishes at zero temperature (β = ∞),
which is also clear from Fig. 7(b).

FIG. 4. (a) Comparison of �(t ) between the Rubin, Drude, and Ohmic models. β values (from left to right) are 0.01, 10, 100, and ∞.
(b) For β values 10, 100, and ∞ (top to bottom), we plot �(t )/t . Other parameters are taken as M = 1, m = 0.1, k = 5, k′ = 4.0. This figure
is the counterpart of Fig. 7 with k and k′ both large. The saturation values (0.283 and 0.0283) are indicated. We see agreement between the
three models compared to Fig. 7.
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FIG. 5. (a) Comparison of �(t )/ ln(t ) between the Rubin, Drude, and Ohmic models for β = 10 and ∞ (top and bottom) at linear scale.
(b) �(t ) at log-linear scale for β = 100, 500, 5000, and ∞ (top to bottom). Other parameters were taken as M = 1, m = 0.1, k = 5, k′ = 4.0.
Note the match between different models, as k and k′ both are large, in contrast to Fig. 8. From Eq. (44) the prefactor of ln(t ) is 2h̄/πγ0 = 0.9,
which is indicated in both (a) and (b).

(2) At zero temperature (β → ∞) we find that �(t ) has
a slower logarithmic growth at large times. In this quantum
regime we have coth ( β h̄ω

2 ) = 1 and the integrals simplify.
As before, we have to consider only the small ω contribu-
tion to the integral for the large-time asymptotic behavior
of �(t ):

�(t ) � 2h̄

π

∫ 2
√

k
m

0
dω(ωIm[G(ω)])ω→0

1 − cos(ωt )

ω

� 2h̄

πγ0
ln(t ). (44)

In Fig. 8(a) we verify this form and the value of the prefactor
of ln(t ). We see that the Rubin, Drude, and Ohmic models
reproduce the logarithmic growth. The prefactors of ln(t ) are
the same, which is evident in Fig. 8(b) and Fig. 5(b), as the
slopes of different models of the linear regime are the same at
log-linear scale. Note that there must be a time scale included
in the argument of the log for dimensional constraints. The

log behavior can be represented by �(t ) ∼ A + B ln(t ), which
implies that �(t )/ ln(t ) ∼ A/ ln(t ) + B. As ln(t ) is a slowly
varying (increasing) function of t , there is a slow convergence
to the model independent prefactor B of ln(t ), as shown in
Fig. 8(a) and Fig. 5(a). The chosen parameters are mostly
M = 1, m = 0.1, k = 5, and k′ = 0.5 or 4 throughout the
numerical data presented here for various β values. For Drude
and Ohmic baths, γ0 and τ are also chosen correspondingly
[see Eq. (20)].

(3) At finite temperatures, the crossover from the quan-
tum (logarithmic growth) to the classical (linear growth)
takes place at the time scale tqc ∼ β h̄. We study this time
scale in Fig. 8(b) and Fig. 5(b), by plotting the �(t )
for various β values keeping h̄ = 1. On the log-linear
scale, the log behavior of �(t ) is represented by a lin-
ear regime which persists up to a time scale of the order
of β h̄.

(4) Finally, we discuss the short-time behavior. At
high temperatures, we approximate 1−cos(ωt )

ω2 ∼ t2/2 and

FIG. 6. Comparison of �(t ) between the Rubin, Drude, and Ohmic models at short times. (a) β = 0.001. We can see that at high
temperatures �(t ) behaves as ∼t2 for all three models. The correction to the t2 behavior for the Ohmic case is t3, which is evident in the
inset. (b) β = 100. At low and finite temperatures, the short-time behavior is ∼ − t2 ln(t ) for the Ohmic bath, whereas it is ∼t2 for the Rubin
and Drude baths. Other parameters are M = 1, m = 0.1, k = 5, k′ = 0.5. Note that the log divergence of C(0) for the Ohmic case is present
at any finite temperature and diminishes for β h̄ equal to 0, which is hard to achieve numerically. Thus in the data presented in (a) for the Ohmic
case, we have first taken the classical limit and then performed the integral.

062130-7



DAS, DHAR, SANTRA, SATPATHI, AND SINHA PHYSICAL REVIEW E 102, 062130 (2020)

FIG. 7. Comparison of �(t ) between the Rubin, Drude, and Ohmic models: (a) β values are 0.01, 10, 100, and ∞ (left to right). (b) For β

values 10, 100, and ∞ (top to bottom) we plot �(t )/t . We verify the asymptotic formulas presented in Eqs. (42) and (43) at finite temperatures.
At β = 10 the saturation value is 2D = 2/β

√
km = 0.283 and at β = 100 it is 0.0283, which match with the data. These saturation values are

indicated. Other parameters were taken as M = 1, m = 0.1, k = 5, k′ = 0.5.

coth ( β h̄ω

2 ) ∼ 2
β h̄ω

, to obtain

�(t ) � 2

πβ
t2

∫ 2
√

k
m

0
dωωIm[G(ω)] ∼ c

kBT

M
t2, (45)

where c is a dimensionless constant. The ballistic growth can
be simply understood as that of a thermal particle with 〈v2〉 =
kBT/M. On the other hand, at zero temperature, we get

�(t ) � c′ h̄k1/2

M3/2
t2, (46)

where c′ = [2M3/2/(k1/2π )]
∫ 2

√
k/m

0 dωω2Im[G(ω)] is a di-
mensionless constant. The ballistic growth in this case roughly
corresponds to a particle with velocity fluctuations determined
by the zero-point energy so that 〈v2〉 = h̄(k/M )1/2/M.

As presented in Fig. 6(a), we see that in the high-
temperature limit, all three models show t2 behavior with
the same prefactor. This is consistent with the equipartition
interpretation.

At zero temperature or any finite temperature, the Drude
and Rubin models have the expected form of (46) with the
same prefactor, while the Ohmic model has a logarithmic
correction given by

�(t ) � − h̄γ0

M2π
t2 ln(γ0t/M ) + O[t4 ln(t )]. (47)

The data are presented in Fig. 6(b).

C. Form of C(t )

C(t ) is obtained from �(t ) by taking two time derivatives
[Eq. (28)]. Numerical data are presented in Fig. 9. Some
important features are the following:

(1) One general feature is a damped oscillatory behavior
in most parameter regimes. We can also see the agreement
between the three models when both k and k′ are chosen to be
large. However, there is a significant deviation of the Ohmic
bath near t = 0.

FIG. 8. (a) Comparison of �(t )/ ln(t ) between the Rubin, Drude, and Ohmic models. β = 10 and ∞ (top and bottom) at linear scale.
(b) �(t ) at log-linear scale for β = 100, 500, 5000, and ∞ (top to bottom). This figure indicates the log behavior of �(t ) for all three models
with the same prefactors (slopes of the linear region) up to a time scale of the order of ∼β h̄. Beyond this time scale �(t ) behaves linearly in
time, which causes exponential growth at log-linear scale. Other parameters were taken as M = 1, m = 0.1, k = 5, k′ = 0.5. We note that
the Rubin and Drude models match well but the Ohmic model deviates. This occurs because k is large but k′ is relatively small. However, as
(b) suggests, the prefactors of ln(t ) are the same for these models and hence there is a slow convergence of the data at (a) for β = ∞. From
Eq. (44) the prefactor of ln(t ) is 2h̄/πγ0 = 0.9, which is indicated in both (a) and (b).
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FIG. 9. Comparison of C(t ) between the Rubin, Drude, and Ohmic baths: (a) M = 1, m = 0.1, k = 5, k′ = 0.5. β = 0.01. Inset: β = 10,
100, and ∞ (top to bottom). (b) M = 1, m = 0.1, k = 5, k′ = 4. β = 0.01. Inset: β = 10, 100, and ∞ (top to bottom). As in the case of
�(t ), there is better agreement between the Rubin and the Drude models than the Ohmic bath when the k value is sufficiently large but k′ is
not. And all three models coincide when k and k′ both are chosen to be large. Near t = 0, there is a log divergence, which is only present in
the Ohmic case [see Eq. (48)] and this deviation is always visible near t = 0.

(2) In the case of the Rubin and Drude models, at all
temperatures, �(t ) behaves as ∼t2 near t = 0, which gives
a finite value of C(0). Note that C(0) = kBT/M in the classi-
cal regime and C(0) = h̄(k/M )1/2/M in the quantum regime.
C(t ) ∼ C(0) + O(t2) at small times.

However, for the Ohmic bath, from Eq. (47) we get

C(t ) � − γ0h̄

πm2
ln (γ0t/M ) + O[t2 ln(t )]. (48)

This log divergence near t = 0 explains the deviation from
other bath models shown in Fig. 9. Although Eq. (47) was
derived for low temperatures, this log divergence occurs at any
finite temperature. In the classical limit, i.e., when β h̄ = 0,
one gets an exponential decay of the velocity autocorrelation.

(3) In the previous section, we obtained the leading-order
term for �(t ), which behaves as ∼t in the large-time limit at
any finite temperature. If we take double derivatives naively, it
does not lead to the correct leading-order asymptote of C(t ).
In a detailed calculation (to be published), we have shown that
the correction to this linear behavior is ∼e−ct for the Drude
and Ohmic models and ∼ cos(ωt )/t3/2 for the Rubin bath.
Thus the large-time behavior (t � β h̄) of C(t ) is ∼e−ct for
the Drude and Ohmic baths and ∼ cos(t )/t3/2 for the Rubin.
At zero temperature or t  β h̄ the leading-order behaviors
are ∼1/t2 for all three models.

D. Form of R(t )

Using Eq. (32) we obtain

R(t ) = [1 − exp(−γ0t/m)]/γ0 (49)

for the Ohmic model. For the Drude model, the integrals can
also be evaluated exactly and R(t ) takes a similar functional
form. The general feature that R(t ) increases initially and then
saturates to a value is present in all models and parameter
regimes. This behavior physically describes the fact that if
we perturb the Brownian particle, it will initially have a di-
rectional displacement before it becomes completely random.
For the Rubin bath the integrals are intractable. Data from
numerical integration for all three modes are shown in Fig. 10.

Numerical details

To perform the integrals numerically MATHEMATICA has
been used extensively, especially the NIntegrate command. To
obtain the analytical and asymptotic formulas, do the sum-
mations, etc., commands like Integrate, AsymptoticIntegrate,
Series, FullSimplify, etc., of MATHEMATICA have been used in
particular.

V. SUMMARY AND DISCUSSION

In this paper we study in detail the well-known Rubin
bath model, which consists of a one-dimensional semi-infinite
harmonic chain with a boundary bath particle coupled to a test
particle, which is then shown to effectively execute Brownian
motion. We point out two interesting and important limits of
the Rubin model: (i) the Drude model, which is obtained in
the infinite bath bandwidth limit of the Rubin model, and
(ii) the Ohmic model, which, in addition to an infinte bath
bandwidth, also needs the limit of infinite system-bath cou-
pling. For the Rubin model and the special limiting cases,
we analyze in detail the temporal dependence of the mean
square displacement, the velocity autocorrelation function,
and the response function. In addition, we study the crossover
behavior of the dissipation kernel γ (t ) from an exponentially
decaying behavior at short times to an oscillatory power-law
(∼t−3/2) decaying behavior at larger times.

Taking the special limits of either the Drude or the Ohmic
bath is useful since the bath kernels are much simpler and the
mathematical analysis becomes considerably simpler. In real
physical situations one might have large but finite bath band-
widths and system-bath couplings. One important question in
these situations is how closely physical properties are repro-
duced when we ignore the fact that the original Rubin bath
kernel has long-time power-law tails. Our numerical results
show that many properties are indeed accurately reproduced
by the approximate models. For example, we show that even
though the Rubin bath has a memory kernel with power-law
tails, which is completely different from the exponential decay
for the Debye model, this does not affect the asymptotic form
of the mean square displacement. In particular, we discuss the
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FIG. 10. (a) C(t ) at large times for M = 1, m = 0.1, k = 5, k′ = 4, and β = ∞. Inset: The same plot for k′ = 0.5. C(t ) behaves as 1/t2

as discussed in the text. (b) Comparison of the response function R(t ) between the three models for M = 1, m = 0.1, k = 5, k′ = 0.5. Inset:
The same plot for k′ = 4. R(t ) saturates to the value R∞ = 1/γ0 = 1/

√
km = 1.414 [see Eq. (49)].

quantum-to-classical crossover time scales where the mean
square displacement changes from a logarithmic to a linear
time dependence. The analysis presented in this work pro-
vides a microscopic justification for the choice of the position
response function used in a recent analysis [28] of quantum
Brownian motion based on linear response theory as the start-
ing point.

We have shown that the Ohmic limit, when the dissipa-
tion kernel becomes a δ function, is obtained in the limit
of a continuum string and, surprisingly, for strong coupling.
This is unlike the weak-coupling limits usually discussed in
the derivation of quantum master equations in the literature
[31,32]. An interesting observation is that at any finite tem-
perature the noise correlations always have a finite correlation
time even in the Ohmic limit when the dissipation kernel
becomes a δ function. Thus a quantum bath is never truly
Markovian. However, at high temperatures one can make the
approximation coth(β h̄ω/2) → 2/(β h̄ω) in the noise correla-
tions and then get the Markovian limit. Thus our study shows

the precise conditions under which the Markovian approxi-
mation is valid. We note that the microscopic derivation of
quantum master equations typically starts with exactly the
same system-bath setup as the one used in the derivation of
the quantum Langevin equation. There, the Born-Markov ap-
proximation leads to the Redfield equation and further approx-
imations lead to the Lindblad equation, which is Markovian.
The precise conditions for the validity of the Born-Markov
approximation are subtle, however, and not clearly understood
[31–33], and we believe that our work, with very explicit
results, could provide insights into this issue.
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