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Exact variance of von Neumann entanglement entropy over the Bures-Hall measure

Lu Wei *

Department of Electrical and Computer Engineering, University of Michigan, Dearborn, Michigan 48128, USA

(Received 25 June 2020; accepted 23 November 2020; published 14 December 2020)

The Bures-Hall distance metric between quantum states is a unique measure that satisfies various useful
properties for quantum information processing. In this work, we study the statistical behavior of quantum
entanglement over the Bures-Hall ensemble as measured by von Neumann entropy. The average von Neumann
entropy over such an ensemble has been recently obtained, whereas the main result of this work is an explicit
expression of the corresponding variance that specifies the fluctuation around its average. The starting point of
the calculations is the connection between correlation functions of the Bures-Hall ensemble and those of the
Cauchy-Laguerre ensemble. The derived variance formula, together with the known mean formula, leads to a
simple but accurate Gaussian approximation of the distribution of von Neumann entropy of finite-size systems.
This Gaussian approximation is also conjectured to be the limiting distribution for large dimensional systems.
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I. INTRODUCTION AND THE MAIN RESULT

Quantum information theory aims at explaining the the-
oretical underpinnings of quantum technologies such as
quantum computing and quantum communications. Crucial to
successful exploitation of the quantum revolutionary advances
is the understanding of the nonclassical phenomenon of quan-
tum entanglement. Entanglement is the most fundamental
characteristic trait of quantum mechanics, which is also the
resource and medium that enable quantum technologies.

In this work, we aim to understand the statistical behav-
ior of the entanglement of quantum bipartite systems over
the Bures-Hall measure [1–3]. In particular, we study the
degree of entanglement as measured by the von Neumann
entropy over such a measure. The mean value of von Neu-
mann entropy over the Bures-Hall measure has been recently
obtained [4,5]. As an important step towards understanding its
statistical distribution, we derive the corresponding variance
in this paper. The variance describes the fluctuation of the
entropy around its mean value, which also provides crucial
information such as whether the average entropy is typical.

The density matrix formulism [6], introduced by von Neu-
mann, that has led to the Bures-Hall ensemble is described as
follows. Consider a composite (bipartite) system that consists
of two subsystems A and B of Hilbert space (complex vector
space) with dimensions m and n, respectively. The Hilbert
space HA+B of the composite system is given by the tensor
product of the subsystems, HA+B = HA ⊗ HB. A random pure
state of the composite system HA+B is defined as a linear
combination of the random coefficients zi, j and the complete
basis {|iA〉} and {| jB〉} of HA and HB [7],

|ψ〉 =
m∑

i=1

n∑
j=1

zi, j |iA〉 ⊗ | jB〉, (1)
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where each zi, j follows the standard complex Gaussian distri-
bution. We now consider a superposition of the state (1),

|ϕ〉 = |ψ〉 + (U ⊗ Im)|ψ〉, (2)

where U is an m × m unitary random matrix with the mea-
sure proportional to det (Im + U)2α+1 [4]. The corresponding
density matrix of the pure state (2) is

ρ = |ϕ〉〈ϕ|, (3)

which has the natural probability constraint

tr(ρ) = 1. (4)

We assume, without loss of generality, that m � n. The
reduced density matrix ρA of the smaller subsystem A is
computed by partial tracing (purification) of the full density
matrix (3) over the other subsystem B (environment) as

ρA = trBρ. (5)

The resulting density of the eigenvalues of ρA (λi ∈ [0, 1], i =
1, . . . , m) is the (generalized) complex Bures-Hall measure
[1–4],

f (λ) = 1

C
δ

(
1 −

m∑
i=1

λi

) ∏
1�i< j�m

(λi − λ j )2

λi + λ j

m∏
i=1

λα
i , (6)

where the parameter α takes half-integer values,

α = n − m − 1
2 , (7)

and the constant C is

C = 2−m(m+2α)πm/2

	[m(m + 2α + 1)/2]

m∏
i=1

	(i + 1)	(i + 2α + 1)

	(i + α + 1/2)
. (8)

A relatively detailed derivation of the Bures-Hall density (6)
can be found in Sec. 3 of Ref. [8]. In Eq. (6), the presence of
the Dirac delta function δ(·) reflects the constraint (4). Note
that another approach to define the Bures-Hall measure (6)
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is to introduce a distance metric (Bures-Hall metric) over the
reduced density matrices [9].

Before discussing the state of the art on the study of en-
tanglement entropies over the Bures-Hall measure, below we
outline the physical relevance of the considered model as well
as the physical implications of the results of this work:

(i) The quantum bipartite model is useful in describing
the entanglement between the two subsystems of different
bipartite systems, in which one subsystem represents a phys-
ical object (such as spins) and the other subsystem is the
environment (such as a heat bath).

(ii) The Bures-Hall measure enjoys the property that with-
out any prior knowledge of a density matrix, the optimal way
to estimate the density matrix is to generate a state at ran-
dom with respect to this measure [2,8,10]. The corresponding
Bures-Hall metric turns out to be the only monotone metric
that is simultaneously Fisher adjusted and Fubini-Study ad-
justed [2,10].

(iii) Our proposed framework can be directly applied to
study other entanglement entropies such as quantum purity
[4,5,8,10,11] and Tsallis entropy [12] over the Bures-Hall
ensemble. The results would lead towards a complete picture
of how different entropies and random environments affect the
degree of entanglement in bipartite systems.

(iv) The framework also makes it possible to investigate
the phase transition phenomenon of entanglement thresh-
olds between separable states and entangled states under the
Bures-Hall measure as the needed random matrix results are
available [13,14]. This phenomenon has been observed and
studied under the Hilbert-Schmidt measure in Ref. [15].

(v) The Bures-Hall measure is a function of fidelity [9,16],
which is a key performance indicator in quantum information
processing. For example, in quantum computing, it is often
necessary to quantify the distance between two density ma-
trices that can be considered as the initial and desired states.
Fidelity also gauges the algorithm performance, i.e., how a
density matrix may be approximated by another one. Based on
the results of this work, one may extend the results in Ref. [16]
to arbitrary subsystem dimensions and study the higher order
fluctuations of fidelity around the average value.

(vi) Since the determination of whether a state is entangled
or separable is, in general, a difficult problem, the conditions
for separability become very important. These conditions are
often formulated in terms of volumes [9,17]. In addition to the
asymptotic lower and upper bounds on the volumes [17], one
could also compute the corresponding finite-size Bures-Hall
volume with the help of the results in this work and the recent
progress in understanding various aspects of the Bures-Hall
ensemble [4,5,13,14].

The degree of entanglement of the bipartite subsystems
can be measured by entanglement entropies, which are func-
tions of eigenvalues (entanglement spectrum) of the reduced
density matrix. We consider the standard measure of von
Neumann entropy of the subsystem [18]

S = −tr(ρA ln ρA) = −
m∑

i=1

λi ln λi, (9)

supported in S ∈ [0, ln m], which achieves the separable state
(S = 0) when λ1 = 1, λ2 = · · · = λm = 0, and the maximally

entangled state (S = ln m) when λ1 = · · · = λm = 1/m. The
statistical information of the entropies is encoded through
the moments. In particular, the first moment (average value)
implies the typical behavior of entanglement and the second
moment (variance) specifies the fluctuation around the typical
value. The average von Neumann entropy, valid for any sub-
system dimensions m � n, has been recently obtained as [4,5]

E f [S] = ψ0

(
mn − m2

2
+ 1

)
− ψ0

(
n + 1

2

)
, (10)

where the expectation E f [·] is taken over the Bures-Hall
ensemble (6). Here, ψ0(x) = d ln 	(x)/ dx is the digamma
function [19] and, for a positive integer l ,

ψ0(l ) = −γ +
l−1∑
k=1

1

k
, (11a)

ψ0

(
l + 1

2

)
= −γ − 2 ln 2 + 2

l−1∑
k=0

1

2k + 1
, (11b)

where γ ≈ 0.5772 is the Euler’s constant. The main result of
this work on the corresponding variance is summarized in the
following proposition.

Proposition 1. The exact variance of von Neumann entropy
(9) under the Bures-Hall ensemble (6) is given by

V f [S] = −ψ1

(
mn − m2

2
+ 1

)

+ 2n(2n + m) − m2 + 1

2n(2mn − m2 + 2)
ψ1

(
n + 1

2

)
, (12)

where ψ1(x) = d2 ln 	(x)/ dx2 denotes the trigamma func-
tion [19].

The proof of Proposition 1 is given in Sec. II. Note that for
a positive integer l , the trigamma function can be written as
finite sums as

ψ1(l ) = π2

6
−

l−1∑
k=1

1

k2
, (13a)

ψ1

(
l + 1

2

)
= π2

2
− 3

l−1∑
k=1

1

k2
− 4

2l−1∑
k=l

1

k2
. (13b)

Under the Bures-Hall measure, other entropies such as the
quantum purity have also been studied in the literature. In
particular, the first few exact moments of quantum purity
[4,5,8,10] as well as its asymptotic distribution [11] are known
[20]. Besides the Bures-Hall measure, the exact moments of
von Neumann entropy [21–26] and quantum purity [27,28]
have been well investigated over the less complicated [29]
Hilbert-Schmidt measure [9]. Finally, we note that results of
the real Bures-Hall random matrix ensemble may be parallelly
obtained if the corresponding correlation functions can be
found.

With the expressions of the mean (10) and variance (12),
simple approximations can be constructed to understand the
distribution of the von Neumann entropy. For convenience,
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FIG. 1. Probability densities of the standardized von Neumann
entropy (14) of subsystem dimensions m = 4 and n = 6: A compar-
ison of the simulated true distribution (dashed line in black) and the
Gaussian approximation (15) (solid line in blue).

we standardize the von Neumann entropy as

X = S − E f [S]√
V f [S]

, (14)

so that the random variable X , supported in X ∈ (−∞,∞),
has zero mean and unit variance. Thus, a natural approxima-
tion to the distribution of X would be a standard Gaussian
distribution,

ϕX (x) = 1√
2π

e− 1
2 x2

, (15)

i.e., the distribution of S is approximated by a Gaussian dis-
tribution with mean E f [S] and variance V f [S]. In Fig. 1, we
compare the simulated true distribution of the standardized
von Neumann entropy (14) to the Gaussian approximation
(15), where the dimensions of the subsystems are m = 4 and
n = 6. As opposed to the Gaussian distribution, we see from
Fig. 1 that the true distribution of von Neumann entropy is
nonsymmetric, which appears to be left skewed (a negative
skewness). With the knowledge of higher order moments,
the Gaussian approximation (15) can be systematically im-
proved to provide more accurate approximations to finite-size
systems. On the other hand, motivated by the case of the
Hilbert-Schmidt measure [26], here we also conjecture that
the first two moments, given by Eqs. (10) and (12), are
sufficient to fully describe the distribution of von Neumann
entropy as the dimensions of the subsystems become large.
Formally, in the limit

m → ∞, n → ∞,
m

n
= c ∈ (0, 1], (16)

we conjecture that the standardized von Neumann entropy
(14) converges in distribution to a Gaussian random variable
with zero mean and unit variance. Note that the high-
dimensional asymptotic regime (16) is different from the
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FIG. 2. Probability densities of the standardized von Neumann
entropy (14) of subsystem dimensions m = 16 and n = 24: A nu-
merical support to the conjectured Gaussian limit. The dashed line in
black and the solid line in blue represent the simulated true distribu-
tion and the standard Gaussian distribution (15), respectively.

classical asymptotic regime [21], where the dimension m is
fixed as n goes to infinity. One way to prove the above conjec-
ture is to show that all the higher order (beyond the first two)
moments of the random variable (14) vanish in the limit (16).
Another potential approach to show the Gaussian limiting
behavior is via tools from asymptotic geometric analysis and
concentration of measure techniques [30]. These tools can be
used to establish, for example, the tail bounds of a Gaussian
type to the distribution of entanglement entropies as have been
done under the Hilbert-Schmidt measure [15]. A numerical
evidence to support the conjecture is provided in Fig. 2,
where we simultaneously increase the subsystem dimensions
to m = 16 and n = 24 with their ratio c = m/n = 2/3 kept the
same as in Fig. 1. Comparing Fig. 1 with Fig. 2, it is seen that
the distribution of von Neumann entropy approaches rather
rapidly to the conjectured limiting Gaussian distribution.

The rest of the paper is organized as follows. In Sec. II,
we derive the main result (12) of the exact variance of von
Neumann entropy over the Bures-Hall measure. Specifically,
in Sec. II A, we relate the computation of the variance to that
over a more convenient ensemble with no δ function con-
straint. Calculating the corresponding variance boils down,
in Sec. II B, to computing four integrals over the correla-
tion functions of the unconstraint ensemble. In Sec. II C, the
four integrals are evaluated into terms involving polygamma
functions by utilizing recent results on the unconstrained en-
semble as well as some summation formulas of polygamma
functions. We outline potential future works in Sec. III after
summarizing the main findings of the paper. The polygamma
summation formulas utilized in Sec. II C are listed and dis-
cussed in Appendix A. The coefficient lists of the four
integrals are provided in the tables in Appendix B.
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II. VARIANCE CALCULATION

A. Variance relation

Finding moment relations is a rather standard calcula-
tion (see, e.g., Refs. [4,5,8,21,23,25,26]) that relates moment
computation to that over an ensemble without the constraint
δ(1 − ∑m

i=1 λi ). As will be seen, the unconstrained ensemble
of the Bures-Hall measure (6) is [4]

h(x) = 1

C′
∏

1�i< j�m

(xi − x j )2

xi + x j

m∏
i=1

xα
i e−xi , (17)

where xi ∈ [0,∞), i = 1, . . . , m, and the constant C′ depends
on the constant (8) as

C′ = C 	(d ), (18)

with d denoting

d = 1
2 m(m + 2α + 1). (19)

Despite being only interested in the physically relevant α val-
ues in Eq. (7), the results hereafter, in particular the expression
(74), are valid for any α > −1 in which the density (17) is
defined.

We first derive the density g(θ ) of trace

θ =
m∑

i=1

xi, θ ∈ [0,∞), (20)

of the unconstraint ensemble (17) as

g(θ ) =
∫

x
h(x)δ

(
θ −

m∑
i=1

xi

)
m∏

i=1

dxi (21)

= C

C′ e
−θ θd−1

∫
λ

f (λ)
m∏

i=1

dλi (22)

= 1

	(d )
e−θ θd−1, (23)

where we have employed the change of variables

xi = θλi, i = 1, . . . , m. (24)

The above calculation implies that the density h(x) is factored
as [31]

h(x)
m∏

i=1

dxi = f (λ)g(θ ) dθ

m∏
i=1

dλi, (25)

which leads to the fact that θ is independent of each λi (hence
independent of S).

To exploit this independence in calculating the variance,
we first write by the change of variables (24) that

S2 = θ−2T 2 + 2S ln θ − ln2 θ, (26)

where

T =
m∑

i=1

xi ln xi (27)

defines the induced von Neumann entropy over the uncon-
strained ensemble (17). The second moment relation can

now be found, by multiplying an appropriate constant [cf.
Eq. (23)],

1 =
∫ ∞

0

1

	(d + 2)
e−θ θd+1 dθ, (28)

as

E f
[
S2

] =
∫ ∞

0

∫
λ

e−θ θd+1

	(d + 2)
S2 f (λ) dθ

m∏
i=1

dλi (29)

= 	(d )

	(d + 2)
Eh[T 2] + 2E f [S]Eg [ln θ ] − Eg[ln2 θ ],

= 1

d (d + 1)
Eh[T 2] + 2ψ0(d + 2)E f [S]

−ψ2
0 (d + 2) − ψ1(d + 2), (30)

where we have used the results given by Eqs. (25) and (26)
and the identities [valid for Re(a) > 0]∫ ∞

0
e−θ θa−1 ln θ dθ = 	(a)ψ0(a), (31a)

∫ ∞

0
e−θ θa−1 ln2 θ dθ = 	(a)

[
ψ2

0 (a) + ψ1(a)
]
. (31b)

By the known mean formulas (10) and [5],

Eh[T ] = m(m + 2α + 1)

2
ψ0(m + α + 1), (32)

the derived moment relation (30) translates showing the
claimed variance formula (12) to prove an induced variance
formula,

Vh[T ] = m(2n − m)

[
ψ0

(
n + 1

2

)
+ 1

2
ψ2

0

(
n + 1

2

)

+4n2 + 2mn − m2 + 1

8n
ψ1

(
n + 1

2

)]
, (33)

where we have also used the fact V [X ] = E[X 2] − E2[X ] and
the identities

ψ0(l + n) = ψ0(l ) +
n−1∑
k=0

1

l + k
, (34a)

ψ1(l + n) = ψ1(l ) −
n−1∑
k=0

1

(l + k)2
. (34b)

B. Variance of unconstraint ensemble

Calculating Eh[T 2] requires one and two arbitrary eigen-
value densities, denoted, respectively, by h1(x) and h2(x, y),
of the unconstrained Bures-Hall ensemble (17) as

Eh[T 2] = m
∫ ∞

0
x2 ln2 x h1(x) dx + m(m − 1)

×
∫ ∞

0

∫ ∞

0
xy ln x ln y h2(x, y) dx dy. (35)

In general, the density of k arbitrary eigenvalues (k-point
correlation function) of the ensemble (17) is described by
a Pfaffian point process of a 2k × 2k antisymmetric matrix
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[13]. The corresponding correlation kernels are written in
terms of those of the Cauchy-Laguerre biorthogonal ensemble
[14], which is a determinantal point process. In particular, the
needed eigenvalue densities in Eq. (35) are written as [13,14]

h1(x) = 1

2m
[K01(x, x) + K10(x, x)], (36)

h2(x, y) = 1

4m(m − 1)
{[K01(x, x) + K10(x, x)]

×[K01(y, y) + K10(y, y)] − 2K01(x, y)

×K01(y, x) − 2K10(x, y)K10(y, x)

−2K00(x, y)K11(x, y) − 2K00(y, x)K11(y, x)},
(37)

where the correlation kernels are

K00(x, y) =
m−1∑
k=0

pk (x)qk (y), (38a)

K01(x, y) = −xαe−x
m−1∑
k=0

pk (x)Qk (−y), (38b)

K10(x, y) = −yα+1e−y
m−1∑
k=0

Pk (−x)qk (y), (38c)

K11(x, y) = xαyα+1e−x−y
m−1∑
k=0

Pk (−y)Qk (−x) − w(x, y),

(38d)

with the weight function w(x, y) of the biorthogonal polyno-
mials pk (x), ql (y),∫ ∞

0

∫ ∞

0
pk (x)ql (y)w(x, y) dx dy = δkl , (39)

given by

w(x, y) = xαyα+1e−x−y

x + y
. (40)

The functions in Eq. (38) are further related by [13,14]

Pk (x) =
∫ ∞

0

vαe−v

x − v
pk (v) dv, (41a)

Qk (y) =
∫ ∞

0

wα+1e−w

y − w
qk (w) dw, (41b)

which, together with the orthogonality condition (39), can be
employed to verify that the functions (36) and (37) are indeed
probability density functions. Moreover, these functions are
expressed explicitly via Meijer G-functions as [13,14]

p j (x) =
√

2(−1) jG1,1
2,3

(−2α − 1 − j; j + 1
0; −α,−2α − 1

∣∣∣∣x
)

,

q j (x) =
√

2(−1) j ( j + α + 1)G1,1
2,3

(−2α − 1 − j; j + 1
0; −α − 1,−2α − 1

∣∣∣∣x
)

,

Pj (x) =
√

2(−1) j+1e−xG2,1
2,3

(−α − j − 1; α + j + 1
0, α; −α − 1

∣∣∣∣ − x

)
,

Qj (x) =
√

2(−1) j+1( j + α + 1)e−x

× G2,1
2,3

(−α − j; α + j + 2
0, α + 1; −α

∣∣∣∣ − x

)
, (42)

where the Meijer G-function is defined by the contour integral
[19]

Gm,n
p,q

(
a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣∣∣∣x
)

= 1

2π ı

∫
L

∏m
j=1 	(b j + s)

∏n
j=1 	(1 − a j − s)x−s∏p

j=n+1 	(a j + s)
∏q

j=m+1 	(1 − b j − s)
ds,

(43)

with the contour L separating the poles of 	(1 − aj − s) from
the poles of 	(b j + s). In addition to the summation form
(38), the kernels also admit integral representation [13,14],

K00(x, y) =
∫ 1

0
t2α+1Hα (tx)Hα+1(ty) dt, (44a)

K01(x, y) = x2α+1
∫ 1

0
t2α+1Hα (ty)Gα+1(tx) dt, (44b)

K10(x, y) = y2α+1
∫ 1

0
t2α+1Hα+1(tx)Gα (ty) dt, (44c)

K11(x, y) = (xy)2α+1
∫ 1

0
t2α+1Gα+1(tx)Gα (ty) dt

− xαyα+1

x + y
, (44d)

where we denote

Hq(x) = G1,1
2,3

(−m − 2α − 1; m
0; −q,−2α − 1

∣∣∣∣x
)

, (45a)

Gq(x) = G2,1
2,3

(−m − 2α − 1; m
0,−q; −2α − 1

∣∣∣∣x
)

. (45b)

Finally, inserting Eqs. (36) and (37) into Eq. (35), the
induced variance is represented as

Vh[T ] = 1
2 (IA − IB − IC + 2ID), (46)

where

IA =
∫ ∞

0
x2 ln2 x[K01(x, x) + K10(x, x)]dx, (47)

IB =
∫ ∞

0

∫ ∞

0
xy ln x ln y K01(x, y)K01(y, x) dx dy, (48)

IC =
∫ ∞

0

∫ ∞

0
xy ln x ln y K10(x, y)K10(y, x) dx dy, (49)

ID =
∫ ∞

0

∫ ∞

0
xy ln x ln y K00(x, y)K11(x, y) dx dy, (50)

and we have used the fact [cf. Eq. (32)]∫ ∞

0
x ln x[K01(x, x) + K10(x, x)]dx = 2Eh[T ]. (51)

To show Eq. (33), the remaining task is to compute the four
integrals (47)–(50).
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C. Computing the integrals IA, IB, IC , and ID

1. Computation of IA

The evaluation of IA follows a similar procedure as in Sec. 2.2 of Ref. [5]. The key is to compute the integral

Aq(t ) =
∫ ∞

0
xβ (tx)2α+1H2α+1−q(tx)Gq(tx) dx (52)

and its derivatives with respect to β for q = α, α + 1. This integral has been obtained in Ref. [5] by using the Mellin transform
of the Meijer G-function [19],

∫ ∞

0
xs−1Gm,n

p,q

(
a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣∣∣∣ηx

)
dx = η−s

∏m
j=1 	(b j + s)

∏n
j=1 	(1 − a j − s)∏p

j=n+1 	(a j + s)
∏q

j=m+1 	(1 − b j − s)
, (53)

and the fact that the Meijer G-function G1,1
2,3 of a negative parameter ai (i � n) is a terminating hypergeometric function [5,14,32]

as

Aq(t ) = t−β−1Aq, (54)

where

Aq =
m−1∑
k=0

(−1)k+m	(k + 2α + m + 2)	(k + β + 1)

	(k + 2α + 2)	(k + 2α + 2 − q)	(m − k)k!

	(k + β + 2α + 2)	(k + β + 2α + 2 − q)

	(k + β + 2α + m + 2)	(k + β − m + 1)
. (55)

Using a different representation of Eqs. (44b) and (44c) obtained in Ref. [5],

K01(x, y) = −x2α+1
∫ ∞

1
t2α+1Hα (tx)Gα+1(ty) dt,

K10(x, y) = −y2α+1
∫ ∞

1
t2α+1Gα (tx)Hα+1(ty) dt, (56)

and changing the order of integrations, IA is calculated as

IA = − 1
4 (Aα + Aα+1)

∣∣
β=2 + 1

2

(
H (1)

α + H (1)
α+1

)− 1
2

(
H (2)

α + H (2)
α+1

)
, (57)

where we denote

H (1)
q = d

dβ
A(β )

q

∣∣∣∣
β=2

, H (2)
q = d

dβ2
A(β )

q

∣∣∣∣
β=2

, (58)

and the integrals over t have been evaluated first by the fact

∫ ∞

1

1

t3
dt = 1

2
,

∫ ∞

1

ln t

t3
dt = 1

4
,

∫ ∞

1

ln2 t

t3
dt = 1

4
.

The first term Aα + Aα+1 in Eq. (57) for β = 2 has been obtained in Eq. (50) of Ref. [5]. By resolving indeterminacy in the limit
ε → 0,

	(−l + ε) = (−1)l

l!ε
[1 + ψ0(l + 1)ε + o(ε2)], (59a)

ψ0(−l + ε) = −1

ε
[1 − ψ0(l + 1)ε + o(ε2)], (59b)

ψ1(−l + ε) = 1

ε2
[1 + o(ε2)], (59c)

the terms (58) are evaluated into finite sums involving polygamma functions. Computing these summations by the identities in
Appendix A, we obtain IA as shown in Eq. (60), where the list of coefficients can be found in Table I of Appendix B. Note that as
a result of employing the semi-closed-form identities (A6)–(A8), the obtained IA expression (60) still contains five summations
that may not be further simplified. These unsimplifiable sums eventually cancel with the ones in IB and IC as will be seen. Similar
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phenomena have also been observed in the higher order moment computations over the Hilbert-Schmidt measure [25,26],

IA = 1

36α(m + α)(m + 2α)(2m + 2α + 1)3

{
− 2a0

[
m∑

k=1

ψ0(k + α)

k
+

m∑
k=1

ψ0(k + 2α)

k
−

m∑
k=1

ψ0(k + m + 2α)

k

+
m∑

k=1

ψ0(k + m + 2α)

k + α
+

m∑
k=1

ψ0(k + m + 2α)

k + 2α

]
+ a1 + a2[ψ0(1) − ψ0(m + 1)] + a3ψ0(α + 1) + a4ψ0(2α + 1)

+ a5ψ0(m + α + 1) + a6ψ0(m + 2α + 1) + a7ψ0(2m + 2α + 1) + a0
[−2ψ0(1)ψ0(α + 1) − 2ψ0(1)ψ0(2α + 1)

+ 2ψ0(1)ψ0(m + 2α + 1) + ψ2
0 (α + 1) + ψ2

0 (2α + 1) + 2ψ0(α + 1)ψ0(m + 1) − 2ψ0(α + 1)ψ0(m + α + 1)

− 2ψ0(α + 1)ψ0(m + 2α + 1) + 2ψ0(2α + 1)ψ0(m + 1) − 4ψ0(2α + 1)ψ0(m + 2α + 1) − 2ψ0(m + 1)

×ψ0(m + 2α + 1) − 2ψ0(m + α + 1)ψ0(m + 2α + 1) + 4ψ0(m + α + 1)ψ0(2m + 2α + 1) − ψ2
0 (m + 2α + 1)

+ 8ψ0(m + 2α + 1)ψ0(2m + 2α + 1) − 4ψ2
0 (2m + 2α + 1) − ψ1(α + 1) − ψ1(2α + 1) + ψ1(m + 2α + 1)

]}
. (60)

2. Computation of IB and IC

The steps in calculating IB and IC are identical. The starting point is the integral form of the kernels (44b) and (44c) as well
as finite sum representation [5,14] of the Meijer G-functions G1,1

2,3. Instead of changing the order of summations as in IA, here we
directly evaluate the integrals over t by the identity [19]∫ 1

0
xa−1Gm,n

p,q

(
a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq

∣∣∣∣ηx

)
dx = Gm,n+1

p+1,q+1

(
1 − a, a1, . . . , an; an+1, . . . , ap

b1, . . . , bm; bm+1, . . . , bq,−a

∣∣∣∣η
)

. (61)

This leads IB to

IB =
m−1∑
j,k=0

f j,k fk, j, (62)

where we denote

f j,k = (−1) j	(m + 2α + j + 2)

	( j + 1)	(α + j + 1)	(2α + j + 2)	(m − j)

∫ ∞

0
x ln xG2,2

3,4

(
j − k, j − m; m + 2α + j + 1

2α + j + 1, α + j; j, j − k − 1

∣∣∣∣x
)

dx.

The above integral can be similarly evaluated as in Eq. (52) by first utilizing Eq. (53) before taking the derivative with respect to
β. We then set β = 1 and resolve the resulting indeterminacy by Eq. (59), and IB becomes a double sum involving polygamma
functions. The summations are evaluated with the help of the identities in Appendix A, which completes the calculation of IB.
Since IC is computed to the same form as IB, for convenience we provide the corresponding result of IB + IC as shown in Eq. (63),
where the coefficients can be found in Table II,

IB + IC = 1

36α(m + α)(m + α + 1)(m + 2α)(2m + 2α + 1)4

{
2(b0 + c0)

[
m∑

k=1

ψ0(k + α)

k
+

m∑
k=1

ψ0(k + 2α)

k

−
m∑

k=1

ψ0(k + m + 2α)

k
+

m∑
k=1

ψ0(k + m + 2α)

k + α
+

m∑
k=1

ψ0(k + m + 2α)

k + 2α

]
+ b1 + c1 + (b2 + c2)

×[ψ0(1) − ψ0(m + 1)] + (b3 + c3)ψ0(α + 1) + (b4 + c4)ψ0(2α + 1) + (b5 + c5)ψ0(m + α + 1)

+(b6 + c6)ψ0(m + 2α + 1) + (b7 + c7)ψ0(2m + 2α + 1) + (b0 + c0)
[
2ψ0(1)ψ0(α + 1) + 2ψ0(1)ψ0(2α + 1)

−2ψ0(1)ψ0(m + 2α + 1) − ψ2
0 (α + 1) − ψ2

0 (2α + 1) − 2ψ0(α + 1)ψ0(m + 1) + 2ψ0(α + 1)ψ0(m + α + 1)

+2ψ0(α + 1)ψ0(m + 2α + 1) − 2ψ0(2α + 1)ψ0(m + 1) + 4ψ0(2α + 1)ψ0(m + 2α + 1) + 2ψ0(m + 1)

×ψ0(m + 2α + 1) + ψ1(α + 1) + ψ1(2α + 1) − ψ1(m + α + 1) − 3ψ1(m + 2α + 1) + 2ψ1(2m + 2α + 1)
]

+(b8 + c8)ψ2
0 (m + α + 1) + (b9 + c9)ψ0(m + α + 1)ψ0(m + 2α + 1) + (b10 + c10)

[
ψ0(m + α + 1)

×ψ0(2m + 2α + 1) + 2ψ0(m + 2α + 1)ψ0(2m + 2α + 1) − ψ2
0 (2m + 2α + 1)

] + (b11 + c11)

×ψ2
0 (m + 2α + 1)

}
. (63)
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3. Computation of ID

We define the integral

D(β1, β2) =
∫ ∞

0

∫ ∞

0
xβ1 yβ2 K00(x, y)K11(x, y) dx dy (64)

so that the desired ID integral (50) can be obtained as

ID = ∂2

∂β1∂β2
D(β1, β2)

∣∣∣∣
β1=1,β2=1

. (65)

To compute the integral (64), one uses the summation form of the kernels (38) instead of the integral representation (44).
The corresponding integrals over x and y can then be separately evaluated by the formula (53) and explicit expressions of the
polynomials pk (x) and qk (y) in Ref. [14]. Now taking the partial derivatives (65) gives

ID = ID1 − ID2, (66)

where

ID1 = lim
β→1

m−1∑
j=0

m−1∑
k=0

j∑
i=0

j∑
s=0

( j + α + 1)(k + α + 1)gα,i gα+1,s, (67)

ID2 =
m−1∑
j=0

j∑
i=0

j∑
s=0

2(i + α + 1)(s + α + 2)hihs

( j + α + 1)−1(i + s + 2α + 4)

[
ψ0(i + α + 2)ψ0(s + α + 3) + 2

(i + s + 2α + 4)2

−ψ0(i + α + 2) + ψ0(s + α + 3)

i + s + 2α + 4

]
, (68)

with the shorthand notations

hr = (−1)r	(r + j + 2α + 2)

	(r + 1)	( j − r + 1)	(r + 2α + 2)
, (69)

gp,r = 	(r + β + 1)	(p + r + β + 1)	(r + 2α + β + 2)

	(r − k + β + 1)	(r + k + 2α + β + 3)

2hr

	(p + r + 1)
[ψ0(p + r + β + 1)

+ψ0(r + 2α + β + 2) − ψ0(r − k + β + 1) + ψ0(r + β + 1) − ψ0(r + k + 2α + β + 3)]. (70)

For the ID1 sums (67), the summation over j is evaluated first by the identity Lemma 4.1 in Ref. [14],

m−1∑
j=i

( j + α + 1)
	( j + i + 2α + 2)	( j + s + 2α + 2)

	( j − i + 1)	( j − s + 1)
= 	(i + m + 2α + 2)	(s + m + 2α + 2)

2(i + s + 2α + 2)	(m − i)	(m − s)
. (71)

After determining the limits when β → 1, the summation over k is evaluated next by the identity

m∑
k=0

(k + α + 1)
[	(s − k + 2)	(k + s + 2α + 4)]−1

	(i − k + 2)	(k + i + 2α + 4)
= [	(i + 2α + 3)	(s + 2α + 3)]−1

2	(i + 2)	(s + 2)(i + s + 2α + 4)
, (72)

as well as three additional identities obtained by taking the derivatives of Eq. (72) with respect to i, s, and both i and s. Now the
ID1 quadruple sum (67) reduces to double sums in i and s. Similarly, for the ID2 sums (68), we evaluate the summation over j
first by using Eq. (71), which also leads to a double sum form for ID2. We observe substantial cancellations among the obtained
double sums of ID1 and ID2. With the remaining sums evaluated by the formulas in Appendix A, we arrive at a closed-form
expression of ID as shown in (73), where the coefficients are listed in Table III,

ID = m

8(2m + 2α + 1)4

{
d0 + d1ψ0(m + α + 1) + d2ψ0(m + 2α + 1) + d3ψ0(2m + 2α + 1) + d4[ψ0(m + 2α + 1)

−ψ0(2m + 2α + 1)][ψ0(m + α + 1) + ψ0(m + 2α + 1) − ψ0(2m + 2α + 1)] + d5ψ
2
0 (m + α + 1)

+d6[ψ1(m + 2α + 1) − ψ1(2m + 2α + 1)]
}
. (73)

Finally, inserting Eqs. (60), (63), and (73) into Eq. (46), one observes cancellations of all but three terms,

Vh[T ] = m(m + 2α + 1)ψ0(m + α + 1) + m(m + 2α + 1)

2
ψ2

0 (m + α + 1) + m(m + 2α + 1)

4(2m + 2α + 1)
(5m2 + 5m

+ 10αm + 4α2 + 4α + 2)ψ1(m + α + 1). (74)
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Specializing the above expression with the α value in Eq. (7) establishes the induced variance formula (33). This completes the
proof of the main result (12).

III. SUMMARY AND OUTLOOK

As an important step towards quantifying the statistical performance of bipartite systems, we derived the exact variance
of von Neumann entanglement entropy over the Bures-Hall measure in this work. The result is based on recent progress in
understanding the correlation functions of the Bures-Hall random matrix ensemble.

Although the Bures-Hall ensemble attains a more involved functional form, the expressions of its first two moments turn out
to be simpler than the ones over the Hilbert-Schmidt ensemble. Further understanding of this counterintuitive fact requires the
higher order moments of the von Neumann entropy of both ensembles. The results may also help prove the conjectured Gaussian
limit for large dimensional quantum systems. Future work may also include the study of other performance indicators relevant
for quantum information processing, such as the fidelity and volumes, over the Bures-Hall measure.
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APPENDIX A: LIST OF SUMMATION IDENTITIES

In this Appendix, we list the closed-form (A1)–(A5) and semi-closed-form (A6)–(A8) finite sum identities that are useful in
simplifying the summations in Sec. II C. The identities (A1)–(A3) and (A4)–(A8) can be found in Refs. [26,33], respectively.
Note that it is sufficient to assume a, b � 0, a �= b in Eqs. (A1)–(A4) and (A6), and a > m in Eqs. (A7) and (A8).

m∑
k=1

ψ0(k + a) = (m + a)ψ0(m + a + 1) − aψ0(a + 1) − m, (A1)

m∑
k=1

kψ0(k + a) = 1

2
(m2 + m − a2 + a)ψ0(m + a + 1) + 1

2
(a − 1)aψ0(a + 1) + 1

4
m(2a − m − 3), (A2)

m∑
k=1

k2ψ0(k + a) =1

6
(2m3 + 3m2 + m + 2a3 − 3a2 + a)ψ0(m + a + 1) − 1

6
a(2a2 − 3a + 1)ψ0(a + 1)

− 1

36
m(4m2 + 15m − 6ma + 12a2 − 24a + 17), (A3)

m∑
k=1

ψ0(k + a)

k + a
= 1

2

[ − ψ2
0 (a + 1) + ψ2

0 (m + a + 1) − ψ1(a + 1) + ψ1(m + a + 1)
]
, (A4)

m∑
k=1

ψ0(m + 1 − k)

k
= −ψ0(1)ψ0(m + 1) + ψ2

0 (m + 1) − ψ1(1) + ψ1(m + 1), (A5)

m∑
k=1

ψ0(k + b)

k + a
= −

m∑
k=1

ψ0(k + a)

k + b
+ ψ0(m + a + 1)ψ0(m + b + 1) − ψ0(a + 1)ψ0(b + 1)

+ 1

a − b
[ψ0(m + a + 1) − ψ0(m + b + 1) − ψ0(a + 1) + ψ0(b + 1)], (A6)

m∑
k=1

ψ0(k)

a + 1 − k
=

m∑
k=1

ψ0(k)

k + a − m
+ 1

2
[ψ0(a − m + 1) − ψ0(a + 1)]2 − 1

2
[ψ1(a − m + 1) − ψ1(a + 1)], (A7)

m∑
k=1

ψ0(a + 1 − k)

k
= −

m∑
k=1

ψ0(k + a − m)

k
+ [ψ0(m + 1) − ψ0(1)][ψ0(a − m) + ψ (a + 1)]

+ 1

2
{[ψ0(a − m) − ψ0(a + 1)]2 + ψ1(a + 1) − ψ1(a − m)}. (A8)

062128-9



LU WEI PHYSICAL REVIEW E 102, 062128 (2020)

APPENDIX B: COEFFICIENT LISTS OF IA, IB, IC , AND ID

TABLE I. Coefficients of IA in Eq. (60).

a0 = −18αm(m + α)(m + 2α)(m + 2α + 1)(2m + 2α + 1)2(5m2 + 10αm + 5m + 4α2 + 4α + 2)
a1 = −αm(m + α)(m + 2α)(1756m5 + 8760αm4 + 4464m4 + 15900α2m3 + 16152αm3 + 3941m3 + 12736α3m2 + 19320α2m2

+9288αm2 + 1370m2 + 4032α4m + 8112α3m + 5604α2m + 1500αm + 147m + 192α5 + 480α4 + 320α3 − 60α − 14)
a2 = −18m(m + α)(m + 2α + 1)(2m + 2α + 1)2(3m + 4α)(5m2 + 10αm + 5m + 4α2 + 4α + 2)
a3 = 12(m + 2α)(2m + 2α + 1)2(15m5 − 30α2m4 + 60αm4 + 30m4 − 120α3m3 + 27α2m3 + 72αm3 + 21m3 − 154α4m2

−75α3m2 + 19α2m2 + 24αm2 + 6m2 − 68α5m − 50α4m − 16α3m − α2m − 4α6 + 4α5 + α4 − α3)
a4 = 6(m + α)(m + 2α)(2m + 2α + 1)2(15m4 − 120α2m3 + 30αm3 + 30m3 − 360α3m2 − 228α2m2 + 12αm2 + 21m2

−256α4m − 336α3m − 176α2m − 18αm + 6m − 16α5 − 32α4 − 68α3 − 52α2 − 12α)
a5 = 6(m + 2α)(2m + 2α + 1)(106αm6 − 60m6 + 636α2m5 − 65αm5 − 150m5 + 1506α3m4 + 503α2m4 − 324αm4 − 144m4

+1784α4m3 + 1300α3m3 + 60α2m3 − 235αm3 − 66m3 + 1080α5m2 + 1120α4m2 + 468α3m2 + 15α2m2 − 58αm2

−12m2 + 288α6m + 320α5m + 216α4m + 96α3m + 16α2m + 16α7 − 8α6 − 12α5 + 2α4 + 2α3)
a6 = 6(m + 2α + 1)(2m + 2α + 1)(212αm6 − 30m6 + 1512α2m5 + 198αm5 − 45m5 + 4212α3m4 + 1820α2m4 + 111αm4

−27m4 + 5760α4m3 + 4344α3m3 + 1238α2m3 + 31αm3 − 6m3 + 3936α5m2 + 4304α4m2 + 2296α3m2 + 440α2m2

+6αm2 + 1152α6m + 1680α5m + 1480α4m + 584α3m + 72α2m + 64α7 + 128α6 + 272α5 + 208α4 + 48α3)
a7 = −12α(212m8 + 1908αm7 + 636m7 + 7252α2m6 + 4920αm6 + 823m6 + 15148α3m5 + 15660α2m5 + 5545αm5 + 601m5

+18888α4m4 + 26400α3m4 + 14738α2m4 + 3552αm4 + 255m4 + 14192α5m3 + 25104α4m3 + 19608α3m3 + 7724α2m3

+1329αm3 + 59m3 + 6080α6m2 + 13056α5m2 + 13480α4m2 + 7696α3m2 + 2250α2m2 + 272αm2 + 6m2 + 1248α7m
+3168α6m + 4304α5m + 3432α4m + 1494α3m + 316α2m + 24αm + 64α8 + 192α7 + 416α6 + 512α5 + 324α4 + 100α3 + 12α2)

TABLE II. Coefficients of IB + IC in Eq. (63).

b0 + c0 = 18αm(m + α)(m + α + 1)(m + 2α)(m + 2α + 1)(2m + 2α + 1)3(5m2 + 10αm + 5m + 4α2 + 4α + 2)
b1 + c1 = −2αm(m + α)(m + α + 1)(m + 2α)(1756m6 + 10516αm5 + 5504m5 + 24660α2m4 + 25608αm4 + 6479m4 + 28636α3m3

+ 44304α2m3 + 22151αm3 + 3480m3 + 16768α4m2 + 34376α3m2 + 25380α2m2 + 7802αm2 + 805m2 + 4224α5m
+ 10752α4m + 10268α3m + 4464α2m + 819αm + 37m + 192α6 + 576α5 + 560α4 + 160α3 − 60α2 − 44α − 7)

b2 + c2 = −18m(m + α)(m + α + 1)(m + 2α + 1)(2m + 2α + 1)3(3m + 4α)(5m2 + 10αm + 5m + 4α2 + 4α + 2)
b3 + c3 = 12(m + α + 1)(m + 2α)(2m + 2α + 1)3(15m5 − 30α2m4 + 60αm4 + 30m4 − 120α3m3 + 27α2m3 + 72αm3 + 21m3

− 154α4m2 − 75α3m2 + 19α2m2 + 24αm2 + 6m2 − 68α5m − 50α4m − 16α3m − α2m − 4α6 + 4α5 + α4 − α3)
b4 + c4 = 6(m + α)(m + α + 1)(m + 2α)(2m + 2α + 1)3(15m4 − 120α2m3 + 30αm3 + 30m3 − 360α3m2 − 228α2m2

+12αm2 + 21m2 − 256α4m − 336α3m − 176α2m − 18αm + 6m − 16α5 − 32α4 − 68α3 − 52α2 − 12α)
b5 + c5 = 12(m + α + 1)(m + 2α)(2m + 2α + 1)(106αm7 − 60m7 + 742α2m6 − 141αm6 − 180m6 + 2142α3m5 + 378α2m5

−670αm5 − 219m5 + 3290α4m4 + 1743α3m4 − 698α2m4 − 679αm4 − 138m4 + 2864α5m3 + 2448α4m3

+104α3m3 − 613α2m3 − 291αm3 − 45m3 + 1368α6m2 + 1524α5m2 + 500α4m2 − 84α3m2 − 132α2m2 − 47αm2

−6m2 + 304α7m + 360α6m + 172α5m + 62α4m + 18α3m + 2α2m + 16α8 − 16α6 − 4α5 + 3α4 + α3)
b6 + c6 = 6(2m + 2α + 1)(424αm9 − 60m9 + 4720α2m8 + 1036αm8 − 240m8 + 22640α3m7 + 13764α2m7 + 716αm7

−399m7 + 61184α4m6 + 62444α3m6 + 17280α2m6 − 80αm6 − 357m6 + 102120α5m5 + 148488α4m5 + 74852α3m5

+13467α2m5 − 265αm5 − 183m5 + 108240α6m4 + 206232α5m4 + 152936α4m4 + 53828α3m4 + 7650α2m4

−74αm4 − 51m4 + 71744α7m3 + 170208α6m3 + 169160α5m3 + 90024α4m3 + 25492α3m3 + 3057α2m3 + 13αm3

−6m3 + 27776α8m2 + 79328α7m2 + 100928α6m2 + 74144α5m2 + 32140α4m2 + 7480α3m2 + 722α2m2 + 6αm2

+5248α9m + 17664α8m + 28608α7m + 28512α6m + 17544α5m + 6216α4m + 1112α3m + 72α2m + 256α10

+1024α9 + 2432α8 + 3712α7 + 3344α6 + 1696α5 + 448α4 + 48α3)
b7 + c7 = −12α(2m + 2α + 1)(212m9 + 2120αm8 + 758m8 + 9160α2m7 + 6726αm7 + 1162m7 + 22400α3m6 + 25294α2m6

+9200αm6 + 1049m6 + 34036α4m5 + 52450α3m5 + 29970α2m5 + 7475αm5 + 631m5 + 33080α5m4 + 65124α4m4

+51812α3m4 + 20908α2m4 + 4038αm4 + 251m4 + 20272α6m3 + 48896α5m3 + 50800α4m3 + 29310α3m3

+9392α2m3 + 1417αm3 + 59m3 + 7328α7m2 + 21056α6m2 + 27624α5m2 + 21476α4m2 + 10018α3m2 + 2550α2m2

+284αm2 + 6m2 + 1312α8m + 4416α7m + 7312α6m + 7576α5m + 4866α4m + 1802α3m + 340α2m + 24αm
+64α9 + 256α8 + 608α7 + 928α6 + 836α5 + 424α4 + 112α3 + 12α2)

b8 + c8 = −18αm(m + α)(m + α + 1)(m + 2α)(m + 2α + 1)(2m + 2α + 1)2(7m2 + 14αm + 7m + 8α2 + 8α + 2)
b9 + c9 = 36αm(m + α)(m + α + 1)(m + 2α)(m + 2α + 1)(2m + 2α + 1)2(10m3 + 30αm2 + 9m2 + 28α2m + 8α3 + 4α2 + 16αm + 3m)
b10 + c10 = −72αm(m + α)(m + α + 1)(m + 2α)(m + 2α + 1)(2m + 2α + 1)2(10m3 + 30αm2 + 12m2 + 28α2m + 22αm

+6m + 8α3 + 8α2 + 4α + 1)
b11 + c11 = 18αm(m + α)(m + α + 1)(m + 2α)(m + 2α + 1)(2m + 2α + 1)2(10m3 + 30αm2 + 3m2 + 28α2m + 4αm − 3m

+8α3 − 4α2 − 8α − 2)
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TABLE III. Coefficients of ID in Eq. (73).

d0 = m(36m4 + 136αm3 + 68m3 + 196α2m2 + 188αm2 + 31m2 + 128α3m + 184α2m + 64αm − 6m + 32α4 + 64α3 + 36α2

−4α − 5)
d1 = 2m(2m + 2α + 1)(14m3 + 46αm2 + 29m2 + 48α2m + 60αm + 20m + 16α3 + 32α2 + 22α + 5)
d2 = 4(2m + 2α + 1)(32α4 + 64α3 + 48α2 + 16α + 30m4 + 126αm3 + 69m3 + 192α2m2 + 204αm2 + 56m2 + 128α3m

+200α2m + 106αm + 19m + 2)
d3 = −4(60m5 + 312αm4 + 168m4 + 636α2m3 + 672αm3 + 181m3 + 640α3m2 + 1000α2m2 + 528αm2 + 94m2 + 320α4m

+656α3m + 508α2m + 176αm + 23m + 64α5 + 160α4 + 160α3 + 80α2 + 20α + 2)
d4 = 8(m + 2α + 1)(2m + 2α + 1)2(3m2 + 6αm + 3m + 4α2 + 4α + 1)
d5 = −2m(m + 2α + 1)2(2m + 2α + 1)2

d6 = 4(m + 2α + 1)(2m + 2α + 1)3(5m2 + 10αm + 5m + 4α2 + 4α + 2)
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