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Stability, isolated chaos, and superdiffusion in nonequilibrium many-body interacting systems
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We study stability and chaotic-transport features of paradigmatic nonequilibrium many-body systems, i.e., pe-
riodically kicked and interacting particles, for arbitrary number of particles, nonintegrability strength unbounded
from above, and different interaction cases. We rigorously show that under the latter general conditions and in
strong nonintegrability regimes there exist fully stable orbits, accelerator-mode (AM) fixed points, performing
ballistic motion in momentum. These orbits exist despite of the completely and strongly chaotic phase space
with generally fast Arnol’d diffusion. It is numerically shown that an “isolated chaotic zone” (ICZ), separated
from the rest of the phase space, remains localized around an AM fixed point for long times even when this point
is partially stable in only a few phase-space directions. This localization should reflect an Arnol’d diffusion in an
ICZ much slower than that in the rest of phase space. The time evolution of the mean kinetic energy of an initial
ensemble containing an ICZ exhibits superdiffusion instead of normal chaotic diffusion.
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I. INTRODUCTION

There has been a considerable interest, especially in recent
years, in understanding the classical and quantum properties
of nonequilibrium many-body Hamiltonian systems given by
periodically driven interacting particles [1–29]. The periodic
drive of a closed many-body system generically leads to heat-
ing. In well-known classical systems, this heating manifests
itself in an unbounded chaotic diffusion of the total kinetic en-
ergy asymptotically in time [1–9]. This diffusion is expected
to occur generically even for arbitrarily weak nonintegrability
(chaos strength) if the number of degrees of freedom is suffi-
ciently large [30,31] (see also below).

There are open and fundamental questions concerning clas-
sical stability and chaotic transport in periodically driven
many-body systems with N > 1 degrees of freedom, e.g.,
N interacting particles in one dimension. These questions
naturally arise when considering the case of N = 1, corre-
sponding to the simplest Hamiltonian systems with chaotic
dynamics, a famous paradigm being the periodically kicked
rotor [31]. The Poincaré map [32] of such relatively sim-
ple systems already features the generic intricate mixture of
chaotic and regular motions on all scales of a two-dimensional
(2D) phase space [33–35]. Stable periodic orbits are sur-
rounded by 2D stability islands, see Fig. 1, and seem to exist
for arbitrarily strong nonintegrability [36], see also note [37].
The island boundaries are one-dimensional Kolmogorov-
Arnol’d-Moser (KAM) tori [38–41] which thus fully separate
the islands from the 2D chaotic region, i.e., they form bar-
riers to chaos. Chaotic orbits can only stick to the island
boundaries for long times, leading to significant deviations
of chaos from fully random motion, with a slow decay of
correlations [34,35]. At the same time, the motion inside an
island is essentially a regular one around the island center,
a point of the stable periodic orbit to which the island is
associated.

For N > 1, on the other hand, KAM tori, in particu-
lar tori surrounding stable periodic orbits, are generically
N-dimensional surfaces [42] which cannot be isolating bar-
riers in the 2N-dimensional phase space, due to purely
topological reasons. Thus, chaos can now penetrate the inte-
rior of KAM tori by the so-called Arnol’d diffusion [30,31]
so that, in principle, the phase space is always a completely
chaotic one. In the limit of vanishing nonintegrability strength
and/or large N , however, Arnol’d diffusion is extremely
slow [43,44], so that it will take a very long time for a local-
ized ensemble to diffuse away from its initial neighborhood,
especially if this neighborhood is that of a fully stable periodic
orbit (see definition below), analogous to a N = 1 orbit in
a stability island. One can then ask the following questions:
For N > 1 and arbitrarily strong nonintegrability, when the
Arnol’d diffusion is fast in the completely chaotic phase space
(see, e.g., Ref. [45]), do fully stable periodic orbits still ex-
ist as in the N = 1 case? Are these orbits still surrounded
by “stability regions,” analogous to the stability islands for
N = 1 and featuring a relatively slow Arnol’d diffusion, lead-
ing to significant deviations of chaotic transport from normal
diffusion?

In this paper, we answer these questions affirmatively for
paradigmatic and realistic many-body systems, the answer to
the first question being a rigorous one. We study periodically
kicked systems described by the general Hamiltonian [9,46]

H (t ) =
N∑

j=1

[
p2

j

2
+ K cos(φ j )�(t )

]

+
N∑

i, j=1,i �= j

ηi, j cos(φi − φ j )�(t ) . (1)

Here p j and φ j ( j = 1, . . . , N) are, respectively, the (angular)
momenta and positions (angles) of N rotors (particles on a
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FIG. 1. Phase space of the standard map {map (2) for N = 1,
with p1 taken mod[−π, π )}, showing the chaotic region and a sta-
bility island around an accelerator-mode (AM) fixed point, defined
by Eq. (5) with w1 = 1 and for τ1 = 1.96 in Eq. (12) (K ≈ 6.2833).
Inset: Isolated chaotic zone for N = 4 with interaction, analogous to
the N = 1 AM island above; see details in the text and in Fig. 2.

circle), K is a parameter, �(t ) = ∑∞
s=−∞ δ(t − s) is a periodic

delta function with time period T = 1, and ηi, j are interaction
strengths. Two extreme cases of interactions will be studied:
The infinite-range ones, ηi, j = η/N , and the nearest-neighbor
ones, ηi, j = ηδi, j−1, where η is a positive constant. In the
nearest-neighbor case, the angles φ j satisfy periodic boundary
conditions, φN+ j = φ j , defining also φ0 = φN . In this case
and for K = 0, the Hamiltonian (1) describes paradigmatic
model systems of many-body chaos theory [1–9] that may
be experimentally realizable (see, e.g., Ref. [8]). The general-
izations of these systems to K �= 0 should be experimentally
realizable as well [47]. The case of N = 2 for K �= 0 was
investigated in several works [45,48–52]. Some properties of
the quantum counterparts of the general systems (1) for both
kinds of interactions were studied recently [9].

After writing the exact Poincaré map for the systems (1) in
Sec. II, we rigorously show in Sec. III that fully stable orbits of
this map, in both interaction cases, exist under quite general
conditions, for nonintegrability strength K unbounded from
above and for arbitrary number N of particles. This despite
of the completely chaotic phase space with generally fast
Arnol’d diffusion. The fully stable orbits are accelerator-mode
(AM) fixed points that are linearly stable in all directions
of the multidimensional phase space. The AM fixed points,
well known in the single-particle (N = 1) chaos theory
[31,53–68] [see definition (5) below], perform ballistic motion
in momentum and provide the most well established mecha-
nism of chaotic superdiffusion for N = 1 [61–68], roughly as
follows. An ensemble of chaotic orbits sticking to boundaries
of AM stability islands performs ballistic motion in momen-
tum, i.e., its mean kinetic energy increases quadratically in
time like that of an initial ensemble inside an AM island.
However, when the chaotic ensemble leaves the boundaries
of AM islands, it performs normal diffusion in the chaotic
sea, namely, its mean kinetic energy increases linearly in time.
The average result of these processes over a very long time is
superdiffusion of the chaotic ensemble, with its mean kinetic
energy increasing in time between linearly and quadratically.

While for N > 1 KAM tori do not form barriers and stabil-
ity islands do not strictly exist, we provide numerical evidence
in Sec. IV that, for an initial ensemble that is sufficiently
localized around an AM fixed point, part of this ensemble
remains localized there for a long time if the AM fixed point
is linearly stable already just in a few phase-space directions.
The localization takes place in a “chaotic zone” (see inset of
Fig. 1 and below) that is “stable” in the sense that it remains
isolated from the rest of the chaotic phase space for a long
time. This localization should reflect an Arnol’d diffusion
inside the zone much slower than that in the rest of phase
apace. All the points in such an isolated chaotic zone (ICZ)
essentially perform ballistic motion in momentum. Thus, the
existence of an ICZ around an AM fixed point leads to a
superdiffusion of the entire initial ensemble. The ICZ may
be viewed as an N > 1 analog of a regular stability island
for N = 1.

Conclusions are presented in Sec. V and details of deriva-
tions are given in the Appendix.

II. POINCARÉ MAP AND AMs

We start by writing the Poincaré map from kick to kick for
the systems (1). Denoting p j (s) = p j (t = s − 0) and φ j (s) =
φ j (t = s − 0) (s integer), one can easily derive from Hamilton
equations the exact map equations

p j (s + 1) = p j (s) + K sin[φ j (s)] + ηFj[φ1(s), . . . , φN (s)],

φ j (s + 1) = φ j (s) + p j (s + 1) mod(2π ), (2)

where the mod(2π ) is taken since φ j (s) is an angle,

Fj[φ1(s), . . . , φN (s)] = 1

N

N∑
i=1

sin[φ j (s) − φi(s)] (3)

in the infinite-range case and

Fj[φ1(s), . . . , φN (s)] =
1∑

i=−1

sin[φ j (s) − φ j+i(s)] (4)

in the nearest-neighbor case.
The map (2) is clearly translationally invariant in both

p j (s) and φ j (s) with period 2π . This invariance allows to
define the fixed points of the map in a generalized way:

p j (s + 1) = p j (s) + 2πw j, φ j (s + 1) = φ j (s), (5)

where w j are arbitrary integers. For w j �= 0, Eq. (5) defines
AM fixed points performing ballistic motion in momentum
with acceleration 2πw j . A natural exact solution for Eq. (5)
can be obtained if the quantities p j (0), w j , and φ j (0), are
independent of j, p j (0) = p, w j = w, and φ j (0) = φ for all
j. Using Eqs. (2)–(5), we then get

p mod(2π ) = 0, K sin(φ) = 2πw. (6)

III. LINEAR STABILITY ANALYSIS

We now study the linear stability of the AM fixed points (5)
with (6) under small perturbations. This stability is deter-
mined by the 2N × 2N derivative matrix DM of the map M
in Eq. (2), where the derivatives are taken with respect to
the 2N phase-space variables (pj, φ j ), i, j = 1, . . . , N , and
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are evaluated at the AM fixed points. After a straightforward
calculation, we find that

DM =
(

I A

I I + A

)
, (7)

where I is the N × N unit matrix and A is the N × N matrix
with elements

Ai, j = −η/N + [K cos(φ) + η]δi, j (8)

in the infinite-range case and

Ai, j = −η(δi−1, j + δi, j−1) + [K cos(φ) + 2η]δi, j (9)

in the nearest-neighbor case, i, j = 1, . . . , N , with periodic
boundary conditions in Eq. (9). Being the derivative matrix of
a Hamiltonian map (2), the matrix (7) is symplectic (see, e.g.,
Ref. [69]); in particular, its 2N eigenvalues form N reciprocal
pairs (λ j, λ

−1
j ), j = 1, . . . , N . One has linear stability in all

2N phase-space directions only if all the eigenvalues lie on
the unit circle in the complex plane, |λ j | = 1, j = 1, . . . , N .
Defining τ j = λ j + λ−1

j , the full stability condition is thus

|τ j | < 2, j = 1, . . . , N. (10)

A main result of this paper are exact expressions for τ j in
both interaction cases. The details of the derivation of these
expressions are given in the Appendix. In the infinite-range
case, we find that

τ1 = 2 + K cos(φ), τ j = τ1 + η, (11)

for j = 2, . . . , N and, from Eq. (6), one can write

τ1 = 2 + K cos(φ) = 2 ±
√

K2 − 4π2w2. (12)

In the nearest-neighbor case, we obtain, for j = 1, . . . , N ,

τ j = 2 + K cos(φ) + 4η cos2(π j/N ) (13)

if N is even and

τ j = 2 + K cos(φ) + 4η cos2[π ( j + 0.5)/N] (14)

if N is odd. It is clear from Eqs. (6) and (12) that one can
ensure that |2 + K cos(φ)| < 2 for K unbounded from above
by choosing w sufficiently large, so that

2πw < K <
√

16 + 4π2w2. (15)

Then, provided η is sufficiently small, Eqs. (11), (13), and (14)
imply the full stability condition (10) for K unbounded from
above and for arbitrarily large N .

IV. CHAOTIC TRANSPORT AND ICZs

We now consider the implications of the stability condi-
tions (10), satisfied at least for some j values, on the stability
in the neighborhood of an AM fixed point and on the chaotic
transport. In our numerical calculations, the initial ensem-
ble (φ j (0), p j (0)), j = 1, . . . , N , is a 2N-dimensional grid
in a small hypercube of side 2ε around the AM fixed point:
|φ j (0) − φ| � ε, |p j (0) − p| � ε, where (φ, p) are given by
Eq. (6). If the number of grid points on each side of the
hypercube is L, then the number of points in the ensemble is
L2N . Unless otherwise specified, we assume in what follows
for definiteness the infinite-range case and the values w = 1,

FIG. 2. Formation of an ICZ from the time evolution [projected
in the (φ1, p1) phase plane] of the initial ensemble described in
the text (ε = 0.001) under the map (2) for N = 4 [with pj taken
mod[−π, π )], η = 0.01 (infinite-range case), w = 1, τ1 = 1.96 in
Eq. (12) (K ≈ 6.2833), and number of iterations: (a) s = 30; (b) s =
50; (c) s = 1000; (d) s = 105. The inset in Fig. 1 shows a zoom of
the ICZ clearly emerging in case (d). The number of points in this
ICZ is ∼58 130, out of 58 = 390 625 points in the initial ensemble.

N = 4, L = 5. We have checked that our results hold in other
cases, including the nearest-neighbor interaction case.

Figure 2 shows the time evolution of the initial ensemble
above for ε = 0.001, τ1 = 1.96, and η = 0.01. From Eq. (11),
it is clear that in this case the conditions (10) are satisfied
for all j, i.e., the AM fixed point is fully stable. We see a
gradual depletion of the ensemble as the number of iterations
s increases, s = 30, 50, with points escaping in the left φ

direction. However, for sufficiently large s � 1000, the escape
essentially stops and one is left with an ICZ which remains
well localized around the AM fixed point at least until s =
105, see Figs. 2(c) and 2(d) and the inset of Fig. 1.

−0.001

0

0.001

p1

−0.001

0

0.001

p1

φ1

FIG. 3. ICZ formed after s = 105 map iterations for the same
parameter values as in Fig. 2, except that η = 1 and, in case (b), the
initial ensemble has 78 points (with 51 points in the ICZ) instead of
58 points in case (a) (with 24 points in the ICZ).
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1 3
s

1 3
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η = 0.01
η = 0.03
η = 0.05

η = 0.01
η = 0.03
η = 0.05
η = 1.0

FIG. 4. Average slope AS(s) of the graph of ln[EK (s)] versus
ln(s), in a time interval [s0, s], s0 = 5, for N = 4, w = 1, τ1 = 1.96,
and several values of η.

Figure 3 shows that an ICZ continues to exist even for
larger values of the interaction strength, such as η = 1. This
despite the fact that for this value of η the AM fixed point is
only partially stable according to Eq. (11), with |τ1| < 2 but
|τ j | > 2 for j = 2, 3, 4. By increasing the number of points in
the initial ensemble, the number of points in the ICZ increases,
compare Fig. 3(a) with Fig. 3(b).

Being well localized around an AM fixed point for a long
time, an ICZ behaves like an AM stability island for N = 1
(see Fig. 1); namely, from Eq. (5) it follows that the mean ki-
netic energy EK (s) = 〈∑N

j=1 p2
j (s)/2〉, with the average taken

over the ICZ as initial ensemble, increases precisely as s2

(quadratically). We have explicitly verified this in several ex-
amples, including those in Figs. 2 and 3.

However, if the average in EK (s) is taken over the entire
initial ensemble, then EK (s) will increase slower than s2 since
most of the points in the initial ensemble are outside the
ICZ. Thus, the contribution of these points to EK (s) should
be almost diffusive, i.e., ∼sμ with μ ∼ 1. As s increases,
the contribution of the ICZ to EK (s) will become more and
more dominant, even for arbitrarily small number of points
in the ICZ. Therefore, we expect that the average slope AS(s)
of the graph of ln[EK (s)] versus ln(s) in a time interval [s0, s],
for some initial time s0, will satisfy AS(s) > 1 (superdiffu-
sion) for sufficiently large s. This is shown in Fig. 4 for
several values of η. We found that when the AM fixed point
is partially stable, e.g., τ1 < 2 and τ1 + η > 2, the value of
AS(s) > 1 for large s seems to be almost independent of η,
as shown in Fig. 4 for η = 0.05 and η = 1; this indicates that
the size of the ICZ does not almost change in some interval of
relatively large values of η.

When the AM fixed point is fully unstable, e.g., when τ1 >

2, no ICZ exists and no superdiffusion is observed: AS(s) � 1
for all η. Figure 5 shows that this is approximately the case
also under conditions of almost instability, e.g., when τ1 � 2
(τ1 = 1.999 in Fig. 5), even for very small η.

V. CONCLUSIONS

In conclusion, we have rigorously shown that fully stable
orbits exist in the paradigmatic nonequilibrium many-body
systems (1) in two extreme cases of interactions and under

101 103 105
s

η = 0.01
η = 0.03
η = 0.05
η = 1.0

FIG. 5. Similar to Fig. 4 but for τ1 = 1.999.

general conditions: Arbitrary number N of particles and non-
integrability strength K unbounded from above, despite of the
completely and strongly chaotic phase space with generally
fast Arnol’d diffusion (see, e.g., Ref. [45]).

Our extensive numerical study for N > 1 indicates that in
all the considered cases of fully stable or partially stable (i.e.,
stable not in all phase-space directions) AM fixed points, such
a point is surrounded by an ICZ, separated from the rest of
the chaotic phase space and analogous to a stability island for
N = 1; see Figs. 1–3 and observe the similarity in the shape
of the island in Fig. 1 with that of the ICZ in the inset. The
existence of ICZs, especially under partial stability conditions,
is surprising in view of the fact that KAM tori do not form
strict barriers for N > 1, unlike the case of N = 1 where a
stability island is impenetrable from the chaotic region.

All the points in an ICZ perform ballistic motion in
momentum like the AM fixed point to which the ICZ is
associated. This motion causes significant deviations of the
chaotic transport from the normal diffusion featured by a com-
pletely chaotic system. Namely, the mean kinetic energy of an
ensemble containing an ICZ exhibits superdiffusion even for
relatively large interaction strength, see Fig. 4.

The existence of ICZs may be understood as due to
trapping of chaotic orbits inside a set of many KAM tori
surrounding a fixed point, in analogy to this set in a stability
island for N = 1 (see Fig. 1). While such a set, like a single
KAM torus, cannot generally be an exactly true barrier to
chaotic transport for N > 1, our work shows that it may form
an approximately very effective barrier in the vicinity of fully
or partially stable fixed points. We plan to investigate how
ICZs emerge in detail in future works.
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APPENDIX

We derive here the exact results (11)–(14) in the paper, in
the two interaction cases. In both cases, the eigenvalues λ =
λ j , j = 1, . . . , 2N , of the matrix DM [Eq. (7) in the paper]
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are determined from det(Bλ) = 0, where

Bλ = DM − λI =
[

(1 − λ)I A

I (1 − λ)I + A

]
. (A1)

For j � N , let us subtract row j + N from row j in Eq. (A1).
This will transform Bλ into a matrix having the same determi-
nant as Bλ:

B′
λ =

[
(1 − λ)I A

λI (1 − λ)I

]
. (A2)

The matrix (A2) consists of four N × N blocks or subma-
trices that clearly commute with each other. Therefore, one
can write:

det(Bλ) = det(B′
λ) = det[(1 − λ)2I − λA]

= det(λAλ,N ), (A3)

where we defined the N × N matrix

Aλ,N = (λ + λ−1 − 2)I − A. (A4)

We now derive exact expressions for det(Aλ,N ) in the two
interaction cases.

1. Infinite-interaction case

From Eq. (8) in the paper, the elements of the matrix (A4)
in this case are

(Aλ,N )i, j = η/N + aλδi, j, (A5)

where

aλ = λ + λ−1 − 2 − K cos(φ) − η. (A6)

By subtracting the second row from the first row of Aλ,N ,
using Eq. (A5), and expanding the determinant of the resulting
matrix from its first row, we get:

det(Aλ,N ) = aλ[det(Aλ,N−1) + det(Aλ,η,N−1)], (A7)

where Aλ,η,N is the matrix whose elements are

(Aλ,η,N )i, j = (Aλ,N )i, j − aλδi,1δ j,1 (A8)

and (Aλ,N )i, j are given by Eq. (A5). By expanding the deter-
minant of Aλ,η,N from its second column, using Eq. (A8), we
find that

det(Aλ,η,N ) = aλ det(Aλ,η,N−1). (A9)

Using the recursions in Eqs. (A7) and (A9) repetitively, we
obtain

det(Aλ,N ) = a2
λ[det(Aλ,N−2) + 2 det(Aλ,η,N−2)]

= a3
λ[det(Aλ,N−3) + 3 det(Aλ,η,N−3)]

= ...

= aN−2
λ [det(Aλ,2) + (N − 2) det(Aλ,η,2)]

= aN−2
λ

[
det

(
aλ + η/N η/N

η/N aλ + η/N

)

+(N − 2) det

(
η/N η/N

η/N aλ + η/N

)]

= aN−1
λ (aλ + η). (A10)

From the eigenvalue equation det(Bλ) = 0 or, by Eq. (A3),
det(Aλ,N ) = 0 (because λ �= 0 as shown below), we get from
Eqs. (A6) and (A10) that the N solutions for τ j = λ j + λ−1

j ,
j = 1, . . . , N , are given precisely by Eq. (11) in the paper.
Since all these solutions are finite, λ j �= 0.

2. Nearest-neighbor-interaction case

From Eq. (9) in the paper, the elements of the matrix (A4)
in this case are

(Aλ,N )i, j = η(δi−1, j + δi, j−1) + bλδi, j, (A11)

where

bλ = λ + λ−1 − 2 − K cos(φ) − 2η. (A12)

The matrix (A11) is a tridiagonal one with periodic boundary
conditions. Using known formulas for the determinant of such
a matrix (see, e.g., Ref. [70]), we get

det(Aλ,N ) = −2(−η)N + Tr

[(
bλ −η2

1 0

)N]
. (A13)

The trace of the N th power of the 2 × 2 matrix in Eq. (A13)
can be exactly evaluated by first calculating the eigenvalues of
this matrix:

γ± = bλ

2
±

√(
bλ

2

)2

− η2. (A14)

The trace in Eq. (A13) is then given by γ N
+ + γ N

− = γ N
+ +

η2Nγ −N
+ . Using this in Eq. (A13) and denoting γ N

+ by z, the
equation det(Aλ,N ) = 0 for the eigenvalues λ j will read:

z2 − 2(−η)N z + η2N = [z − (−η)N ]2 = 0. (A15)

Thus, z = γ N
+ = (−η)N , with N solutions for γ+:

γ+, j = η exp

[
iπ (2 j + β )

N

]
, (A16)

j = 1, . . . , N , where β = 0 for N even and β = 1 for N odd.
Using Eq. (A16) in Eq. (A14), defining γ+, and solving for bλ,
we get

bλ, j = 2η cos

[
iπ (2 j + β )

N

]
. (A17)

Finally, using the definition (A12) of bλ in Eq. (A17), we
obtain the N values of τ j = λ j + λ−1

j , as given by Eqs. (13)
and (14) in the paper.
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