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J. Torrico 1,* and J. A. Plascak 1,2,3,*

1Departamento de Física, Universidade Federal de Minas Gerais, C. P. 702, 30123-970, Belo Horizonte-MG, Brazil
2Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB, Brazil

3Department of Physics and Astronomy, University of Georgia Athens, Georgia 30602, USA

(Received 1 September 2020; accepted 24 November 2020; published 8 December 2020)

The spin-1/2 Hamiltonian for two coupled isosceles Heisenberg triangles, which is well suited for describing
the V6-type magnetic molecules, is studied by exact diagonalization. The quantum phase transition diagram, at
zero temperature, is obtained as a function of the theoretical parameters. The zero temperature magnetization is
also obtained as a function of the external magnetic field. The thermodynamic behavior of the magnetization,
entropy, susceptibility, and specific heat, as a function of temperature, are also computed and the corresponding
magnetocaloric effect analyzed for various values of the Hamiltonian parameters.
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I. INTRODUCTION

The study of molecular magnets has attracted the attention
of the scientific community for almost four decades now.
In these systems, where the physical realizations occur ei-
ther as crystals or powders, the intramolecular interaction is
much stronger than the intermolecular interaction, making
them behave mainly as an ensemble of single independent
molecules [1,2]. In addition, their magnetic features promise
a variety of applications in physics, magneto-chemistry, biol-
ogy, biomedicine, and material sciences [3–5], as well as in
quantum computing [6–8] and spintronics (see Ref. [1] and
references therein).

It is well known that low dimensional magnetic systems
have been broadly studied in the literature, both experimen-
tally and theoretically, due to the interesting magnetic and
thermodynamic properties they present at zero and finite
temperatures as well. Some of these systems have also frus-
trated spins due to their geometric structure (see, for instance,
Refs. [9–11]). This fact makes the study of molecular magnets
more attractive still, because it turns out to be a vast field
of quantum phenomena in nanosystems, in particular zero-
dimensional magnetic clusters with potential applicability in
high-capacity data storage.

An interesting property that various types of these systems
exhibit is the so-called magnetocaloric effect, which consists
of an isothermal change in entropy or an adiabatic change in
temperature when an external magnetic field is varied. This
effect has in fact an immense potential application [12]. There
are indeed several studies in the magnetocaloric effect on
quasi-one-dimensional spin models, such as the diamond spin
chain [13–17], the antiferromagnetic triangular lattice [18],
and the octahedral chain [19], among others.
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It is thus clear from the above discussion that compounds
of weakly coupled magnetic molecules allow us to study
magnetic systems at the level of nanoscale. Among the family
of molecular magnets are the various polyoxovanadates,
which contain several spin-1/2 sites originating from the
vanadium ions, denoted as V3, V6, V12, and V15 clusters, the
numbers designating the corresponding quantity of vanadium
ions always occurring in triangle geometries (for more details
on references about theoretical and experimental realizations
on these compounds see Ref. [20]). In particular, the V6

magnetic molecule is one of these systems consisting of
a pair of triangles that are weakly antiferromagnetically
coupled with a strong antiferromagnetic intratriangle
coupling. This type of structure presents thus frustration
in its fundamental state, being an interesting system to study
its magnetic and thermodynamic properties [21,22]. There
are in fact two species of V6 magnetic molecules based
on polyoxovanadates, which are given by the formulas
Na6H4V6O8(PO4)4[(OCH2)3CCH2OH]2 · 18H2O and
(CN3H6)4Na2H4V6O8(PO4) 4[(OCH2)3CCH2OH]2 · 14
H2O.

Earlier experimental and theoretical studies of both V6

magnetic molecules presented above have shown that they can
be described by a spin-1/2 Heisenberg model defined on two
identical uncoupled triangles (or trimers) of spins, where in
each triangle the spins interact via isotropic antiferromagnetic
exchange couplings [23]. However, two of the three V-V in-
teractions have exchange constants that are equal and an order
of magnitude larger than the third one, making thus a kind
of an isosceles triangle in the energy configuration. In this
case, for small external magnetic field the ground state of the
molecule has a total S = 1 spin, while for higher magnetic
field the molecular spin is S = 3.

On the other hand, additional experiments on V6

compounds have further suggested that the triangles can
in fact be weakly connected through an extra superexchange
interaction which is still about 20 times smaller than the
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smallest triangle interaction [24,25], making the molecule to
behave as a hexamer. More recently, the coupled triangles
(hexamer) model with the experimental data of the exchange
interactions obtained in Ref. [24] have been studied through
exact diagonalization, and it has been shown that the molecule
presents a magnetocaloric behavior and an additional
magnetic phase as a function of an external magnetic
field [20]. To be more specific, besides the S = 1 and S = 3
spin phases for low and high magnetic fields, respectively,
the authors detected an extra S = 2 spin phase. However, this
new phase occurs only for a quite narrow intermediate range
of the external magnetic field.

Motivated by these previous theoretical and experimental
results, we have extended the analytical and numerical analy-
sis of the two coupled isosceles triangles Hamiltonian to the
whole range of the exchange parameters. We will see that this
rather simple magnetic molecule actually exhibits a richness
in its thermodynamic behavior which could not be forecast
in the earlier studies due to fact that just weak intertriangle
interactions have been considered.

By exactly diagonalizing the Hamiltonian matrix the entire
energy spectrum and the corresponding eigenstates are ob-
tained and the quantum phase transitions are determined. The
extra spin S = 2 phase occurs indeed only with the presence
of the antiferromagnetic intertriangle interaction and the range
of this phase depends on the strength of this interaction. It will
also be seen in the next sections that a new phase, with zero
total spin S = 0, quite similar to an antiferromagnetic phase,
is always present for low magnetic fields. In addition, due to
the degeneracy of the ground states, these magnetic molecules
present residual entropy for some range of the parameters as
well as an enhanced magnetocaloric behavior.

We would like to stress that although the experimental re-
alizations of V6 magnetic molecules have specific interaction
strengths, as reported in Refs. [24,25], which are quite small
and out of the range of the values considered in this work, the
study of the proposed isosceles triangle spin Hamiltonian for
general exchange interaction parameters are in fact quite inter-
esting. The main reason lays on the fact that either other new
related compounds could indeed present different stronger
couplings, or even because the corresponding exchange cou-
plings of the known polyoxovanadates can be altered, for
instance, by applying an external hydrostatic pressure on the
samples [26,27].

The outline of this paper is as follows. In the next sec-
tion, we describe the Hamiltonian model, present the exact
analytical solution for the energy spectrum and correspond-
ing eigenstates, followed by the ground state phase diagram.
In Sec. III we investigate the magnetic and thermodynamic
properties of the system through the study of the magne-
tization, susceptibility, entropy, magnetocaloric effect and
specific heat. Finally, some concluding remarks are drawn in
the last section.

II. HAMILTONIAN MODEL, EIGENENERGIES,
EIGENSTATES, AND GROUND STATE PHASE DIAGRAM

A. Hamiltonian model

The V6 magnetic molecule contains six vanadium ions
disposed as two independent triangles, whose sites can be de-

FIG. 1. A schematic illustration of a V6 molecule described by
two triangles: one triangle with sites 1A, 2A, 3A, and a second
triangle with sites 1B, 2B, 3B. The vanadium atoms, with spin-1/2,
are represented by circles. The thicker lines represent the exchange
interaction J1, the thinner lines the exchange interaction J2, and the
dashed lines the intratriangle interaction J3.

noted by 1A, 2A, 3A and 1B, 2B, 3B, respectively, as sketched
in Fig. 1. Each vanadium has spin-1/2 and their couplings are
not symmetric but quite distorted. Spin in site 1A (1B) couples
to spins in sites 2A and 3A (2B and 3B) with the predominant
exchange interaction J1. The coupling J2 between sites 2A
and 3A (2B and 3B) is one order of magnitude smaller than
J1. This gives the molecule an isosceles triangle character
under the energy configuration point of view. Note that the
superexchange couplings J3 between the two triangles are also
distorted, where site 1A couples only with 2B and 3B, site 2A
couples with 1B and 3B, and site 3A couples with 1B and 2B
[24,25]. J3 is still one order of magnitude smaller than J2 for
the vanadium V6 magnetic compounds.

The corresponding Hamiltonian for these molecules can be
written as

H = J1(�S1A · �S2A + �S1A · �S3A + �S1B · �S2B + �S1B · �S3B)

+ J2(�S2A · �S3A + �S2B · �S3B)

+ J3(�S1A · �S2B + �S1A · �S3B + �S2A · �S1B

+ �S2A · �S3B + �S3A · �S1B + �S3A · �S2B)

− B
(
Sz

1A + Sz
2A + Sz

3A + Sz
1B + Sz

2B + Sz
3B

)
, (1)

where �Si = (Sx
i , Sy

i , Sz
i ) is the Heisenberg spin-1/2 operator

with the components Sα
i (α = x, y, z) given by the Pauli spin

matrices and B is the external magnetic field applied in the
z-axis direction. All the exchange interactions J1, J2, and J3

are positive, making each triangle a prototype example of
a magnetically frustrated system. In this way, the first and
second terms account for the intratriangle antiferromagnetic
coupling, and the third term accounts for the intertriangle
antiferromagnetic coupling. Note that for negative value of J2

the frustration is partially removed from the molecule since
each triangle would not be frustrated.

B. Eigenenergies and eigenstates

Taking the eigenstates of the z-component Sz
i spin operator

to span the vectorial space of H, the above Hamiltonian can be
represented by a 64 × 64 matrix that can be exactly diagonal-
ized by resorting to some modern technical computing system
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like Maplesoft. The 64 eigenvalues so obtained are explicitly
given in the Appendix. The corresponding eigenstates are too
lengthy to be reproduced in the Appendix, and only those
relevant for the quantum phase diagram will be discussed
below.

Note that the eigenenergies can be obtained for general
values of the exchange interactions J1, J2, and J3, as well
as the external magnetic field B. It is then quite interesting
to analyze their influence on the properties of the system in
a wider Hamiltonian parameter region than that studied for
only very small values of the intratriangle J2 and intertriangle
interaction J3 [20]. A richer phase diagram is thus obtained
where new phases, coming up from different spin orientations,
are then allowed.

After diagonalizing the Hamiltonian matrix and analyzing
the corresponding eigenvalues and eigenvectors one arrives at
the following result for the most representative lower energy
spectrum of the Hamiltonian (1): there is (1) one ferromag-
netic phase with total spin S = 3, (2) five ferrimagnetic phases
with the total spin S = 2, (3) four ferrimagnetic phases with
the total spin S = 1, and (4) finally three antiferromagnetic
phases with the total spin S = 0. Individual phases distinguish
from each other by spin arrangement as well as by the zero-
temperature energies. It worthwhile to mention that the above
general trend of the lower energies has been found for the
Hamiltonian parameters considered in the following sections.
For different sets of exchange interactions the ground state
picture can be slightly modified.

We present below the corresponding eigenstates of these
more relevant eigenenergies grouping them according their
total spin values, since it is this quantity that gives the main
magnetic behavior of the molecule.

1. Ferromagnetic state with S = 3

There is one state where all spins are aligned with the field
with Sz

A = Sz
B = 3/2, resulting in a molecular total spin S = 3.

We shall call this a ferromagnetic (FM) state with energy EFM

and eigenstate |FM〉 given by

EFM = − 3B + J1 + 1
2 J2 + 3

2 J3, (2)

|FM〉 =|+,+,+; +,+,+〉. (3)

This phase is more commonly called paramagnetic phase in
the literature, since all spin components are aligned with the
field.

2. Ferrimagnetic states with S = 2

There are five most representative ferrimagnetic phases
with total spin S = 2, which will be denoted by FI2i (i =
1, 2, . . . , 5). The different energies and eigenstates are given
below:

EFI21 = − 2B + 1

2
J1 − 1

2
J2, (4)

|FI21〉 =1

2
[|+,+,+; −,+,+〉 + |−,+,+; +,+,+〉

− |+,+,+; +,−,+〉 − |+,−,+; +,+,+〉], (5)

EFI22 = − 2B − 1

2
J1 + 1

2
J2, (6)

|FI22〉 = 1

2
√

3
[|+,+,+; +,−,+〉 + |+,+,+; −,+,+〉

+ |+,−,+; +,+,+〉 + |−,+,+; +,+,+〉
− 2|+,+,+; +,+,−〉 − 2|+,+,−; +,+,+〉],

(7)

EFI23 = − 2B + 1

2
J1 − 1

2
J2 + J3, (8)

|FI23〉 =1

2
[|+,+,+; +,−,+〉 + |−,+,+; +,+,+〉

− |+,+,+; −,+,+〉 − |+,−,+; +,+,+〉], (9)

EFI24 = − 2B − 1

2
J1 + 1

2
J2 + J3, (10)

|FI24〉 = 1

2
√

3
[2|+,+,+; +,+,−〉 + |+,−,+; +,+,+〉

+ |−,+,+; +,+,+〉 − 2|+,+,−; +,+,+〉
− |+,+,+; +,−,+〉 − |+,+,+; −,+,+〉],

(11)

EFI25 = − 2B + J1 + 1

2
J2 − 1

2
J3, (12)

|FI25〉 = 1√
6

[|+,+,−; +,+,+〉 + |+,−,+; +,+,+〉

+ |−,+,+; +,+,+〉 − |+,+,+; +,+,−〉
− |+,+,+; +,−,+〉 − |+,+,+; −,+,+〉].

(13)

It is interesting to notice that, in this case, both triangles
are not in the eigenstates of the squared total spin operator.
In fact, the quantum state of each molecule is a mixed state of
equal statistical mixture of states with Sz

A = 1/2 and Sz
B = 3/2

or Sz
A = 3/2 and Sz

B = 1/2, as in FI21, FI23, and FI25, and
different statistical weights as in FI22 and FI24.

3. Ferrimagnetic states with S = 1

There are four other ferrimagnetic phases with total S = 1
spin and denoted as FI1i (i = 1, 2, . . . , 4). The corresponding
energies and eigenstates are

EFI11 = − B − J1 − 1

2
J2 + 1

2
J3, (14)

|FI11〉 = 1√
6

[|+,+,−; +,+,−〉 + |+,+,−; −,+,+〉

+ |−,+,+; +,+,−〉 − |+,+,−; +,−,+〉
− |+,−,+; +,+,−〉 − |+,−,−; +,+,+〉],

(15)

EFI12 = − B − 1

4
J1 − 1

2
J2 − 1

4
J3

− 1

4

√
9J2

1 − 10J1J3 + 17J2
3 , (16)

|FI12〉 = 1√
2a2 + 4b2 + 4

[|+,+,+; −,+,−〉

+ a|+,+,+; −,−,+〉 − b|+,+,−,+; −,+〉
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+ b|+,+,−; −,+,+〉 − |+,−,+; +,−,+〉
− a|+,−,+; −,+,+〉 + b|+,−,−+,+,+〉
− b|−,+,+; +,+,+〉 + |−,+,+; −,+,+〉
− |−,−,+; +,+,+〉], (17)

where

a =
−J1 − 2J2 − J3 −

√
9J2

1 − 10J1J3 + 17J2
3

4J3
,

b =
−5J1 + 2J2 + 3J3 −

√
9J2

1 − 10J1J3 + 17J2
3

4J3
,

EFI13 = − B + 3

4
J1 − 3

2
J2 − 1

4
J3

− 1

4

√
9J2

1 − 10J1J3 + 17J2
3 , (18)

|FI13〉 = 1√
2a2 + 4b2 + 4

[|+,+,+; +,−,−〉

+ a|+,+,+; −,−,+〉 − b|+,+,−; +,+,−〉
+ b|+,+,−; −,+,+〉 − b|+,−,+; +,+,−〉
− |+,−,+; +,−,+〉 + b|+,−,−; +,+,+〉
− a|−,+,+; +,−,+〉 + |−,+,−; +,+,+〉
− |−,−,+; +,+,+〉], (19)

EFI14 = − B − 1

2
J1 + 1

2
J2 − J3

− 1

2

√
9J2

1 − 10J1J3 + 5J2
3 , (20)

|FI14〉 = 1√
6c2 + 3d2 + 6

[|+,+,+; +,−,−〉

+ |+,+,+; −,+,−〉 + |+,−,+; +,−,+〉
+ |−,+,+; −,+,+〉 + |−,+,−; +,+,+〉
+ |−,−,+; +,+,+〉 + d|+,+,+; −,−,+〉
+ d|+,−,+; −,+,+〉 + d|−,+,+; +,−,+〉
+ c|+,+,−; +,+,−〉 + c|+,+,−; +,−,+〉
+ c|+,+,−; −,+,+〉 + c|+,−,+; +,+,−〉
+ c|+,−,−; +,+,+〉 + c|−,+,+; +,+,−〉],

(21)

where

c =
4J1 − J2 − 3J3 +

√
9J2

1 − 10J1J3 + 5J2
3

2J3
,

d =
−2J1 − J2 + J3 −

√
9J2

1 − 10J1J3 + 5J2
3

J3
.

In this ferrimagnetic phase there is statistical mixtures of
states with Sz

A = Sz
B = 1/2, with Sz

A = 3/2 and Sz
B = −1/2

and Sz
A = −1/2 and Sz

B = 3/2. The only one with equal
weights is FI11.

4. Antiferromagnetic states with S = 0

Finally, there are three antiferromagnetic phases AFi (i =
1, 2, 3) with zero total spin S = 0. The (field-independent)
energies and eigenstates are

EAF1 = − J1 − 1

2
J2 − 3

2
J3, (22)

|AF1〉 = 1

2
√

3
[|+,+,−; +,−,−〉 + |+,−,+; +,−,−〉

+ [|+,−,−; +,+,−〉 + |−,+,+; +,−,−〉
+ [|−,+,−; +,+,−〉 + |−,−,+; +,+,−〉
− [|+,+,−; −,+,−〉 − |+,−,+; −,+,−〉
− [|+,−,−; +,−,+〉 − |−,+,+; −,+,−〉
− |−,+,−; +,−,+〉 − |−,−,+; −,+,+〉],

(23)

EAF2 = − 3

2
J2 − 1

2
J3, (24)

|AF2〉 = 1

2
√

3
[|+,+,−; +,−,−〉 + |+,−,+; −,−,+〉

+ |+,−,−; +,−,+〉 + |−,+,+; +,−,−〉
+ |−,+,+; −,+,−〉 + |−,−,+; +,−,+〉
− |+,+,−; −,−,+〉 − |+,−,+; −,+,−〉
+ |+,−,−; +,+,−〉 − |−,+,−; +,+,−〉
− |−,+,−; −,+,+〉 − |−,−,+; −,+,+〉],

(25)

EAF3 = − 1

2
J1 + 1

2
J2 − J3

− 1

2

√
9J2

1 − 18J1J3 + 13J2
3 , (26)

|AF3〉 = 1√
2x2 + 12y2 + 6

[x|+,+,+; −,−,−〉

− x|−,−,−; +,+,+〉 + y|+,+,−; +,−,−〉
+ y|+,+,−; −,+,−〉 − y|+,+,−; +,−,−〉
+ y|−,−,+; −,+,−〉 + y|−,+,+; −,+,−〉
+ y|−,+,−; +,+,−〉 − y|+,−,−; +,+,−〉
− y|+,−,−; +,−,+〉 − y|−,+,+; +,−,−〉
− y|−,+,−; +,−,+〉 − y|−,−,+; +,+,−〉
− y|−,−,+; −,+,+〉 + |+,−,−; −,+,+〉
+ |−,+,−; −,+,+〉 + |−,−,+; +,−,+〉
− |+,+,−; −,−,+〉 − |+,−,+; −,−,+〉
− |−,+,+; −,−,+〉], (27)

062116-4



GROUND STATE AND THERMODYNAMIC PROPERTIES OF … PHYSICAL REVIEW E 102, 062116 (2020)

FIG. 2. Energy spectrum, parametrized by the exchange interac-
tion J1, as a function of the external magnetic field B/J1, for some
values of the exchange interactions J2 and J3. We have (a) J2/J1 = 1
and J3/J1 = 0, (b) J2/J1 = 0.5 and J3/J1 = 0.3, (c) J2/J1 = 1 and
J3/J1 = 1, and (d) J2/J1 = 0.5 and J3/J1 = 2. The thicker lines gives
the lowest most important energies for determining the ground state.

where

x =
2J1 + J2 + J3 −

√
9J2

1 − 18J1J3 + 13J2
3

2(J1 − J3)
,

y =
2J1 − J2 − 3J3 +

√
9J2

1 − 18J1J3 + 13J2
3

2(2J1 + J3)
.

AF1 and AF2 are equal statistical mixtures of states Sz
A =

1/2 and Sz
B = −1/2 and the inverse Sz

A = −1/2 and Sz
B = 1/2.

State AF3 has different weights with the additional states Sz
A =

3/2 and Sz
B = −3/2, and Sz

A = −3/2 and Sz
B = 3/2.

5. Brief overview of the entire energy spectrum

In Fig. 2 we show the complete spectrum of the energies
as a function of the external magnetic field for some values of
the exchange interactions. All quantities are parametrized by
J1. The different number of lines in each graph reflects the fact
the for some particular values of the exchange interactions the
degree of the degeneracy is different. For instance, in Fig. 2(a)
we have J3 = 0, meaning that both triangles are decoupled and
the spectrum is dramatically reduced, even for zero external
field. In this case, for J2/J1 = 1 and B/J1 < 1.5 the stable
phase is the ferrimagnetic FI14 phase with total spin S = 1,
while for B/J1 > 1.5 the stable phase is the ferromagnetic
FM with S = 3. This result is completely equivalent to that
obtained in Ref. [23] when one has two independent triangles
Hamiltonian for the V6 magnetic molecules.

In Fig. 2(b) we have J2/J1 = 0.5 and we consider an even
weaker coupling between the triangles J3/J1 = 0.3. We can
see that the intertriangle interaction induces a new ferrimag-
netic phase with molecular spin S = 1 in a small region
between the external fields 1.57 < B0/J1 < 1.95, where the
ferrimagnetic state FI22 becomes the ground state with energy
given by Eq. (6). The weaker the interaction J3 the smaller the
field region of the stability of the FI22 phase, which eventually
disappears for J3 = 0 [in fact, this phase becomes identical to
the ones with S = 3 and S = 1 at this point in a multiphase
point, as can be seen in Fig. 2(a)]. This is the reason in
Ref. [20] a very small range of the external field for this
phase has been obtained, since the intertriangle interaction
was taken very small. However, by increasing the intertriangle
interaction, not only the range of the FI22 phase increases, but
also one of the antiferromagnetic phases (AF1), with total spin
S = 0, becomes stable for smaller external fields, as shown in
Fig. 2(c) for J2/J1 = 1 and J3/J1 = 1. This zero spin phase
persists by still increasing the J3 interaction, but the antifer-
romagnetic AF2 phase becomes stable instead, as depicted in
Fig. 2(d) for J2/J1 = 0.5 and J3/J1 = 2.

C. Ground state phase diagram

By expanding the analysis done above to other values of the
exchange interactions, it is possible to draw the ground state
phase diagram by seeking the lowest energy as a function of
the Hamiltonian parameters. Figure 3 shows the correspond-
ing phase diagrams in the B/J1 versus J2/J1 plane for different
values of the intertriangle interaction J3/J1. In Fig. 3(a), for
J3 = 0 (decoupled triangles), we have only three different
ground states, two ferrimagnetic phases, namely, FI13 and
FI14, and one ferromagnetic phase FM. From the equations of
the previous subsection it is easy to see that the transition line
between phases FI13 and FI14 at J2 = J1 is indeed a quadruple
line, since the energy of all four ferrimagnetic phases with
total spin S = 1 become equal in this case (the degeneracy is
broken when J2/J1 is different from 1). Similarly, quadruple
lines are obtained for J2/J1 < 1, with the coexisting FM, FI14,
FI22, and FI24 phases, and for J2/J1 > 1 phases FM, FI13,
FI21, and FI23 coexist. The meeting point of these three lines
turns out to be a nonuple point, where nine phases have the
same energy. As both triangles of the magnetic molecule are
decoupled, a simpler phase diagram for each one of them
could be obtained. However, it is worthwhile to have this
highly degenerated phase diagram in order to better under-
stand the limiting case of the molecule when J3 → 0. It is
also interesting to see that this magnetic molecule should
present a residual entropy, given by the natural logarithm of
the degeneracy of the ground state. This feature will be more
clearly seen in the next section.

The degeneracy present in the phase diagram is partly
broken when the intertriangle interaction J3 is switched on.
Figure 3(b) shows the corresponding phase diagram for
J3/J1 = 0.3. Only two-phase coexistence lines and triple
points are obtained. For J3/J1 = 1 an additional triple line
with coexisting FI12, FI13, and FI14 phases appears, with
a quadruple and a quintuple point at its ends, as shown
in Fig. 3(c). For still greater values of the intertriangle
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FIG. 3. Ground state phase diagram in the B/J1 versus J2/J1

plane. The full lines represent transitions where two phases coexist,
the dashed-dotted line where three phases coexist (triple line), and
along the dashed lines one has four phases coexisting (quadruple
line). Accordingly, the triangles are triple points, the square is a
quadruple point, the star is a quintuple point, and the asterisk rep-
resents a nonuple point (nine phases coexisting). The labels describe
the corresponding ordering according to the text. We have, in increas-
ing value of J3: (a) J3/J1 = 0, (b) J3/J1 = 0.3, (c) J3/J1 = 1, and
(d) J3/J1 = 2.

interaction, J3/J1 = 2 in Fig. 3(d), again only two-phase co-
existence lines and triple points are obtained.

It should be noticed that the intertriangle interaction, in
all diagrams depicted in Fig. 3, induces an antiferromagnetic
phase with zero total spin for small values of the external field.
In fact, in Fig. 3(a), only for B = 0 does the antiferromagnetic
phase AF3 have the same energy as phase FI14 for J2/J1 < 1,
while for J2/J1 > 1 AF2 and FI13 have the same energy.

The vertical lines, in the bottom region of the phase dia-
grams of Fig. 3, extend to smaller and eventually any negative
values of J2. Note that negative values of the exchange cou-
pling J2 allow ferromagnetic exchange interactions between
sites 2 and 3 (see Fig. 1). As a result, there is a break in the
frustration present in each triangle, although the frustration
still persists in the whole molecule due to the intertriangle an-
tiferromagnetic interaction. One should say that with negative
values of J2 the molecule becomes less frustrated. These verti-
cal lines can be located at particular values of critical external
magnetic field Bc (although improperly termed critical field in
earlier works of V6 magnetic molecules, we will use this same
nomenclature for this field). The corresponding values of Bc

are given in Table I for the different transition lines shown in
Fig. 3.

Figure 4 shows the phase diagrams in the B/J1 versus J3/J1

plane for different values of the intratriangle interaction J2.
It is instructive to see that now, instead of straight transition
lines, we have some curves due to the square root dependence

TABLE I. Critical external magnetic field Bc for the vertical
transition lines in the bottom region of the phase diagrams shown
in Fig. 3.

Transition External field Bc

FM ↔ FI14
3
4 J1 + 5

4 J3 + 1
4

√
9J2

1 − 10J1J3 + 5J2
3

AF1 ↔ FI14
1
2 J1 + J2 + 1

2 J3 − 1
2

√
9J2

1 − 10J1J3 + 5J2
3

FI22 ↔ FI14 J3 + 1
2

√
9J2

1 − 10J1J3 + 5J2
3

FI22 ↔ FM 3
2 J1 + 3

2 J3

AF3 ↔ FI14
1
2

√
9J2

1 − 18J1J3 + 13J2
3

− 1
2

√
9J2

1 − 10J1J3 + 5J2
3

of some energies on J3. For fixed values of J3, the square
roots appearing in all energies become constant, since they
strictly depend on the ratio J3/J1. Accordingly, only linear
behavior for the transition lines are obtained in Fig. 3. There
are, however, some new features in the phases topology in
this field versus intratriangle interaction that have not been
seen in the phase diagrams of Fig. 3, namely, an additional
sextuple point, where the six phases FM, FI11, FI12, FI13,
FI23, and FI24 coexist, and an extended region of two phases’
coexistence (not a line or point), as depicted in Fig. 4(c). In
the ruled area FI13, this phase coexists with FI12, whereas in
the ruled area FI22, this phase coexists with the FI21 phase.

FIG. 4. Ground state phase diagram in the J3/J1 versus B/J1

plane, for different values of J2. The lines, symbols, and geometric
shapes have the same meaning as in Fig. 3, with the additional
sextuple point represented by the full circle and a delimited region
of two phases coexistence, given by the ruled areas. In increasing
values we have (a) J2/J1 = 0.5, (b) J2/J1 = 0.8, (c) J2/J1 = 1, and
(d) J2/J1 = 1.5. In (d) one has a very narrow region, represented in
this case by just a thicker line, where the phase FI23 is stable.
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III. MAGNETIC AND THERMODYNAMIC PROPERTIES

Let us now turn our attention to the thermodynamic prop-
erties of these V6-like molecules in the extended region of the
Hamiltonian parameters. As the intermolecular interactions
are quite weak, one can think of this system as composed of an
assembly of N independent single molecules. As a result, the
total Hamiltonian is given by a sum of N Hamiltonians as de-
fined in Eq. (1), and the corresponding partition function is a
product of N partition functions for each molecule. In the ther-
modynamic limit, all the thermal properties (per molecule) of
the whole system is thus obtained from the partition function
of one single molecule, which can be explicitly written as

Z =
64∑

i=1

e−βεi , (28)

where β = 1/kBT , kB is the Boltzmann constant, T is the
absolute temperature, and εi are all the Hamiltonian (1)
eigenvalues, which are described in the Appendix. The cor-
responding free energy per molecule is

F = −kBT ln(Z ). (29)

The magnetothermodynamic quantities per molecule, such
as magnetization M and susceptibility χ , entropy S , and
specific heat C, can thus be calculated from the well-known
thermodynamic relations

M = −
(

∂F

∂B

)
T

, χ =
(

∂M

∂B

)
T

, (30)

S = −
(

∂F

∂T

)
B

, C = T

(
∂S

∂T

)
B

. (31)

Another interesting quantity that can be studied in this
system is the so-called magnetocaloric effect, which is defined
by the adiabatic temperature change, or the isothermal entropy
change, as the external magnetic field is varied. This effect is
can be quantified by the following relation:(

∂T

∂B

)
S

= − (∂S/∂B)T

(∂S/∂T )B
. (32)

In the next subsections a detailed study of these properties
is presented for several values of the Hamiltonian parameters.
The partition function, given by Eq. (28), is thus numerically
obtained from the corresponding energy spectrum transcribed
in the Appendix. In all figures below we have, for simplicity,
taken kB = 1 and the corresponding temperature has been
parametrized by T/J1 (reduced temperature).

A. Magnetization

Figure 5 illustrates the total magnetization M, as a function
of the magnetic field B/J1, for different reduced tempera-
tures T/J1 and various values of the exchange interactions.
The exchange interactions have been chosen in such a way
that one has all possible transitions from the different total
molecular spin S, ranging from zero to three. For clarity, the
label of the phases has been omitted in Fig. 5. Note that when
the molecules have a nonzero magnetization at T = 0, as in
Figs. 5(a) and 5(b), the temperature totally breaks the order of
the molecular spins. This reflects the fact that each molecule,

FIG. 5. Total molecular magnetization M as a function of the
magnetic field B/J1 and different values of temperature. (a) J2/J1 =
1 and J3/J1 = 0, (b) J2/J1 = 0.5 and J3/J1 = 0.3, (c) J2/J1 = 1 and
J3/J1 = 1, and (d) J2/J1 = 0.5 and J3/J1 = 2.

being a zeroth dimensional quantum system, is indeed equiv-
alent to a one-dimensional classical spin model, which in turn
has no phase transition at finite temperatures.

It is clearly seen in all figures that the ground state plateaux
are smoothen as soon as the temperature is greater than zero.
Consequently, the magnetization has no jumps and no transi-
tions take place as the external field changes. However, for
low temperatures, the system keeps a kind of memory of
the behavior at zero temperature, either along the field axis
or along the magnetization axis. For instance, in Fig. 5(a),
for uncoupled triangles where J2/J1 = 1 and J3/J1 = 0, at
B/J1 = Bc/J1 = 1.5 and B/J1 ∼ 0.8 the magnetization is al-
most independent of the temperature, since all curves cross at
almost the same value M ∼ 1.5 and M ∼ 1, respectively. This
behavior has already been experimentally observed in the two
species of polyoxovanadate-based magnetic molecules [23].
It should be stressed that this independence is only for low
temperatures, about the experimental value 20 K. In Fig. 5 the
values of T/J1 up to 0.3 is equivalent to the experimental tem-
peratures for the considered exchange couplings. For higher
values of T the curves are much farther from the ground state
plateaux. By looking at Figs. 5(b)–5(d) we can notice that this
same trend occurs at the molecular total spin even for greater
values of the intertriangle interaction. In these cases, there will
be more values of the magnetic field where the magnetization
is independent of (low) temperature.

Another interesting feature that can be observed in Fig. 5
is that for constant external fields, there are regions where
the magnetization of the molecule increases by increasing
the temperature, whereas in other regions the magnetization
decreases with temperature, the latter behavior being more ex-
pected from the thermodynamic point of view. Figure 6 shows
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FIG. 6. Total molecular magnetization M as a function of tem-
perature T/J1 for different values of the external fields. The exchange
interactions in each graphic are the same as those in Fig. 5, and the
fields are chosen so the behavior of the magnetizations are different
in the low-temperature region.

examples of the molecular magnetization M as a function of
temperature for some external magnetic fields. The magnetic
fields have been selected in different regions of the graphics
given in Fig. 5. The molecular magnetization, in all cases,
eventually goes to zero at high temperatures, as expected.

The behavior of the molecular magnetization at low tem-
peratures can be understood by looking at the spectrum of
the molecule as shown in Fig. 2. For some given values of
the external field, the excited states are those having higher
values of the total molecular spin. Thus, increasing the tem-
perature from zero those excited states are populated, which
in turn increases the magnetization. For other values of the
external field the excited states are formed by those having
smaller values of the total molecular spin so the increase in
temperature actually decreases the magnetization. Eventually,
in either case, the magnetization goes to zero at high tem-
peratures. It should be stressed that this behavior has also
been experimentally observed in the polyoxovanadate-based
magnetic molecules [23].

B. Susceptibility

The susceptibility times temperature χT/J1, as a function
of temperature T/J1 (in logarithmic scale to a better view
of the whole range of T ), for different magnetic fields B/J1

and exchange interactions J2/J1 and J3/J1, is illustrated in
Fig. 7. At high temperatures, the susceptibility turns out to
be the same, independent of the external magnetic field, as
expected. Also expected is the behavior at zero temperature,
where the plateaux in Fig. 5 for the total magnetic spin results
in a zero magnetic susceptibility. On the other hand, at the
critical fields, χ goes to infinity as the inverse of temperature.
However, this is not a kind of quantum phase transition, rather

FIG. 7. Susceptibility times temperature, in units of J1, χT/J1,
as a function of temperature T/J1 (logarithmic scale), for different
values of the magnetic field B/J1. The exchange interactions in
(a) and (b) are the same as in Fig. 5.

a paramagnetic behavior following the Curie law. As a matter
of comparison, in the one-dimensional Ising model χT → ∞,
meaning that at zero temperature the system is indeed critical
[28].

We can see in Fig. 7 that for magnetic fields just above
the smaller critical ones, χT increases from zero, reaches a
maximum and then a round minimum is formed before sat-
urating to its high-temperature behavior. However, for higher
values of the critical field, just a shoulder is present. The round
minimum is also kind of suppressed by increasing the J3 inter-
action even for smaller values of critical fields. It is interesting
to stress that the qualitative behavior of the minimum shown
in Fig. 7(a) has indeed been experimentally observed for the
V6 compounds in Ref. [25]. The appearance of such round
minimum in the temperature dependence of χT is a typical
feature of quantum ferrimagnets, as has been discussed in
Refs. [29,30]. In the present case it is enhanced close to the
critical fields occurring at zero temperature.

C. Entropy

First, let us analyze the behavior of the entropy S , as a
function of temperature T/J1, as shown in Fig. 8 for several
values of the external magnetic field and exchange interac-
tions. As kB has been set to unity, in some special limits the
entropy will be just given by S = ln(ω), with ω being the
number of states at that limit. For instance, we can easily
see that at high temperatures, where all states are equally
probable to occur, all curves go to the limit S = 4.1589, where
ω = 64. On the other hand, at low temperatures, depending
on the value of the Hamiltonian parameters, different residual
entropies are present in the molecule. The degree of degener-
acy, here given by ω, is specified by the number of coexisting
phases present at T = 0, and are explicitly written in Fig. 8.
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FIG. 8. Entropy S as a function of temperature T/J1 (in loga-
rithmic scale) and different values of the magnetic field B/J1. At
low temperatures, ω gives the degeneracy of the ground state. The
exchange interactions in (a) and (b) are the same as those in Fig. 5.

Several examples, for some particular values of the field and
exchange interactions, are depicted in Figs. 3 and 4. Apart
from infinite temperature, the highest degenerated state occurs
at zero field for noninteracting isotropic triangles (J3 = 0 and
J2 = J1) with ω = 16 [as this happens along the J2/J1 axis, it
has not been shown in Fig. 3(a) for reasons of clarity].

It is interesting to note in Fig. 8(a) that for B/J1 = 0.005
and 0.02, before reaching the high-temperature behavior, the
entropy starts at S = 2 ln(2) and quickly jumps to S = 4 ln(2)
at low temperature. Conversely, for B/J1 = 1.51 and 1.54,
the system has zero entropy at its ground state, but at low
enough temperatures it quickly jumps to the entropy value
of S = 2 ln(3) before reaching the high-temperature behavior.
The increase of the intertriangle interactions suppresses this
intermediate jump behavior of the entropy, where only a small
shoulder is still present in Fig. 8(b). However, as we will see
right below, these entropy plateaux are indeed an important
ingredient for the presence of magnetocaloric effects in these
magnetic molecules.

Another way to analyze the global entropic behavior of
this system is to look at the entropy as a function of the
external magnetic field and the temperature, as is illustrated
in a gradient color scale in Fig. 9 for various values of the
exchange interactions. To better visualize the topology of
the surface, some lines of constant entropy have been added
to the figure. These lines illustrate, basically, the isentropic
variation of temperature with the external magnetic field. The
spikes of the constant entropy lines at low temperatures are in
fact related to the transitions at T = 0 and are located at the
corresponding critical external magnetic fields. It can also be
clearly seen that as the intertriangle interaction increases the
degeneracy is systematically broken, specially at zero mag-
netic field. The magnetocaloric effect, enhanced during the

FIG. 9. Density plot of the entropy, in a color gradient scale
shown to the right, as a function the magnetic field B/J1 and the tem-
perature T/J1 (in logarithmic scale). Some lines of constant entropy
are also plotted. In (a)–(d) the exchange interactions are the same as
in Fig. 5.

adiabatic (de)magnetization, can be found at zero magnetic
field in Figs. 9(a) and 9(b). This effect will be discussed in
more detail in the next subsection.

D. Magnetocaloric effect

Relevant to the study of the magnetocaloric effect, which
is in some way implicit in the results shown in Figs. 8 and 9,
is the isothermal change of the entropy with the variation of
the external magnetic field. Such a quantity, basically related
to the numerator of Eq. (32), can be given by

�S (B, T ) = S (B f , T ) − S (Bi, T ), (33)

where Bi and B f are, respectively, the initial and final mag-
netic field. Although it is not necessarily the initial reference
field being zero, we will take Bi = 0 in all the following
results. Figure 10 shows −�S as a function of temperature
T/J1 for various final magnetic field values. We are plotting
the negative of the isothermal entropy change because most
experimental data have been reported in this way. For all val-
ues of the exchange parameters, �S = 0 at high temperatures
for any magnetic field, since in this case all entropies have the
same value, as can be seen in Fig. 8. In Figs. 10(a) and 10(b)
we have the results for uncoupled triangles (J3 = 0). We can
see that in this case −�S is always positive, reflecting the
fact that at B = 0 the entropy has the greatest value, as can
be clearly seen in Fig. 8(a). For values of the final magnetic
field close to the critical field the curves show two plateaus
with increasing the temperature. Above the critical field, the
plateaux start developing a shoulder, that eventually transform
in peaks that become higher and broader with the increase of
the magnetic field.

For a small coupling between the triangles (J3/J1 = 0.3),
as depicted in Figs. 10(c) and 10(d), the two plateaux are
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FIG. 10. Isothermal change of the entropy −�S, as a function
of the temperature T/J1 (in logarithmic scale), for several values of
the final magnetic field B/J1. (a, b) J2/J1 = 1 and J3/J1 = 0, (c, d)
J2/J1 = 0.5 and J3/J1 = 0.3, (e, f) J2/J1 = 1 and J3/J1 = 1, and (g,
h) J2/J1 = 0.5 and J3/J1 = 2.

suppressed. As the final magnetic field increases from zero,
a peak initially grows up. However, after a certain value of
the magnetic field, the peak starts to decrease and becomes a
double shoulder. For final fields close to the critical fields, and
in the region between them, a double peak structure forms,
and by still increasing the final fields one ends up with just one
peak again, which becomes higher and broader. This double
peak structure, for some values of the final magnetic field, has
already been observed in the theoretical treatment of Ref. [20]
which took into account only the estimated experimental cou-
pling constants of V6 magnetic molecules.

It is still more interesting the behavior of the mag-
netocaloric effect for higher values of the intertriangle
interaction, which are shown in Figs. 10(e) and 10(f) for
J3 = 1 and in Figs. 10(g) and 10(f) for J3 = 2. In these cases

FIG. 11. Specific heat C as a function of temperature T/J1 (in
logarithmic scale) for various values of the magnetic field B/J1. The
exchange interactions in (a)–(d) are the same as those given in Fig. 5.

negative values for entropy change is obtained, including neg-
ative valleys and positive peaks.

Generally speaking, the peaks in Fig. 10 correspond to
the so-called direct magnetocaloric effect, while the valleys
correspond to the inverse magnetocaloric effect (see Ref. [31]
and references therein).

We have also considered negative values of the exchange
interactions and the behavior of the magnetocaloric effect
has no qualitative changes compared to the results presented
above.

E. Specific heat

For completeness, it is also instructive to discuss the spe-
cific heat behavior of these molecular magnets. Since the
energy spectrum of the molecules are finite, the specific heat
should present a kind of Schottky behavior in the sense that
it should be zero as the temperature goes either to zero or
infinity. This is indeed the fact, as is depicted in Fig. 11,
where the specific heat C has been plotted as a function of
temperature T/J1 (in logarithmic scale) for various values
of the magnetic field and exchange interactions. The usual
Schottky specific heat behavior has only one peak, due to
fact that the entropy is a monotonic increasing function of
the temperature. At low temperatures, the entropy is close
to zero (or to its residual value) with zero derivative, while
at high temperatures all states are equally probable and the
entropy reaches its temperature saturation value also with zero
derivative. However, looking at the entropy behavior shown in
Fig. 8 we can see that in some instances S increases in two
steps, with a plateau in between. Each side of the plateau will
then contribute to a peak in the specific heat.

In Fig. 12 we have the global specific heat C, in a color
gradient scale, as a function of temperature T/J1 (in logarith-
mic scale) and magnetic field. The lines are constant values
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FIG. 12. Specific heat C, in a color gradient scale shown to
the right, as a function of temperature T/J1 (in logarithmic scale).
Some lines of constant C are also plotted. In (a)–(d) the exchange
interactions are the same as in Fig. 5.

of C to better visualize the topology of the function. Here
we can observe that for intermediate temperatures there is a
maximum of specific heat (light color), and we also see that
there are peaks of the specific heat near the critical magnetic
field at low temperatures.

IV. CONCLUDING REMARKS

A quantum spin-1/2 Heisenberg model, composed of two
coupled isosceles triangles with an external magnetic field
applied along the z axis, has been theoretically analyzed
through the exact diagonalization of the Hamiltonian matrix.
This model is suitable to describe V6 magnetic molecules and
has been previously studied only for small values of some
exchange interactions that come from fits to the experimental
realizations of polyoxovanadates compounds. We have here
considered a wider range of the Hamiltonian parameters for
different values of the external magnetic field.

We have studied the behavior of the system at zero temper-
ature through its energy spectrum, making a detailed analysis
of the corresponding phase diagrams for different coupling
values. In addition, we have shown that the system presents
not only a rich phase diagram, but also residual entropies at
zero temperature. We have as well made a detailed study of
the magnetic and thermodynamic properties of the system
as a function of temperature. Magnetization, susceptibility,
entropy, magnetocaloric effect, and specific heat have been
computed. In some limiting cases, the model makes indeed an
excellent qualitative description of the V6 magnetic molecules
in comparison with the experimental results obtained in
Refs. [23,25].

It is interesting that the model (1), being a quite simple
example of a zero-dimensional quantum system, exhibits a
very rich thermodynamic behavior and can be applied not

only to generalizations of the V6 molecules but also to low
dimensional quantum models such as triangular chains.
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APPENDIX

Hamiltonian (1) is represented by a 64 × 64 matrix and
can be exactly diagonalized using, for example, Maplesoft
software. The eigenvalues εi, with 1 � i � 64, can be written
as

ε1 = 3B + J1 + 1
2 J2 + 3

2 J3,

ε2 = −3B + J1 + 1
2 J2 + 3

2 J3,

ε3 = 2B + 1
2 J1 − 1

2 J2,

ε4 = −2B + 1
2 J1 − 1

2 J2,

ε5 = 2B − 1
2 J1 + 1

2 J2,

ε6 = −2B − 1
2 J1 + 1

2 J2,

ε7 = 2B + 1
2 J1 − 1

2 J2 + J3,

ε8 = −2B + 1
2 J1 − 1

2 J2 + J3,

ε9 = 2B − 1
2 J1 + 1

2 J2 + J3,

ε10 = −2B − 1
2 J1 + 1

2 J2 + J3,

ε11 = 2B + J1 + 1
2 J2 + 3

2 J3,

ε12 = −2B + J1 + 1
2 J2 + 3

2 J3,

ε13 = 2B + J1 + 1
2 J2 − 1

2 J3,

ε14 = −2B + J1 + 1
2 J2 − 1

2 J3,

ε15 = B + 1
2 J1 − 1

2 J2,

ε16 = −B + 1
2 J1 − 1

2 J2,

ε17 = B − 1
2 J1 + 1

2 J2,

ε18 = −B − 1
2 J1 + 1

2 J2,

ε19 = B + 1
2 J1 − 1

2 J2 + J3,

ε20 = −B + 1
2 J1 − 1

2 J2 + J3,

ε21 = B − 1
2 J1 + 1

2 J2 + J3,

ε22 = −B − 1
2 J1 + 1

2 J2 + J3,

ε23 = B + 1
2 J1 − 1

2 J2 − J3,

ε24 = −B + 1
2 J1 − 1

2 J2 − J3,

ε25 = B − 1
2 J1 + 1

2 J2 − J3,

ε26 = −B − 1
2 J1 + 1

2 J2 − J3,

ε27 = B + J1 + 1
2 J2 + 3

2 J3,

ε28 = −B + J1 + 1
2 J2 + 3

2 J3,

ε29 = B + J1 + 1
2 J2 − 1

2 J3,
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ε30 = −B + J1 + 1
2 J2 − 1

2 J3,

ε31 = B − J1 − 1
2 J2 + 1

2 J3,

ε32 = −B − J1 − 1
2 J2 + 1

2 J3,

ε33 = B − 1
4 J1 − 1

2 J2 − 1

4
J3 + 1

4 p,

ε34 = −B − 1
4 J1 − 1

2 J2 − 1
4 J3 + 1

4 p,

ε35 = B − 1
4 J1 − 1

2 J2 − 1
4 J3 − 1

4 p,

ε36 = −B − 1
4 J1 − 1

2 J2 − 1
4 J3 − 1

4 p,

ε37 = B − 5
4 J1 + 1

2 J2 − 1
4 J3 + 1

4 p,

ε38 = −B − 5
4 J1 + 1

2 J2 − 1
4 J3 + 1

4 p,

ε39 = B + 3
4 J1 − 3

2 J2 − 1
4 J3 − 1

4 p,

ε40 = −B + 3
4 J1 − 3

2 J2 − 1
4 J3 − 1

4 p,

ε41 = B − 1
2 J1 + 1

2 J2 − J3 + 1
2 q,

ε42 = −B − 1
2 J1 + 1

2 J2 − J3 + 1
2 q,

ε43 = B − 1
2 J1 + 1

2 J2 − J3 − 1
2 q,

ε44 = −B − 1
2 J1 + 1

2 J2 − J3 − 1
2 q,

ε45 = 1
2 J1 − 1

2 J2,

ε46 = − 1
2 J1 + 1

2 J2,

ε47 = 1
2 J1 − 1

2 J2 + J3,

ε48 = − 1
2 J1 + 1

2 J2 + J3,

ε49 = 1
2 J1 − 1

2 J2 − J3,

ε50 = − 1
2 J1 + 1

2 J2 − J3,

ε51 = J1 + 1
2 J2 − 1

2 J3,

ε52 = −J1 − 1
2 J2 − 1

2 J3,

ε53 = −J1 − 1
2 J2 + 1

2 J3,

ε54 = J1 + 1
2 J2 + 3

2 J3,

ε55 = −J1 − 1
2 J2 − 3

2 J3,

ε56 = − 3
2 J2 − 1

2 J3,

ε57 = − 1
4 J1 − 1

2 J2 − 1
4 J3 + 1

4 p,

ε58 = − 1
4 J1 − 1

2 J2 − 1
4 J3 − 1

4 p,

ε59 = − 5
4 J1 + 1

2 J2 − 1
4 J3 + 1

4 p,

ε60 = 3
4 J1 − 3

2 J2 − 1
4 J3 − 1

4 p,

ε61 = − 1
2 J1 + 1

2 J2 + J3 + 1
2 q,

ε62 = − 1
2 J1 + 1

2 J2 − J3 − 1
2 q,

ε63 = − 1
2 J1 + 1

2 J2 − J3 + 1
2 r,

ε64 = − 1
2 J1 + 1

2 J2 − J3 − 1
2 r,

where

p =
√

9J2
1 − 10J1J3 + 17J2

3 ,

q =
√

9J2
1 − 10J1J3 + 5J2

3 ,

r =
√

9J2
1 − 18J1J3 + 13J2

3 .

The corresponding eigenstates can also be obtained, but as
they are rather lengthy they are not reproduced here. Only the
most relevant ones for the quantum phase diagrams are given
in the text.
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