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We analyze the performance of a quantum Otto cycle, employing a time-dependent harmonic oscillator as
the working fluid undergoing sudden expansion and compression strokes during the adiabatic stages, coupled
to a squeezed reservoir. First, we show that the maximum efficiency that our engine can achieve is 1/2 only,
which is in contrast with earlier studies claiming unit efficiency under the effect of a squeezed reservoir. Then,
in the high-temperature limit, we obtain analytic expressions for the upper bound on the efficiency as well as on
the coefficient of performance of the Otto cycle. The obtained bounds are independent of the parameters of the
system and depend on the reservoir parameters only. Additionally, with a hot squeezed thermal bath, we obtain
an analytic expression for the efficiency at maximum work which satisfies the derived upper bound. Further,
in the presence of squeezing in the cold reservoir, we specify an operational regime for the Otto refrigerator
otherwise forbidden in the standard case. Finally, we find the cost of creating a squeezed state from the thermal
state and show that in order to harvest the benefits of squeezing, it is sufficient to squeeze only one mode of the
reservoir in resonance with the transition frequency of the working fluid. Further, we show that when the cost of
squeezing is included in the definition of the operational efficiency of the engine, the advantages of squeezing
fade away. Still, being purely quantum mechanical fuel in nature, squeezed reservoirs are beneficial in their own
way by providing us with more compact energy storage medium or offering effectively high-temperature baths
without being actually too hot.
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I. INTRODUCTION

The concept of Carnot efficiency (ηC) is one of the most
important results in physics, which led to the formulation of
the second law of thermodynamics [1]. It puts a theoretical
upper bound on the efficiency of all macroscopic heat engines
working between two thermal reservoirs at different temper-
atures. However, with the rise of quantum thermodynamics
[2–5], many studies have showed that this sacred bound may
be surpassed by quantum heat machines exploiting exotic
quantum resources such as quantum coherence [6–10], quan-
tum correlations [11–15], and squeezed reservoirs [16–27],
among others [28]. In such cases, the second law of ther-
modynamics has to be modified to account for the quantum
effects, and the notion of generalized Carnot bound is intro-
duced, which is always satisfied [11,16,29,30]. In this context,
different theoretical studies have been carried out to study the
implications of work extraction when quantum heat machines
are coupled to nonequilibrium stationary reservoirs [30–34].
In particular, it is instructive to look into the working of heat
machines coupled to squeezed thermal reservoirs. The use
of a squeezed thermal reservoir allows us to extract work
from a single reservoir [20], operate thermal devices beyond
the Carnot bound [16,20,22,23], and define multiple opera-
tional regimes [20,31] otherwise impossible for the standard
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case with two thermal reservoirs. Moreover, in Ref. [35], the
idea of treating a squeezed thermal reservoir as a generalized
equilibrium reservoir is explored. Recently, a nanomechan-
ical engine consisting of a vibrating nanobeam coupled to
squeezed thermal noise, operating beyond the standard Carnot
efficiency, has been realized experimentally [23].

Over the past few years, there has been increasing interest
in investigating the performance of a quantum Otto cycle
[36–42], based on a time-dependent harmonic oscillator as the
working fluid, coupled to squeezed thermal baths [16,20–23].
Due to its simplicity, a harmonic quantum Otto cycle (HQOC)
serves as a paradigm model for quantum thermal devices. It
consists of two adiabatic branches during which the frequency
of the oscillator is varied, and two isochoric branches during
which the system exchanges heat with the thermal baths at
constant frequency. Roßnagel and coauthors optimized the
work output of a HQOC in the presence of a hot squeezed
thermal bath and obtained a generalized version of Curzon-
Ahlborn efficiency [16]. Manzano et al. studied a modified
version of HQOC and discussed the effect of a squeezed
hot bath in different operational regimes [20]. Extending the
analysis to quantum refrigerators, Long and Liu optimized the
performance of a HQOC in contact with a low-temperature
squeezed thermal bath and concluded that the coefficient of
performance (COP) can be enhanced by squeezing [22].

With the exception of Refs. [21,25], all the above-
mentioned studies involving squeezed reservoirs are confined
to the study a of quasistatic Otto cycle in which adiabatic steps
are performed quasistatically, thus producing vanishing power
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FIG. 1. Model of quantum Otto cycle employing a time-
dependent harmonic oscillator as the working fluid.

output. In this work, we fill this gap by confining our focus
to the highly nonadiabatic (dissipative) regime corresponding
to the sudden switch of frequencies (sudden compression and
expansion strokes) during the adiabatic stages of the Otto
cycle. We obtain analytic expressions for the upper bounds on
the efficiency and COP of the HQOC coupled to a squeezed
thermal reservoir. We also calculate the cost of preparing a
squeezed state by squeezing a thermal state and show that to
exploit the advantages of a squeezed reservoir, it is sufficient
to squeeze just one mode of the thermal reservoir in resonance
with the frequency of the working fluid. Then, by including
this cost into the definition of the operational efficiency of the
engine, we analyze the behavior of the operational efficiency
and net work extracted for a different amount of squeezing
injected into the system.

The paper is organized as follows. In Sec. II we discuss
the HQOC model coupled to a hot squeezed thermal reser-
voir. In Sec. III we obtain analytic expression for the upper
bound on the efficiency of the engine operating in the sudden
switch limit. We also obtain an analytic expression for the
efficiency at maximum work and compare it with the derived
upper bound. In Sec. IV we repeat our analysis for the Otto
refrigerator coupled to a cold squeezed reservoir and obtain
upper bound on the COP of the refrigerator. In Sec. V we
calculate the cost of squeezing. We conclude in Sec. VI.

II. QUANTUM OTTO CYCLE WITH SQUEEZED
RESERVOIR

We consider a quantum Otto cycle of a time-dependent
harmonic oscillator coupled to a hot squeezed thermal bath
while the cold bath is still purely thermal in nature. It consists
of four stages: two adiabatic and two isochoric (see Fig. 1).
These processes occur in the following order [39,43]: (1)
Adiabatic compression A −→ B: To begin, the system is at
inverse temperature β1. The system is isolated and the fre-
quency of the oscillator is increased from ω1 to ω2. Work is
done on the system in this stage. The evolution is unitary, and
von Neumann entropy of the system remains constant. (2) Hot

isochore B −→ C: During this stage, the oscillator is coupled
to the squeezed thermal heat reservoir at inverse temperature
β2 at fixed frequency (ω2) and allowed to thermalize. No
work is done in this stage; only heat exchange between the
system and reservoir takes place. After the completion of the
hot isochoric stage, the system relaxes to a squeezed thermal
state [44,45] with mean photon number 〈n(β2, r)〉 = 〈n〉 +
(2〈n〉 + 1) sinh2 r, where r is the squeezing parameter and
〈n〉 = 1/(eβ2ω2 − 1) is the thermal occupation number (we
have set h̄ = kB = 1 for simplicity). (3) Adiabatic expansion
C −→ D: The system is isolated, and the frequency of the
oscillator is unitarily decreased back to its initial value ω1.
Work is done by the system in this stage. (4) Cold isochore
D −→ A: To bring back the working fluid to its initial state,
the system is coupled to the cold reservoir at inverse temper-
ature β1 (β1 > β2) and allowed to relax back to the initial
thermal state A.

The average energies, 〈H〉 = (〈n(βi, r)〉 + 1/2)ωi (where
i = 1, 2 and r = 0 for i = 1), of the oscillator at the four
stages of the cycle read as follows [16]:

〈H〉A = ω1

2
coth

(
β1ω1

2

)
, (1)

〈H〉B = ω2

2
λcoth

(
β1ω1

2

)
, (2)

〈HC〉 = ω2

2
coth

(
β2ω2

2

)
�H (r), (3)

〈HD〉 = ω1

2
λ coth

(
β2ω2

2

)
�H (r), (4)

where �H (r) = cosh(2r) reflects the effect of the squeezed
hot thermal bath on the mean energy of the oscillator, and
λ is the dimensionless adiabaticity parameter [46]. For the
adiabatic process, λ = 1; for nonadiabatic expansion and
compression strokes, λ > 1. The expression for mean heat
exchanged during the hot and cold isochores can be evaluated,
respectively, as follows:

〈Q2〉 = 〈H〉C − 〈H〉B

= ω2

2

[
�H (r)coth

(
β2ω2

2

)
− λcoth

(
β1ω1

2

)]
, (5)

〈Q4〉 = 〈H〉A − 〈H〉D

= ω1

2

[
coth

(
β1ω1

2

)
− λ�H (r)coth

(
β2ω2

2

)]
. (6)

Here we are employing a sign convention in which heat ab-
sorbed (rejected) from (to) the reservoir is positive (negative).
Since after one complete cycle the working fluid comes back
to its initial state, the net work done on the system in a
cycle is given by the first law of thermodynamics, Wtotal =
−(〈Q2〉 + 〈Q4〉). Work is said to be extracted from the engine
when Wext = −Wtotal = 〈Q2〉 + 〈Q4〉 > 0. In this work, we are
interested in the sudden switch case for which λ = (ω2

1 +
ω2

2 )/2ω1ω2 [46–48]. Substituting the above expression for λ

in Eqs. (5) and (6), we obtain the following expressions for
the extracted work, 〈Wext〉, and efficiency, η = 〈Wext〉/〈Q2〉, of
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the engine, respectively:

〈Wext〉 = 〈Q2〉 + 〈Q4〉 = ω2
2 − ω2

1

4ω1ω2

[
ω1�H (r) coth

(
β2ω2

2

)
− ω2 coth

(
β1ω1

2

)]
, (7)

η = 〈Wext〉
〈Q2〉 =

⎡
⎣ 2

1 − ω2
1

ω2
2

+ 1
ω1
ω2

�H (r) coth
(

β2ω2

2

)
tanh

(
β1ω1

2

) − 1

⎤
⎦

−1

≡
(

2

�1
+ 1

�2

)−1

. (8)

As ω1 and ω2 are always positive by construction and
ω2 > ω1, �1 = 1 − ω2

1/ω
2
2 lies in the range (0,1), i.e.,

0 < �1 < 1. This result, together with the positive work
condition (PWC), 〈Wext〉 > 0 [see Eq. (7)], implies that
�2 ≡ ω1

ω2
�H (r) coth ( β2ω2

2 ) tanh ( β1ω1

2 ) − 1 > 0 or 1/�2 > 0.
Consequently, from Eq. (8), we have

η <
�1

2
and η < �2. (9)

Again using the condition 0 < �1 < 1 in Eq. (9), we arrive at
our first main result:

η < 1
2 . (10)

The result is very interesting as it implies that even in the
presence of very very large squeezing (r → ∞), the efficiency
of the engine can never surpass 1/2. This is in contrast with
the previous studies, valid for the quasistatic regime, implying
that the thermal engine fueled by a hot squeezed thermal
reservoir asymptotically attains unit efficiency for a large
squeezing parameter (r � 1) [16,20,29]. We attribute this to
the highly frictional nature of the sudden switch regime as
explained below. In the sudden switch regime, the sudden
quench of the frequency of the harmonic oscillator induces
nonadiabatic transitions between its energy levels and leaves
the system in a nonequilibrium state. When written in terms
of the energy eigenkets of the instantaneous Hamiltonian, the
off-diagonal terms of the density matrix, known as coher-

ences, are nonzero. Generating coherences give rise to extra
energetic cost when compared to adiabatic driving, and an
additional parasitic internal energy is stored in the working
medium. This extra cost gets dissipated to the heat reservoirs
during the proceeding isochoric stages of the cycle and is
termed as quantum friction [18,49–53]. Inner friction limits
the performance of the device under consideration.

III. UPPER BOUND ON THE EFFICIENCY

In order to obtain analytic expression in closed form for
the efficiency, we will work in the high-temperature regime
[54–56]. In this regime, we set coth(βiωi/2) ≈ 2/(βiωi ) (i =
1, 2). Then the expressions for the extracted work 〈Wext〉
[Eq. (7)] and the efficiency [Eq. (8)] take the following forms:

〈Wext〉 = (1 − z2)[z2 cosh(2r) − τ ]

2z2β2
, (11)

η = (z2 − 1)[z2 cosh(2r) − τ ]

τ − z2[2 cosh(2r) − τ ]
, (12)

where we have defined z = ω1/ω2 and τ = β2/β1 = 1 − ηC .
From Eq. (11), the positive work condition, 〈Wext〉 > 0, im-
plies that

z2 cosh(2r) > 1 − ηC . (13)

Using the expression for efficiency in Eq. (12), z2 can be
written in terms of η and ηC and is given by

z2 = 1
2 {(1 − ηc)(1 + η) + (1 − 2η) cosh(2r) −

√
[(1 − ηc)(1 + η) + (1 − 2η) cosh(2r)]2 − 4(1 − ηc)(1 + η) cosh(2r)}.

(14)

Using the above expression for z in Eq. (13), we obtain following upper bound on the efficiency of the engine:

η <
[1 − ηC − cosh(2r)][−1 + ηC − 2 cosh(2r) + 2

√
2(1 − ηC ) cosh(2r)]

[1 − ηC − 2 cosh(2r)]2
≡ ηup. (15)

This is our second main result. Notice that the above derived
bound is independent of the parameters of the model under
consideration and depends on the reservoir parameters r and
ηC (or τ ) only. For r → ∞, ηup → 1/2, which reconfirms
our earlier result [Eq. (9)] that the maximum efficiency that
our engine can attain is one-half the unit efficiency; it never
reaches unit efficiency, unlike the engines operating in the
quasistatic regime [16,20,29].

Further, we derive analytic expression for the efficiency at
maximum work by optimizing Eq. (11) with respect to z, and

it is given by

ηMW = 1 − √
(1 − ηC )sech(2r)

2 + √
(1 − ηC )sech(2r)

. (16)

We have plotted Eqs. (15) and (16) in Fig. 2 as a function
of r for different fixed values of Carnot efficiency ηC . For
the given values of ηC smaller than 1/2, both ηup (solid red
and blue curves) and ηMW (dashed red and blue curves) can
surpass corresponding Carnot efficiency (dotted curves with
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FIG. 2. Plots of ηup [Eq. (15)] and ηMW [Eq. (16)] as a function
of squeezing parameter r. Solid red and blue curves represent ηup

for ηC = 0.2 and ηC = 0.4, respectively. Dashed curves in the corre-
sponding color represent ηMW. Dotted red and blue curves denote
the standard Carnot efficiency at values ηC = 0.2 and ηC = 0.4,
respectively. Solid purple curve represents ηup for ηC = 0.8 and
shows that for the given value of ηC > 1/2, ηup can never surpass
Carnot efficiency ηC even in the presence of very large squeezing.
In the inset, we have plotted the difference between ηup and ηMW

(δη = ηup − ηMW) as a function of r for ηC = 0.2 (solid red curve)
and ηC = 0.4 (solid blue curve). This difference is always positive,
indicating that ηup > ηMW.

same color) for some value of squeezing parameter r and
approach 1/2 for relatively larger values of r (r > 5). From
the inset of Fig. 2, it is clear that ηMW always lies below ηup,
which should be the case as for the given temperature ratio
(ηC), ηup is the upper bound on the efficiency.

One more comment is in order here. Although, for given
values of ηC (ηC < 1/2), ηup and ηMW may surpass standard
Carnot efficiency, they can never surpass generalized Carnot
efficiency (not shown in Fig. 2) [16,33],

η
gen
C = 1 − β2

β1 cosh(2r)
≡ 1 − T1

T2 cosh(2r)
, (17)

which follows from the second law of thermodynamics ap-
plied to the nonequilibrium reservoirs [30]. The concept of
generalized Carnot efficiency can be understood as follows.
We can always assign a frequency dependent local temper-
ature (or apparent temperature [57]) to a squeezed thermal
reservoir characterized by its genuine temperature T and
squeezing parameter r [32,33]. The expression for this fre-
quency dependent local temperature can be obtained from the
following relation [32,33]:

exp

(
− ω

T (ω, r)

)
= 〈n〉 + (2〈n〉 + 1) sinh2 r

1 + 〈n〉 + (2〈n〉 + 1) sinh2 r
. (18)

In the high-temperature limit, the effective temperature of the
squeezed hot bath reads as

T eff
2 (r) = T2(1 + 2 sinh2 r) = T2 cosh(2r). (19)

Hence, for positive values of r, the engine may be assumed
to be operating between temperatures T1 and T eff

2 (r). The
actual (generalized) Carnot efficiency should then be given
by Eq. (17).

FIG. 3. Plots of ηth
up [Eq. (20)] and ηRK [Eq. (21)] versus Carnot

efficiency. We can see that ηRK (dashed red curve) lies below ηth
up

(solid blue curve). Both are bounded above by half the Carnot effi-
ciency, ηC/2.

Finally, we discuss the special case when r → 0. This cor-
responds to the case in which our harmonic quantum engine
is working between two purely thermal reservoirs. Thus, for
r → 0, Eqs. (15) and (16) reduce to the following forms,
respectively:

η <
[3 − 2

√
2(1 − ηC ) − ηC]ηC

(1 + ηC )2
≡ ηth

up, (20)

ηRK = 1 − √
1 − ηC

2 + √
1 − ηC

. (21)

The above bound, ηth
up, is much tighter than the classical

Carnot bound, even tighter than ηC/2 (see Fig. 3) [58].
Equation (21), which we derived as a special case of our
more general result Eq. (15), was first derived by Rezek and
Kosloff (RK) for the optimization of a harmonic quantum
Otto engine undergoing sudden switch of frequencies in the
adiabatic stages [38]. Again, it is clear from Fig. 3 that ηRK

(dashed red curve) always lies below ηth
up (solid blue curve),

which should be the case.

IV. UPPER BOUND ON THE COEFFICIENT
OF PERFORMANCE

Here we discuss the operation of QHOC as a refrigerator.
In the refrigeration process, heat is absorbed from the cold
bath, 〈Q4〉 > 0, and dumped into the hot bath, 〈Q2〉 < 0.
The net work invested in the system is positive, 〈Wtotal〉 =
−(〈Q2〉 + 〈Q4〉) > 0. The COP of the refrigerator is defined
as ζ = 〈Q4〉/〈Win〉. Here we will first discuss the case when a
refrigerator is coupled to two purely thermal reservoirs. We
follow the same procedure as done for the heat engine in
Sec. III. Since the calculations are straightforward, we merely
present our results here. For the refrigerator running between
two purely thermal reservoirs, a positive cooling condition,
〈Q4〉 > 0, implies that

ζC > 1 and ζ � 1 + 3ζC − 2
√

2ζ (1 + ζC ) ≡ ζ th
up, (22)

where ζC = β2/(β1 − β2) is the Carnot COP. The condition
ζC > 1 implies that τ > 1/2, which in turns implies that the
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machine cannot work as a refrigerator when the cold reservoir
temperature is below T2/2. The upper bound ζup derived here
is independent of the parameters of the system and depends on
ratio of the reservoir temperatures only, which makes it quite
general in nature. Similar to the heat engine case, the obtained
upper bound is much tighter than the corresponding Carnot
bound.

Now we will discuss the effect of coupling the refrigerator
to the cold squeezed reservoir. In the high-temperature
regime, the mean energies at points A, B, C, and D are
given by 〈H〉A = ω1 coth(β1ω1/2) cosh(2r)/2, 〈H〉B =
ω2λ coth(β1ω1/2) cosh(2r)/2, 〈H〉C = ω2 coth(β2ω2/2),
〈H〉D = ω1λ coth(β2ω2/2)/2. The positive cooling condition,
〈Q4〉 > 0, yields the following expressions:

1

2
sech(2r) < τ < sech(2r) and ζ <

3

1 − τ cosh(2r)
− 2 − 2

√
2

√
τ cosh(2r)

[τ cosh(2r) − 1]2
≡ ζup. (23)

Equation (23) along with Eq. (22) is our third main result. As expected, ζup reduces to ζ th
up for the vanishing squeezing parameter,

r = 0. To discuss the physical significance of condition given in Eq. (23), we invert it in terms of lower and upper limits on
squeezing parameter r:

0 < τ <
1

2
,

1

2
cosh−1

(
1

2τ

)
< r <

1

2
cosh−1

(
1

τ

)
, or

1

2
< τ < 1, 0 < r <

1

2
cosh−1

(
1

τ

)
. (24)

It is clear from the above equation that we can extract heat
from squeezed cold reservoir even for τ < 1/2, which is oth-
erwise impossible with the refrigeration operation with purely
thermal reservoirs. Again this can be explained on the basis of
effective temperature of the cold reservoir [see Eq. (19)]. For
r = 1

2 cosh−1 ( 1
2τ

) and r = 1
2 cosh−1 ( 1

τ
), the effective temper-

atures of the cold reservoir become T2/2 and T2, respectively.
As per the original positive work condition (1/2 < τ ) without
a cold squeezed reservoir, T1 > T2/2, and hence in the case
of a cold squeezed reservoir this condition is satisfied for the
given range of squeezing parameter r in Eq. (24). Eventually,
the refrigeration stops when the effective temperature of cold
squeezed reservoir approaches T2, which is the temperature of
the thermal hot reservoir. Finally, for τ = 1/2 or T2 = 2T1, the
allowed range of r is 0 < r < 1

2 cosh−1(2), which implies that
effective temperature of cold reservoir should be smaller than
2T1, which is natural.

V. COST OF SQUEEZING

In order to calculate the cost of squeezing, we will use
the formalism developed in Refs. [32,33]. First, we outline
a general scheme for defining the local temperature of a
stationary nonequilibrium reservoir and then apply it to the
case of a squeezed thermal reservoir. Thermal baths can be
considered as a collection of independent oscillators with
a quasicontinuum spectrum of frequencies. Hence, the free
Hamiltonian of a bosonic bath is given by HB = ∑

k ωkb̂†
kb̂k

(ignoring the zero-point energy). In most applications (in-
cluding our case), the bath operator that weakly couples to
the system is linear in annihilation and creation operators:
B̂ = ∑

k (gkb̂k + ḡk b̂†
k ). The nonequilibrium state of the bath,

ρB, can be made stationary by ergodic averaging and is given
by ρ̄B = ∑

k |k〉〈k|ρB|k〉〈k|, where {|k〉} is the energy basis
of the free Hamiltonian of the bath. Consider a quantum
harmonic oscillator with frequency ω weakly coupled to a
nonequilibrium stationary bath by means of the interaction
Hamiltonian Hint = (â + â†) ⊗ B̂. Then the bath coupling

spectrum, GB(ω) = ∫
eitω〈B(t )B〉B dt , yields [32,33]

GB(ω) =
⎧⎨
⎩

∑
k |gk|2(nk + 1)δ(ωk − ω), ω > 0

∑
k |gk|2nkδ(ωk − ω), ω < 0

⎫⎬
⎭, (25)

where nk = Tr(ρ̄Bb̂†
kb̂k ) is the k-mode population. The lower

(upper) line in Eq. (25) is the absorption (emission) rate. By
virtue of Eq. (25), the frequency-dependent local temperature
of a stationary nonequilibrium reservoir can be defined by the
following equation:

e−ω/TB (ω) = GB(−ω)

GB(ω)
= n(ω)

n(ω) + 1
, (26)

where

n(ω) =
∑

k |gk|2nkδ(ωk − ω)∑
k |gk|2δ(ωk − ω)

(27)

denotes the average population number for the frequency ω.
Now, consider a hot thermal bath at temperature T2 weakly

coupled to a harmonic oscillator of frequency ω2. If we se-
lectively squeeze the mode of thermal reservoir in resonance
with the working medium (thermal mode of frequency ω2)
only, then by virtue of Eqs. (25) and (26), the bath will drive
the working fluid (harmonic oscillator) to a Gibbs state with
the local temperature [32,33]

T eff
2 (ω2) = ω2

ln{1 + [〈n〉 + (2〈n〉 + 1) sinh2 r]−1} , (28)

where we have used n(ω2) = 〈n(β2, r)〉 = 〈n〉 + (2〈n〉 + 1)
sinh2 r. In the above, we showed that in order to take the
advantage of squeezing, it is sufficient to squeeze just one
resonant mode of the thermal reservoir. Now we will turn to
the question of determining the cost of squeezing.

The generation of reservoir squeezing is not part of the
engine cycle, and the energetic cost of their creation does not
enter into thermodynamic efficiency of the heat engine. On
the other hand, one can talk about an operational efficiency
of the heat engine by including such energetic costs, which
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SINGH AND MÜSTECAPLıOĞLU PHYSICAL REVIEW E 102, 062123 (2020)

may be relevant, especially for resources such as squeezed
thermal reservoirs, if the squeezing is produced by artifi-
cial means and not natural ones. For such a case, the cost
may be defined as the energetic difference between the free,
natural, thermal state and the squeezed thermal state. This
energy difference corresponds to an additional work done,
denoted by Wcost = Tr(HRρsq ) − Tr(HRρth ), and the opera-
tional efficiency of the thermal machine is introduced to be
ηop = (〈Wext〉 − Wcost )/〈Q2〉. Since in our case, the advantage
of squeezing can be exploited by squeezing only the mode of
frequency ω2 (resonant with system frequency), the cost of
squeezing is calculated as the energy difference between the
single-mode squeezed thermal state of frequency ω2, ρsq(ω2),
and corresponding single-mode thermal state, ρth(ω2). Hence,
Wcost is given by

Wcost = Tr[H (ω2)ρsq(ω2)] − Tr[H (ω2)ρth(ω2)], (29)

where H (ω2) = (b̂†b̂ + 1/2)ω2 is the Hamiltonian corre-
sponding to the mode frequency ω2. For the case of a heat
engine, when the hot reservoir is taken to be squeezed,
Eq. (29) can be solved as follows:

Wcost = [〈n(β2, r)〉 + 1
2

]
ω2 − (〈n〉 + 1

2

)
ω2 (30)

= (2〈n〉 + 1)ω2. (31)

The above equation can be further simplified by taking the
high-temperature limit. In this limit, 〈n〉 � 1 and can be ap-
proximated by 〈n〉 ≈ 1/β2ω2. Thus, Eq. (31) becomes

Wcost = 2 sinh2 r

β2
. (32)

From the experimental and operational point of view, it
is better to mimic the action of the squeezed reservoir by
replacing the nonthermal Otto cycle by an equivalent cycle
involving a hot thermal reservoir at inverse temperature β2

and an external squeezing source [31,59]. The action of the
hot squeezed reservoir can be mimicked by first placing the
system in contact with the hot thermal reservoir and then
applying the unitary transformation (squeezing operator) on
the thermal state of the working fluid. In this way, the work
invested (Wcost) to create the thermal squeezed state of the
working fluid from the standard thermal state is simply given
by the energy difference between them, which is the same as
given by Eq. (30).

Taking into account this cost, the net work extracted
(〈W ′

ext〉 = 〈Wext〉 − Wcost) is given by subtracting Eq. (32) from
Eq. (11) and is given by

〈W ′
ext〉 = 1

β2

{
(1 − z2)[z2 cosh(2r) − τ ]

2z2
− 2 sinh2 r

}
, (33)

and the expression for the operational efficiency takes the
form

ηop = 〈W ′
ext〉

〈Q2〉 = τ − z2(2 + τ ) + z2(1 + z2) cosh(2r)

τ (1 + z2) − 2z2 cosh(2r)
. (34)

We can check analytically that Eq. (33) is a monotonically
decreasing function of r. Similarly, for the PWC, we have
checked numerically that ηop is also a monotonically de-
creasing function of r. Now we present an example plot
describing the reduced efficiency (ηop) of the machine when

the squeezing generation cost is taken into account in Fig. 4
for a different amount of squeezing injected into the same
thermal state.

From Fig. 4 it is clear that both ηop and W ′
ext are deceasing

for increasing r. Hence, we can conclude that when account-
ing for the cost of squeezing, squeezed reservoirs can be costly
as synthetic quantum fuels. But they may offer advantages
by offering effectively high-temperature baths without being
actually too hot, and by potentially compact and direct inte-
gration to quantum working systems.

There is a limitation in our approach of calculating the cost
of squeezing. We assume that the squeezing parameter r goes
to 0 after each cycle. In practice, the bath’s quantum state
may still possess some squeezing or quantumness after the
interaction with the system. Further cost reduction can be pos-
sible by choosing optimum bath-system coupling, parameters,
and durations. We could start with the initial state of the total
working system and bath, evolve the cycle stages where the
working system couples to the bath, and then determine the
bath’s final state by tracing out the working system degrees of
freedom. Then to reset the bath state, only the energetic differ-
ence between the initial squeezed state and the state of the bath
after the cycle would need to be provided. This cost can be
estimated by an upper bound if the final state has no squeezing
at all. Accordingly, our cost estimation is the worst-case sce-
nario. Unfortunately, in the present paper, we do not model the
baths and their coupling to the working resonator microscop-
ically. We do not perform finite-time studies either; hence,
we cannot address cost optimization with sufficient detail.
We leave this exciting point for future research. In general,
quantum coherence is an expensive resource as studied in the
literature in different quantum heat engine settings [8,60–63].
Discussions of the cost of quantum coherent fuels and
their various advantages in storage, compactness, integration,
speed, and scaling have been made for various physical sys-
tems [8,60–63].

VI. CONCLUSIONS

We have investigated the performance of a HQOC, op-
erating in the sudden switch limit, coupled to a squeezed
thermal reservoir. First, we showed that even in the presence
of very large squeezing (r → ∞), the maximum efficiency of
the engine is 1/2 only. This is due to the frictional effects
caused by the nonadiabatic transitions when we operate in the
sudden switch regime. Our study is in contrast with previous
studies which claim that the efficiency can reach unity for
large squeezing. Then we obtained a closed-form expression
for the upper bound on the efficiency of the engine operating
in the high-temperature regime. The result is interesting in the
sense that the obtained bound is independent of the parameters
of the model under consideration and depends on the ratio of
the reservoir temperatures and squeezing parameter r only.
Additionally, we also derive the analytic expression for the
efficiency at maximum work and showed that it satisfies the
derived upper bound. As a special case of our more general
setup, when squeezing parameter r → 0, our results corre-
spond to the case in which an engine is running between
two purely thermal reservoirs. Further, we have also obtained
upper bounds for the Otto refrigerator working between two
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FIG. 4. Plots of operational efficiency [Eq. (34)] and net extracted work [Eq. (33)] as functions of τ = β2/β1 and z = ω1/ω2 for different
fixed values of squeezing parameter r. Squeezing parameter r takes the values r = 0, r = 0.25 and r = 0.4 going from left to right. We have
chosen the range of efficiency from 0 to 1/2 as we have already shown that the efficiency cannot surpass half the unit efficiency [see Eq. (10)].
It is clear from the plots that as r increases, both ηop(r) and W ′

ext (r) decrease. The white region in the upper set of graphs corresponds to the
engine efficiency greater than 1/2, and, thus, it does not correspond to the engine operation. Further, the efficiency contours covering the small
colored region at the top right side of Fig. 4(a) also does not represent the operational regime of the engine as it does not correspond to the
PWC (see Fig. 4(d)). Similarly, the white region in the lower set of graphs represents the numerical values of W ′

ext (r) less than −14, which
again does not correspond to engine operation.

purely thermal reservoirs as well as for the case when the
cold reservoir is taken to be a squeezed thermal reservoir.
Furthermore, we showed that squeezing can help in a cool-
ing process otherwise impossible in a standard setup with
thermal reservoirs. Finally, we showed that it is sufficient
to squeeze only one mode, in resonance with the transition
frequency of the working fluid, of the thermal reservoir to
harvest the benefits of squeezing. Then we showed that when

the cost of generating a squeezed state is also included in
the definition of the operational efficiency of the engine, the
squeezed reservoirs are costly as synthetic quantum fuels.
However, they may present us with other advantages from
a practical point of view, such as by serving as effectively
high-temperature baths without being actually too hot, and
by offering a potentially compact and dense energy storage
medium.

[1] D. Kondepudi and I. Prigogine, Modern Thermodynamics:
From Heat Engines to Dissipative Structures (John Wiley &
Sons, New York, 2014).

[2] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545
(2016).

[3] G. Mahler, Quantum Thermodynamic Processes: Energy and
Information Flow at the Nanoscale (Jenny Stanford Publishing,
Singapore, 2014).

[4] S. Deffner and S. Campbell, Quantum Thermodynamics
(Morgan & Claypool Publishers, San Rafael, 2019).

[5] R. Alicki and R. Kosloff, in Thermodynamics in the
Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin,
J. Anders, and G. Adesso (Springer, Cham, 2018),
pp. 1–33.

[6] M. O. Scully, Phys. Rev. Lett. 87, 220601 (2001).
[7] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther,

Science 299, 862 (2003).
[8] D. Türkpençe and O. E. Müstecaplıoğlu, Phys. Rev. E 93,
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