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First-passage probabilities and mean number of sites visited by a persistent random
walker in one- and two-dimensional lattices
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We study the first passage probability and mean number of sites visited by a discrete persistent random walker
on a lattice in one and two dimensions. This is performed by using the multistate formulation of the process.
We obtain explicit expressions for the generating functions of these quantities. To evaluate these expressions,
we study the system in the strongly persistent limit. In the one-dimensional case, we recover the behavior of
the continuous one-dimensional persistent random walk (telegrapher process). In two dimensions we obtain
an explicit expression for the probability distribution in the strongly persistent limit, however, the Laplace
transforms required to evaluate the first-passage processes could only be evaluated in the asymptotic limit
corresponding to long times in which regime we recover the behavior of normal two-dimensional diffusion.
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I. INTRODUCTION

Persistent random walkers—frequently, also referred to as
correlated random walks—are, perhaps, the simplest models
of stochastic transport with memory [1–5]. These processes,
that mimic the effects of inertia for Brownian particles, are
extensively used in biology [6,7], where the tail to head axis
induces a preferred direction of motion in many organisms;
they can also be useful as models for self propelled particles
[8,9] and as models for the propagation of light [10], among
other things.

In this paper we consider a discrete time persistent random
walk on a lattice. We calculate the first passage probability
to a site [1,11], the probability of first return to the origin, as
well as the mean number of distinct sites visited as a function
of time [1]. First passage probabilities for persistent random
walkers in one dimension have been studied previously in the
continuum limit, mostly by implementing absorbing boundary
conditions for the telegrapher’s equation—that is, treating a
site as a trap, so the probability that the walker is trapped
at that site at a given time is the probability of first passage
[12–15]—or by using variations of Siegert’s formula [1,4,16–
18]. In this paper we apply arguments similar to those pre-
sented in Ref. [1] (which are akin to Siegert’s formula) to
persistent random walks in one- and two-dimensional square
lattices. The generating functions of the first passage proba-
bilities, the first return probabilities, and the mean number of
distinct sites visited are obtained explicitly. To evaluate these
expressions, we consider the strongly persistent limit. In this
limit, where the probability that the walker changes direction
is very low and the process performs long sojourns between
turns, we recover the behavior of the continuous persistent
random walk in one dimension [18]. In two dimensions we
consider a simplified persistent random walker that cannot re-
verse direction. We obtain the explicit asymptotic probability
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distribution function describing the process in the strongly
persistent limit. Unfortunately, the expressions required to
evaluate the first passage probabilities and the number of
distinct sites in the time domain could only be evaluated in
the asymptotic limit corresponding to long times.

II. ONE DIMENSION

To illustrate the procedure, we begin with the simple one-
dimensional case.

We denote by + (−) the state of the walker when it
reaches a site having stepped to the right (left, respectively).
A complete detailed description of the process requires the
specification of the initial conditions, which consist of the
initial position of the walker as well as its initial state. Thus,
P+(x, n|y,+) represents the probability of finding the walker
at site x at step n, the last step being to the right, given that the
walker was initially at site y in the + state. In what follows,
as notation, I omit the initial position when the walker be-
gins at the origin, i.e., P+(x, n|+) ≡ P+(x, n|0,+). Similarly,
P−(x, n|+) represents the probability of finding the walker at
site x at step n, the last step being to the left, given that the
walker was initially at the origin in the + state. Corresponding
definitions hold for P+(x, n|−) and P−(x, n|−).

If we let α be the probability of changing from one state to
the other, then P−(x, n|+) and P+(x, n|+) satisfy

P+(x, n + 1|+)= (1−|, α)P+(x − 1, n|+) + αP−(x − 1, n|+),

P−(x, n + 1|+)=αP+(x + 1, n|+) + (1 − α)P−(x + 1, n|+)

(1)

subject to the initial conditions P+(x, 0|+) = δx,0 and
P−(x, 0|+) = 0. Similar equations are satisfied by P−(x, n|−)
and P+(x, n|−) with appropriate initial conditions.

On the other hand, if we define F+(x, n|+) and F−(x, n|+)
as the probability that the walker reaches site x in state +
(respectively, −) for the first time at step n, given that it started
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at the origin in state +, then we can write [1]

P+(x, n|+) = δx,0δn,0 +
n∑

m=0

[F+(x, m|+)P+(x, n − m|x,+)

+ F−(x, m|+)P+(x, n − m|x,−)],

P−(x, n|+) =
n∑

m=0

[F+(x, m|+)P−(x, n − m|x,+)

+ F−(x, m|+)P−(x, n − m|x,−)]. (2)

These equations state that the probability for the walker to be
at site x in state +, say, starting at the origin in state + is δx,0

at step zero, or it is given by a first passage from the origin
in state + to site x in state + (respectively, −) in m steps,
and then a return from site x to site x again in state +, in the
remaining n − m steps, given that the initial state at x was +
(respectively, −), added over all possible values of m. These
equations simplify slightly by noting that since the system
is isotropic, P±(x, n|x,+) = P±(0, n|0,+) ≡ P±(0, n|+) and
P±(x, n|x,−) = P±(0, n|0,−) ≡ P±(0, n|−).

Thus, the idea is to solve the recurrence relations of the
type given in Eq. (1) and use the solutions in Eq. (2) to find
the first passage probabilities. Although the one-dimensional
case is simple enough, the following observation further sim-
plifies the calculations. We define P(x, n|+) = P+(x, n|+) +
P−(x, n|+) the probability to find the walker at site x at step
n irrespective of the state, given that it was initially at the
origin in state +; and F (x, m|+) = F+(x, m|+) + F−(x, m|+)
the first passage probability to site x irrespective of the state,
again given that it was initially at the origin in state +. Then,
adding both equations in (2), we have

P(x, n|+) = δx,0δn,0 +
n∑

m=0

[F+(x, m|+)P(0, n − m|+)

+ F−(x, m|+)P(0, n − m|−)].

Now, since the system is symmetric, we have P(0, n −
m|+) = P(0, n − m|−), so

P(x, n|+) = δx,0δn,0 +
n∑

m=0

F (x, m|+)P(0, n − m|+). (3)

In what follows, as notation, we will denote in lowercase the
generating function g(z) of a given function G(n),

g(z) ≡
∞∑

n=0

znG(n), (4)

and by a tilded symbol, say H̃ (θ ), the Fourier transform of a
function H (x),

H̃ (θ ) ≡
∞∑

n=−∞
eixθ H (x). (5)

Thus, calculating the generating function of the Fourier trans-
form of equations in (1) we obtain

p̃+(θ, z|+) = 1 + zeiθ [(1 − α) p̃+(θ, z|+) + α p̃−(θ, z|+)],

p̃−(θ, z|+) = ze−iθ [(1 − α) p̃−(θ, z|+) + α p̃+(θ, z||+)] (6)

from which we find

p̃(θ, z|+) = p̃+(θ, z|+) + p̃−(θ, z|+)

= 1 − ze−iθ (1 − 2α)

1 − 2z(1 − α) cos θ + z2(1 − 2α)
. (7)

The inverse Fourier transform can be easily calculated [19]
p(x, z|+)

= 1

(1 − A2)1/2[1 + z2(1 − 2α)]

[(
A

1 + (1 − A2)1/2

)|x|

− z(1 − 2α)

(
A

1 + (1 − A2)1/2

)|x+1|]
, (8)

where

A = 2z(1 − α)

1 + z2(1 − 2α)
. (9)

With this expression we can now calculate the generating
function for the first passage probability. Multiplying Eq. (3)
by zn and summing over n, we can write

f (x, z|+) = p(x, z|+)

p(0, z|+)

= 1 + (1 − A2)1/2

1 + (1 − A2)1/2 − z(1 − 2α)A

[(
A

1 + (1 − A2)1/2

)|x|

−z(1 − 2α)

(
A

1 + (1 − A2)1/2

)|x+1|]
(10)

for x �= 0, and the generating function of the probability of
first return to the origin is

f (0, z|+) = 1 − 1

p(0, z|+)

= 1 − (1 − A2)1/2[1 + z2(1 − 2α)][1 + (1 − A2)]

1 + (1 − A2)1/2 − z(1 − 2α)A
.

(11)

First, we note that since A → 1 when z → 1, then, for α > 0
we have

f (x, 1|+) = 1 ∀ x, (12)

which implies that the walker will visit every site as well as
return to the origin with probability 1. This is not unexpected
since in the long time regime, the behavior of the persistent
random walker is similar to normal diffusion, which is known
to be recurrent in one and two dimensions [1]. Note, however,
that if α = 0, then A = 2z/(1 + z2) and f (x, z|+) = 0 ∀ x <

0 as should be expected since in this case, the walker never
changes state, and having started in the + state, will only move
in the positive x direction.

Furthermore, we can calculate γ (z) the generating function
of the mean number of new sites visited at step n, �(n) as [1]

γ (z) ≡
∞∑

n=0

�(n)zn =
∞∑

x=−∞
f (x, z|+) = z

(1 − z)p(0, z|+)
.

(13)

The average number of distinct sites visited by the random
walker at step n will be given by 〈S(n)〉 = ∑n

m=0 �(m). Thus,
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the generating function of this quantity is given by

〈s(z)〉 = z

(1 − z)2 p(0, z|+)

= z(1 − A2)1/2[1 + z2(1 − 2α)][1 + (1 − A2)1/2]

(1 − z)2[1 + (1 − A2)1/2 − z(1 − 2α)A]
.

(14)

Inverting the generating function to obtain the explicit time
behavior of the results obtained thus far is not feasible. What
we can do, however, is evaluate the process’ behavior in the
strongly persistent limit α 	 1. In this approximation, times
and distances are much longer than the single steps so that we
can consider the position and the number of steps as contin-
uous variables, and we can interpret the generating function
as a usual Laplace transform. To this end, we write z = 1 − s,
anticipating that s 	 1. To appropriately describe this regime,
we introduce the rescaled variables σ = s/α, ϑ = θ/α, and
ξ = αx, which allow us to obtain explicit expressions for the
various quantities discussed, thus far, in the limit α → 0. First
of all, in this limit, the transform of the probability density in
Eq. (7), expressed in the rescaled variables, correct to leading
order in α, becomes

α p̃(θ, z|+) → p̃(ϑ, σ |+) ≈ σ + iϑ + 2

σ 2 + 2σ + ϑ2
. (15)

which is the Laplace-Fourier transform of the solution to
the corresponding telegrapher’s equation with the appropriate
initial condition [3].

Next, to order α2 we have A ≈ 1 − α2(σ + σ 2/2), and
from Eq. (10), the Laplace transform of the asymptotic dis-
tribution for the first passage process in terms of the rescaled
variables, f (ξ, σ |+), becomes

f (ξ, σ |+) ∼
{

e−ξ (σ 2+2σ )1/2
, ξ > 0,

(σ+2)1/2−σ 1/2

(σ+2)1/2+σ 1/2 eξ (σ 2+2σ )1/2
, ξ < 0,

(16)

where we see the effect of the asymmetry induced by the
initial state of the walker. This asymmetry is eventually lost
as σ → 0. Inverse Laplace transforming this expression yields
[20], in the original variables,

F (x, n|+)

∼
{− d

dx {e−αnI0(α
√

n2 − x2)u(n − x)}, x > 0,

d
dx

{
e−αn

(
n+x
n−x

)1/2
I1(α

√
n2 − x2)u(n + x)

}
, x < 0,

(17)

where Iν (y) is the modified Bessel function of order ν and u(y)
is the step function. These results agree with those reported in
Refs. [15,18] for continuous time versions of the process.

From Eq. (11), the Laplace transform of the asymptotic
probability distribution function for first return to the origin,
expressed in the rescaled variable σ will be given by

f (0, σ |+) ≈ (σ + 2)1/2 − σ 1/2

(σ + 2)1/2 + σ 1/2
, (18)

as α → 0. This expression corresponds to the limit ξ → 0−
of f (ξ, σ |+). The inverse Laplace transform of this quantity
leads to [20]

F (0, n|+) ≈ 1

n
e−αnI1(αn) ∼ 1√

2παn3/2
, αn  1. (19)

In this approximation, to leading order, the generating
function of 〈s(z)〉, the mean number of distinct sites visited
by the random walker becomes

α〈s(s)〉 → 〈s(σ )〉 ≈ (σ + 2)1/2 − σ 1/2

σ 3/2
, (20)

which after inverse Laplace transforming [20], can be written
in the original variables as

〈S(n)〉 ∼ 1

α
{I0(αn)e−αn − 1 + 2αne−αn[I0(αn) + I1(αn)]}

(21)

for n 1 from which we can infer the limiting behaviors [20],

〈S(n)〉 ∼
{

n, αn 	 1,

2
(

2n
απ

)1/2
, αn  1.

(22)

This result reflects the expected diffusive behavior of the
process at long times and the ballistic behavior at times
shorter than the persistence time 1/α.

III. TWO DIMENSIONS

We now turn to the two-dimensional persistent random
walker on a square lattice. This process can be described as a
four-state random walker. Specifically, a walker found at site
(x, y) will be in state N—for N orthbound—, if it reached that
site from site (x, y − 1), similarly, it will be in state S—for
Southbound—, if it arrived from site (x, y + 1), and so on for
Eastbound and Westbound.

To avoid unnecessary lengthy and messy algebra, in this
paper we consider a particularly simple symmetric persistent
random walker in which the probability of reversing direction
is zero (the more general case will be treated in Ref. [21]).
Thus, in this paper, a walker can remain in the same state with
probability (1 − β ) or change into a transverse direction with
probability β/2. We denote PK (x, y, n|E ), the probability to
be at site (x, y) at step n in state K = N, E ,W, S, given that
the walker started at the origin in state E . These probabilities
satisfy

PE (x, y, n + 1|E ) = (1 − β )PE (x − 1, y, n|E ) + β

2
[PS (x − 1, y, n|E ) + PN (x − 1, y, n|E )],

PW (x, y, n + 1|E ) = (1 − β )PW (x + 1, y, n|E ) + β

2
[PS (x + 1, y, n|E ) + PN (x + 1, y, n|E )],

PN (x, y, n + 1|E ) = (1 − β )PN (x, y − 1, n||E ) + β

2
[PE (x, y − 1, n|E ) + PW (x, y − 1, n|E )],

PS (x, y, n + 1|E ) = (1 − β )PS (x, y + 1, n|E ) + β

2
[PE (x, y + 1, n|E ) + PW (x, y + 1, n|E )],
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with initial conditions given by

PE (x, y, 0|E ) = δx,0δy,0,

PN (x, y, 0|E ) = PW (x, y, 0|E )

= PS (x, y, 0|E ) = 0.

By considering the generating functions of the
Fourier transform of the probabilities, with a little
patience, the four coupled equations can be solved. If
we denote P(x, y, n|E ) = PE (x, y, n|E ) + PN (x, y, n|E ) +
PW (x, y, n|E ) + PS (x, y, n|E ), the probability of finding the
walker at site (x, y) irrespective of what state it is in, then the
generating function of the Fourier transform of this quantity
can be written as

p̃(θx, θy, z|E )

= e−iθx {|B(θy)|2 + zβ Re[B(θy)]}B(θx )

|B(θx )|2|B(θy)|2 − (βz)2Re[B(θx )]Re[B(θy)]
, (23)

where B(θ ) ≡ eiθ − (1 − β )z.
Now, although the equations for the first passage proba-

bilities, the two-dimensional equivalent to Eqs. (2) and (3),
and the mean number of distinct sites visited, Eq. (14),
still hold, the explicit inverse Fourier transform can only
be evaluated approximately. To advance, we proceed as we
did in the one-dimensional case: we write z = 1 − s, we
consider the rescaled variables ϑx,y = θx,y/β, ξ = βx, η =
βy, τ = βn, σ = s/β, and we take the strongly persistent
limit β → 0. In terms of these variables, to leading or-
der in β we can write |B(ϑ )|2 ≈ β2[(σ + 1)2 + ϑ2], and
Re B(θ ) ≈ β(σ + 1). Then, to leading order in β, the trans-
form of the probability p̃(θx, θy, z|E ) in Eq. (23) becomes

β p̃(θx, θy, z|E ) → p̃(ϑx, ϑy, σ |E )

≈ [(σ + 1)2 + ϑ2
y + (σ + 1)][(σ + 1) + iϑx]

(σ + 1)4 + (σ + 1)2
(
ϑ2

x + ϑ2
y

) + ϑ2
x ϑ2

y − (σ + 1)2
.

(24)

We focus first on the inverse transform of

m̃(ϑx, ϑy; σ ) ≡ σ

σ 4 + σ 2
(
ϑ2

x + ϑ2
y

) + ϑ2
x ϑ2

y − σ 2
. (25)

First, we note that m̃(ϑx, ϑy; σ ) can be rewritten as

m̃(ϑx, ϑy; σ )

= 1

�+�−

(
σ

σ 2 − 1
4 [�+ + �−]2

− σ

σ 2 − 1
4 [�+ − �−]2

)
,

(26)

where �± = √
1 − [ϑx ± ϑy]2. Inverse Laplace transforming

yields

M̃(ϑx, ϑy; τ )

= 1

�+�−

(
cosh

[�+ + �−]τ

2
− cosh

[�+ − �−]τ

2

)

= 2

�+�−

(
sinh

�+τ

2
sinh

�−τ

2

)
. (27)

The inverse Fourier transform of this expression is

M(ξ, η, τ ) = 2

(2π )2

∫ ∞

−∞

∫ ∞

−∞

e−iϑxξ−iϑyη

�+�−

×
(

sinh
�+τ

2
sinh

�−τ

2

)
dϑxdϑy.

Making the change in variables Q+ = (ϑx + ϑy)/2 and Q− =
(ϑx − ϑy)/2, the above expression separates

M(ξ, η, τ ) = H (ξ + η, τ )H (ξ − η, τ ), (28)

where the function H (X, τ ) is defined by

H (X, τ ) ≡ 1

π

∫ ∞

∞

e−iQX√
1 − 4Q2

sinh
τ
√

1 − 4Q2

2
dQ. (29)

The Fourier-Laplace transform of this expression is

h̃(Q, σ ) = 1

σ 2 − 1
4 + Q2

, (30)

which is closely related with the propagator of a telegrapher’s
equation. Inverse Fourier transforming yields

h(X, σ ) = e−|X |
√

σ 2−1/4

2
√

σ 2 − 1/4
, (31)

and finally, inverse Laplace transforming we find

H (X, τ ) = 1

2
I0

(
1

2

√
τ 2 − X 2

)
u(τ − |X |). (32)

A very similar calculation can be carried out for

μ̃(ϑx, ϑy; σ ) ≡ ϑxϑy

σ 4 + σ 2
(
ϑ2

x + ϑ2
y

) + ϑ2
x ϑ2

y − σ 2
, (33)

the inverse Laplace-Fourier transform of which is

M(ξ, η, τ ) = H (ξ + η, τ )
∂H (ξ − η, τ )

∂τ

− H (ξ − η, τ )
∂H (ξ + η, τ )

∂τ
. (34)

In terms of these functions, using the fact that M̃(ϑx, ϑy, τ =
0) = 0 and ∂

∂τ
M̃(ϑx, ϑy, τ = 0) = 0 [see Eq. (27)], we can

finally write

P(ξ, η, τ |E ) ∼ e−τ

{[
∂2

∂τ 2
+ ∂

∂τ
− ∂

∂ξ

(
1 + ∂

∂τ

)
− ∂2

∂η2

]

×M(ξ, η, τ ) − ∂

∂η
M(ξ, η, τ )

}
. (35)

This is the exact analytic expression for the asymptotic proba-
bility distribution function for the two-dimensional persistent
random walk in the strongly persistent limit β → 0, expressed
in the rescaled variables. It is worth stressing that this function
has support in the tilted square contained within the diagonals
τ = |ξ + η| and τ = |ξ − η|. Unfortunately, to evaluate the
first passage probability [cf. first line of Eq. (10)], we require
the Laplace transform p(ξ, η, σ |E ) of P(ξ, η, τ |E ), and this
can only be evaluated in the limit of large τ, ξ , and η. The
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easiest way to perform this is taking the limits ϑx → 0, ϑy →
0, σ → 0 directly in Eq. (24). Then, to leading order we have

p̃(ϑx, ϑy, σ |E ) ≈ 2

2σ + ϑ2
x + ϑ2

y

, (36)

which can be inverse Fourier transformed to yield

p(ξ, η, σ |E ) ∼ 1

π
K0[

√
2σ (ξ 2 + η2)], (37)

where K0(x) is the modified Bessel function of the second
kind of order zero [20]. From this expression we conclude
that in this regime, the process tends to a diffusive process
described by an asymptotic probability distribution function
given, in the original variables, by

P(x, y; n|E ) ∼ β

2πn
exp

[
−β(x2 + y2)

2n

]
. (38)

It should be stressed that the expression in Eq. (37) is only
valid in the long distance regime, the apparent divergence
at ξ 2 + η2 = 0 is spurious. It also comes as no surprise that
in this limit, the asymmetry due to the initial condition is
lost. Now, to evaluate the behavior of the first passage prob-
ability, the probability of first return to the origin and the
mean number of distinct sites visited, we require p(0, 0, σ |E ),
the Laplace transform of P(0, 0, τ |E ). This quantity can be
evaluated in the small σ limit, corresponding to the behavior
at long times. This is achieved by, first, taking the Laplace
transform as

p(0, 0, σ |E ) ∼
∫ ∞

0+
e−στ P(0, 0, τ |E )dτ. (39)

By doing so we avoid dealing with the singularities that occur
at τ = 0, which contribute, at most, terms of order one as σ →
0 [21]. Next, we note that both ∂

∂ξ
M(ξ, η, τ ) and M(ξ, η, τ )

are odd functions of ξ , thus, they vanish at the origin.
Then p(0, 0, σ |E ) can be evaluated using the following

identities: ∫ ∞

0
e−azI2

0 (bz)dz = 2

πa
K(2b/a), (40)

and ∫ ∞

0

e−az

z

d

dz
I2
0 (bz)dz = a

[
1 − 2

π
E(2b/a)

]
(41)

for a > 2b, where K(k) and E(k) are the complete elliptic in-
tegrals of the first and second kinds of modulus k, respectively
[19,22]. The validity of these identities can be established by
expanding I2

0 (bz) in a Maclaurin series [20,23] and integrating
term by term. Thus, we find

p(0, 0, σ |E ) ∼ (σ + 2)

4

[
2

π
K

(
1

σ + 1

)
− 1

]

+ (σ + 1)

4

[
1 − 2

π
E

(
1

σ + 1

)]
. (42)

With this expression, we can obtain the asymptotic behavior
for the Laplace transforms of the probability of first passage
probability,

f (ξ, η, σ |E ) = p(ξ, η, σ |E )

p(0, 0, σ |E )
,

and the mean number of distinct sites visited 〈s(s)〉 [cf. the
first line of Eqs. (10) and (14), respectively]. To proceed,
we require the asymptotic behavior of the complete elliptic
integrals as k → 1 [22],

K(k) ∼
(

ln
1

k′ + ln 4

)

+ 1

4
k′2

(
ln

1

k′ + ln 4 − 2

3 × 4

)
+ · · · , (43)

and

E(k) ∼ 1 + 1

2
k′2

(
ln

1

k′ + ln 4 − 1

1 × 2

)
+ · · · , (44)

where k′ = √
1 − k2 is the complementary modulus. Keeping

the leading terms, we find

p(0, 0; σ |E ) ∼ 1

2π
ln

1

σ
+ O(1), as σ → 0. (45)

The first thing we note, using Eq. (37) and the asymptotic
behavior of K0(x) as x → 0 [20], is that the first passage
probability satisfies

lim
σ→0

f (ξ, η; σ |E ) = 1 ∀ (ξ, η), (46)

which implies that every site will be visited with probability
1 and that the process is recurrent as in the one-dimensional
case.

The long time behavior of the mean number of distinct
sites visited can be evaluated using a Tauberian theorem as
discussed in Ref. [1]. Namely, if the f (s) is the Laplace trans-
form of a monotonous function F (τ ) and f (s) ∼ 1

sα L(1/s) as
s → 0, where L(x) is a slowly varying function in the sense
that limx→∞ L(cx)/L(x) = 1 for any c > 0, then

F (τ ) ∼ ατα−1L(τ ) + ταL′(τ )

�(α + 1)
as τ → ∞. (47)

Thus, in the original variables, we obtain

〈S(n)〉 ∼ 2πn

ln (βn)
as βn → ∞, (48)

which has the same functional form as the corresponding
quantity for a normal random walker in two dimensions [1].

IV. CONCLUSIONS

By using the multistate formulation, we present a for-
malism for calculating the generating functions for the
first-passage probabilities, first return probabilities, and mean
number of distinct sites visited by a persistent random walks
on a lattice. We evaluate these quantities, in the strongly per-
sistent limit, i.e., when the probability that the walker changes
direction is very small. In this limit, all the Laplace trans-
forms needed to evaluate the first-passage probabilities, and
the mean number of distinct sites visited can be calculated ex-
plicitly in the one-dimensional case, and the results reproduce
those obtained for the continuous one-dimensional persistent
random walk (or telegrapher process). In two dimensions,
however, even though the explicit probability distribution
function can actually be calculated explicitly in the strongly
persistent limit, the required Laplace transforms can only be
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calculated asymptotically in the long distance-large number of
steps limit. In this regime, the results reproduce the behavior
of the normal two-dimensional diffusive process to which the
persistent random walk tends asymptotically. Thus, for the
two-dimensional case, more clever approximations will be
needed to describe the behavior of the first-passage processes

at shorter times than those corresponding to the effective long
time diffusive limit. Nevertheless, the approach used in this
paper may also be useful to study other interesting statistics
for these processes, such as the occupancy of a set of sites, the
number of visits to a given site [1], and the coverage of a finite
or periodic lattice [24].
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