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Anomalous persistence exponents for normal yet aging diffusion
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The persistence exponent θ , which characterizes the long-time decay of the survival probability of stochastic
processes in the presence of an absorbing target, plays a key role in quantifying the dynamics of fluctuating
systems. So far, anomalous values of the persistence exponent (θ �= 1/2) were obtained, but only for anomalous
processes (i.e., with Hurst exponent H �= 1/2). Here we exhibit examples of ageing processes which, even if
they display asymptotically a normal diffusive scaling (H = 1/2), are characterized by anomalous persistent
exponents that we determine analytically. Based on this analysis, we propose the following general criterion:
The persistence exponent of asymptotically diffusive processes is anomalous if the increments display ageing
and depend on the observation time T at all timescales.
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I. INTRODUCTION

The survival probability S(t ) of a one-dimensional (1D)
unbounded stochastic process x(t ) is defined as the probability
that x(t ) has not reached a threshold value up to time t .
This observable has proved to be very useful to quantify the
dynamics of a broad range of complex systems in contexts as
varied as diffusion controlled reactions, finance, search pro-
cesses, or biophysics [1–7]. In many examples of symmetric
stochastic processes, the large-time behavior of the survival
probability is characterized by a power-law decay S(t ) ∝ t−θ

that defines the persistence exponent θ .
Because of its importance to characterize the dynamics of

various systems, the determination of θ has been the focus of a
vast amount of works in the fields of stochastic processes and
nonequilibrium statistical mechanics, and general results have
been obtained in particular for processes without memory, i.e.,
Markovian processes [3,4]. More precisely, in the case of 1D
translation-invariant symmetric Markovian jump processes,
for which the random walker position x(t ) can be expressed
as a sum of independent identically distributed variables,
the Sparre-Andersen theorem yields a robust universal result
θ = 1/2, independently of the value of the Hurst exponent H
that characterizes the large-time behavior of the mean-square
displacement 〈x2(t )〉 ∝ t2H [8]. In the case of processes with
memory, i.e., non-Markovian processes, θ has been deter-
mined exactly only for specific examples of processes such as
fractional Brownian motion [9,10] or the random acceleration
process [11], and perturbatively for weakly non-Markovian
Gaussian processes [12–14]. In all the examples studied so
far, anomalous values of the persistence exponent (i.e., θ �=
1/2) were obtained but only for anomalous processes (i.e.,
H �= 1/2). Note, however, that no general result rules out the
possibility of anomalous persistence also for non-Markovian
diffusive processes (H = 1/2), even if no such examples
have been proposed to the best our knowledge. In fact, all

available examples of processes that are diffusive (H = 1/2),
even if only asymptotically for t → ∞, display the universal
exponent θ = 1/2. This is illustrated by the example where
x(t ) is the position of a given monomer of a finite 1D ideal
Rouse chain of N monomers; this non-Markovian process
is diffusive at times larger than the Rouse time (that is the
slowest relaxation time of the internal degrees of freedom of
the chain) and is shown to be characterized by θ = 1/2 [7];
note that in this example the increments x(t + T ) − x(T ) are
stationary at long times, i.e., have statistics independent of the
observation time T , for T larger than the Rouse time. Other
examples include persistent random walks and Levy walks
and are discussed in Appendix H.

In this paper, we demonstrate that anomalous persistence
exponents can be obtained even for asymptotically normal
diffusive processes. We argue that this results from the
ageing properties of the process and propose the following
general criterion: The persistence exponent of asymptotically
diffusive processes is anomalous if the increments are
nonstationary and have statistics that depend explicitly on the
observation time T at all timescales. Our claim is based on the
analysis of a range of examples of strongly non-Markovian
processes and in particular of the so-called self-attracting walk
(SATW) [15] and the elephant random walk (ERW) [16].
These have been studied in the context of random search pro-
cesses as prototypical examples of processes with long-range
memory and have important potential applications in the theo-
retical description of the trajectories of living organisms such
as cells, insects, or larger animals [17–19]. For both processes,
we derive analytically the persistence exponent and show that
it is anomalous, while we demonstrate that the processes are
asymptotically diffusive, with, however, ageing increments
at all timescales. Our general criterion is confirmed by
the analysis of further examples such as the persistent
self-attracting walk and the polynomial self-repelling walk.
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FIG. 1. Definition of the SATW. The process is a simple nearest-
neighbor random walk in the bulk of the visited territory Dt and is
modified only at the edges of Dt ; we show that increments 〈[x(t +
T ) − x(T )]2〉 are diffusive at short and long timescales and display
ageing.

II. PERSISTENCE EXPONENT OF THE
SELF-ATTRACTING WALK

We consider first the SATW, or one-step reinforced walk,
which was introduced as a natural example of random walk
that interacts fully (either attractively or repulsively) with its
own path [15,20–26]. This model can therefore be related to
the class of self-avoiding random walks, which have played
a crucial role in physics [27] and have applications in the
modeling of trajectories of living systems [28–30]; in essence,
such models consider a random walker that deposits a signal
at each visited site, which alters the future dynamics of the
walker on its next visits. Due to the long-range memory effect
of this class of processes, their properties, and in particular
their persistence exponents, are notoriously difficult to charac-
terize analytically. More precisely, the SATW is defined here
on the 1d lattice as a jump process in discrete time t where
the probability that the random walker jumps to a neighboring
site i is proportional to exp(−u ni ), where ni = 0 if the site
i has never been visited up to time t and ni = 1 otherwise.
For u > 0 the random walker is thus repelled by its own path,
while it is attracted for u < 0.

This process is strongly non-Markovian since the definition
of its evolution at time t requires the knowledge of the full
territory Dt visited by the random walker up to time t (see
Fig. 1). However, in 1d , the knowledge of the two extrema
x− = inf0�t ′�t x(t ′) and x+ = sup0�t ′�t x(t ′) of the trajectory
at t is sufficient to fully determine the visited territory Dt =
[x−, x+] and thus the evolution of the process. When in the
bulk of the visited territory [x− < x(t ) < x+], the random
walker performs a classical symmetric nearest-neighbor ran-
dom walk. The dynamics is modified only for x = x−, x+
and is then conveniently encoded locally by the probability
β = 1/[1 + exp(−u)] to visit the yet unvisited neighboring
site (/∈ Dt ) rather than the previously visited one (∈ Dt ). Only
a few results are available to describe this non-Markovian
process [15,31–34], which has been shown in particular to
be asymptotically diffusive at large times 〈x2(t )〉 ∝ t , with,
however, a large time diffusion coefficient that has not been
determined analytically.

In view of determining the persistence exponent of this
process, it is convenient to parametrize the dynamics in terms
of the number N = x+ − x− + 1 of distinct sites visited up to
time t . We define by S(N ) the corresponding survival proba-
bility that the target, located at x = 0, has not been reached
when N sites have been visited; in addition, we denote by
x0 > 0 the initial position of the random walker. We first show

FIG. 2. Side changes and increments of the visited territory. Be-
tween successive side changes, the random walker discovers ai −
ai−1 − 1 new sites on the same side of the visited territory with
a probability Ps(ai−1, ai ); the side change i occurs for a = ai with
probability Pt (ai ).

below that S(N ) satisfies the following scaling in the large-N
limit:

S(N ) ∝ N− 1−β

β , (1)

by providing lower and upper bounds for S(N ).
To this end, we note that a lower bound for S(N ) is straight-

forwardly given by the probability Ps(N ) that Dt = [x0, x0 +
N − 1], i.e., the probability that all of the N visited sites have
been discovered from the x+ edge of Dt . Adapting classical
results for splitting probabilities of 1D random walks [1,35]
(see Appendix A for details), an exact recurrence relation for
Ps(N ) can be obtained and reads:

Ps(N + 1) =
[

1 − 1 − β

2 + β(N − 3)

]
Ps(N ). (2)

Taking the log of Eq. (2) then yields in the large-N limit the
following scaling of the lower bound:

S(N ) > Ps(N ) ∝ N− 1−β

β . (3)

We now turn to the determination of an upper bound to
S(N ). We define a side change as the visit of a new site on the
side opposite to the last newly visited site. With this definition,
it is easy to see that all trajectories involving more than 2x0

side changes cross the target at x = 0. As a consequence, by
defining P(N, k) as the probability that exactly k side changes
occurred until N sites have been visited in the presence of
the target at x = 0, one can write S(N ) =∑2x0

k=0 P(N, k). In
order to determine the scaling of P(N, k), we introduce k
random variables {a1, . . . , ak}, where ai is the total number of
distinct visited sites when the ith side change occurs. Hence,
between side changes i and i + 1, the random walker visits
ai+1 − ai new sites on the same side of the visited territory D.
Correspondingly, we denote by Ps(ai, a) the probability that
a − ai − 1 new sites have been visited on the same side of D
after side change i. Note in particular that Ps(1, N ) = 2Ps(N )
introduced above. We also introduce Pt (a) as the probability
that a side change occurs when the number of distinct visited
sites is a (see Fig. 2); it is the probability that the random
walker, starting from one edge of D discovers the next new
site on the opposite edge.

The joint probability of the event {a1, . . . , ak} given a spe-
cific first step can then be written

P({a1, . . . , ak}) = 2−1Ps(1, a1)Pt (a1)

[
k∏

i=2

Ps(ai−1, ai )Pt (ai )

]

× Ps(ak, N ). (4)
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Both Ps and Pt can be straightforwardly expressed in terms of splitting probabilities introduced above to determine Ps(N ), and
exact recurrence relations similar to Eq. (2) can be obtained (see Appendix B). This yields in particular the following asymptotics
(i > 1):

Ps(ai, ai+1) ∼
ai→∞

a
1−β

β

i

a
1−β

β

i+1

; Pt (ai ) ∼
ai→∞

1 − β

β

1

ai
, (5)

which will be useful below. In order to express P(N, k), we must condition on the first step and distinguish odd and even values
of k. Assuming without loss of generality that the first step is made in the + direction, and that k = 2p is even, we obtain in the
large-N limit where sums can be approximated by integrals:

P(N, 2p) �
∫ N

1

∫ min(x0+a1,N )

a1

∫ N

a2

∫ min(x0+a3,N )

a3

..

∫ N

a2p−2

∫ min(x0+a2p−1,N )

a2p−1

P({a1, . . . , ak}) × da1..da2p. (6)

Upper bounds in the integrals take into account the absorbing target at x = 0. Next, using the definition of Eq. (4) and the
asymptotics of Eq. (5), one obtains in the large-ai limit

P({a1, . . . , ak}) ∝
ai→∞ N− 1−β

β (a1a2 × .. × ak )−1. (7)

We then make use of the following estimate in the large-N limit derived in (C 2):∫ N

1

∫ min(x0+a1,N )

a1

∫ N

a2

..

∫ N

a2p−2

∫ min(x0+a2p−1,N )

a2p−1

(a1a2 × .. × ak )−1da1..da2p = O(1), (8)

to finally obtain

P+(N, 2p) = O
(
N− 1−β

β

)
. (9)

The same O(N− 1−β

β ) estimate is obtained for P±(N, k) for all
combinations of the first step direction ± and parity of k as
shown in Appendix C. This finally yields

S(N ) =
2x0∑
k=0

P(N, k) = O
(
N− 1−β

β

)
, (10)

which, together with the lower bound of Eq. (3), proves the
scaling of Eq. (1). We finally conclude on the scaling of the
survival probability S(t ) as a function of the elapsed time t . To
do so, we make use of the ansatz that the conditional proba-
bility density �N (t ) that the target is found at time t knowing
that N − 1 sites have been visited is a scaling function of
the variable t/N2: �N (t ) = f (t/N2)/N2 (see Appendix D for
numerical check). This, together with Eq. (1), yields the fol-
lowing analytical determination of θ :

θ = 1 − β

2β
. (11)

First, we underline that this result, which is expected to
be exact (see numerical simulations, Fig. 3), shows that the
SATW provides a simple model for which the persistence
exponent is determined analytically and can be varied over
a broad range of values by tuning a simple microscopic pa-
rameter (β). Second, this reveals that, despite the fact that
the process is asymptotically diffusive 〈x2(t )〉 ∝ t at large
times (H = 1/2) for all values of β [15,31], the persistence
exponent θ is anomalous (θ �= 1/2) for β �= 1/2.

III. SCALE-FREE AGEING OF INCREMENTS (SATW)

Based on this example, we now aim at determining a
general criterion that allows us to identify the asymptoti-
cally diffusive processes that lead to anomalous persistence

exponents. It has been proposed, on the basis of general
arguments and only minimal hypothesis, that for continu-
ous scale-invariant processes with stationary increments the
universal relation θ = 1 − H should hold [4]; this relation
can in fact be extended to processes whose time-dependent
increments 〈[x(t + T ) − x(T )]2〉 are only asymptotically sta-
tionary after a finite characteristic timescale [7]. We review in
Appendix H examples of such processes, which all lead to θ =
1/2. Our finding that θ �= 1 − H for the SATW indicates that
its increments are not stationary after a finite timescale; this
calls for a further analysis of the increments. These are known
to be diffusive and to satisfy 〈[x(t + T ) − x(T )]2〉 ∼ 2DL(β )t
in the large-time limit t � T , where DL(β ) has not been
determined analytically. In turn it is easily seen that for T � t ,
one has 〈[x(t + T ) − x(T )]2〉 ∼ 2Dst with Ds = 1/2, because
the walker spends most of the time away from the bound-
aries of the visited territory DT (see Fig. 1). Finally, because
the process has no intrinsic timescale but the unit time step,
dimensional analysis shows that in the limit t, T � 1 the in-
crements can be written 〈[x(t + T ) − x(T )]2〉 = 2D(t/T ) t .
This behavior was confirmed by numerical simulations (see
Fig. 3). Finally, the process is diffusive at both short and long
timescales but displays ageing at all observation timescales
T . We hypothesize that this behavior, which we call scale-
free ageing, leads to anomalous persistence exponents for
asymptotically diffusive processes. Below, we provide explicit
examples supporting this hypothesis.

IV. PERSISTENT SATW MODEL

We first verify our hypothesis on a generalization of the
SATW model to persistent random walks (see Appendix G
for details). While the random walker is within the visited
territory, it is now assumed to perform a classical persis-
tent random walk of persistence probability (probability to
reproduce the previous step) p = ek

ek+e−k , where k is a free
real parameter. When the random walker is at an edge x±
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(a)

(c)

(b)

(d)

FIG. 3. Persistence and ageing of the SATW. (a) Persistence exponent: Numerical simulation and analytical prediction of Eq. (11).
(b) Survival probability as a function of time (log scale) for different values of β. Numerical simulations (symbols) and power-law fit (plain
line). [(c) and (d)] Ageing of the increments for the SATW (normalized by the expected diffusive scaling at long times). Each curve corresponds
to a fixed value of T .

of the visited domain, reinforcement and persistence effects
are coupled so that the probability to discover a new site is
given by β(k, u) = ek

e−k−u+ek (note that the SATW model is
recovered by taking k = 0). It is shown in Appendix G that
the persistence exponent can still be determined explicitly for
this model; it is found to be independent of k:

θ = 1 − β(k = 0, u)

2β(k = 0, u)
. (12)

As in the SATW case (k = 0), the persistence exponent is thus
anomalous for β(k = 0, u) �= 1/2. The analysis of the incre-
ments reveals that motion is ballistic below the timescale e2k .
In turn, for T, t � e2k , increments are characterized by a time-
dependent diffusion coefficient D(t/T ) that ranges from Ds =
e2k/2 for T � t to an undetermined (k-dependent) value DL

for t � T (see Fig. 5). The process therefore displays scale-
free ageing, and our hypothesis is verified. To further assess
the generality of our criterion, we analyze below two other
examples of ageing asymptotically diffusive non-Markovian
processes with anomalous persistence exponents.

V. ELEPHANT RANDOM WALK

First, the ERW was introduced in Ref. [16] and can be
defined as follows on 1d lattice: At each time step t a nearest-
neighbor jump σ̄ is drawn with uniform distribution from
the full set of jumps performed in the past {σi}i<t , where
σi = ±1 (with a symmetric first jump). The random walker
then performs the jump σt = σ̄ with probability β, and the
jump σt = −σ̄ with probability 1 − β. The position process

is then defined by x(t ) = σt + x(t − 1). The process is non-
Markovian by construction and can be shown for β < 3/4 to
be characterized by scale-free, diffusive, ageing increments
〈[x(t + T ) − x(T )]2〉 ∼ 2D(t/T ) t in the limit T, t � 1, with
an effective diffusion coefficient that we show can be written
(see Appendix E)

D(t/T ) ∼ 1

6 − 8β
− 1

3 − 4β

{
T

t

[(
1 + t

T

)2β−1

− 1

]}
.

(13)

This behavior of the increments (see Fig. 4) is similar to
the case of the SATW, with in particular finite limits of the
effective diffusion coefficient D(t/T ) in both regimes t � T
and t � T (see Fig. 4). The limit diffusion coefficients can
be expressed analytically from (13) and read Ds = 1/2 and
DL = 1/(6 − 8β ) (in agreement with Refs. [16,36] for T =
0). Similarly to the SATW, the ERW is therefore diffusive at
both short and long timescales, and displays scale-free ageing.
We now determine the persistence exponent of the ERW. In
the diffusive regime that we consider here, it has been shown
that in the large-t limit, the one-point probability density
function p(x, t ) is Gaussian [36] and satisfies a Fokker-Planck
equation with a time-dependent drift for β < 3/4; based on
this formalism, the first-passage time distribution to a target
was computed in Ref. [37]. We used this result to derive
analytically the persistence exponent of the ERW:

θ = 3/2 − 2β, (14)
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(c) (d)

(a) (b)

FIG. 4. Persistence and ageing of the ERW. (a) Persistence exponent: Numerical simulations, analytical prediction of Eq. (14), and
prediction based on an effective Fick’s law derived in Appendix F. (b) Survival probability as a function of time (log scale) for different
values of β. Numerical simulations (symbols) and power-law fit (plain line). [(c) and (d)] Ageing of the increments for the ERW (normalized
by the expected diffusive scaling at long times) and analytical prediction of Eq. (13) (plain line). Each curve corresponds to a fixed value of T .

which was confirmed by numerical simulations (see Fig. 4).
Again, we find that the persistence exponent θ is anomalous
(θ �= 1/2) for β �= 1/2 and takes a broad range of values
when β is varied. The example of the ERW therefore supports
our conjecture that scale-free ageing is responsible for the
observed anomalous persistent exponent θ �= 1/2, even for
asymptotically diffusive processes (H = 1/2).

VI. SELF-REPELLING RANDOM WALK

Last, we consider an example of self-repelling walk where
the probability that the random walker jumps to a neighboring
site i is proportional to 1/(1 + τ

β
i ), where τi is defined as

the cumulative time spent by the random walker at the site
i. This process has been shown to be asymptotically diffusive
at large times [38,39]; however, its increments and persistence
properties remain unexplored. Our numerical analysis reveals
that the persistence exponent is anomalous θ ≈ 0.25 for all

values of β; in turn the increments are found to display scale-
free ageing (see Fig. 5). Our hypothesis is therefore verified
once again.

VII. CONCLUSION

We now conclude this paper by summarizing our results.
We have analyzed the persistence exponents for several ex-
amples of non-Markovian random walks, which have been
studied in the context of random search processes. These
persistence exponents, some of which we determined analyt-
ically, were found to be anomalous and to vary over a broad
range of values even if all processes remain asymptotically
simply diffusive. Our analysis leads to the conjecture that the
persistence exponent of asymptotically diffusive processes is
anomalous if the increments are ageing and depend on the
observation time T at all timescales. This conjecture is consis-
tent with existing general results for processes with stationary
increments and was checked on a broad range of examples of
processes.

APPENDIX A: SCALING OF THE LOWER BOND

Here we derive the asymptotic scaling of the probability Ps(N ) that the set of visited sites is Dt = [x0, x0 + N − 1], i.e., the
probability that all the N visited sites have been discovered from the same edge x+ of the visited territory. We define p+(n, N )
as the classical splitting probability of a walker which starts at site n + x0 to hit site N + x0 before hitting site x0 − 1. It is then
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(d)(c)

(a) (b)(a)

FIG. 5. Persistence and ageing of the persistent SATW model and the polynomial self-repelling walk. (a) Persistence exponent of the
persistent SATW: Numerical simulation and exact prediction of Eq. (11) for k �= 0. (b) Survival probability of polynomial self-repelling walk
as a function of time (log scale) for different values of β. Numerical simulations (symbols) and power-law fit (plain line). (c) Ageing of the
increments for the persistent SATW with lp = e2k (normalized by the expected diffusive scaling at long times). Each curve corresponds to a
fixed value of T . We observe a transient regime performed by the increments which disappears for t � 1. (d) Ageing of the increments of the
polynomial self-repelling walk (normalized by the expected diffusive scaling at long times). Each curve corresponds to a fixed value of T .

clear that Ps(N ) verifies the following recurrence relation:

Ps(N + 1) = p+(N − 1, N )Ps(N ). (A1)

The central observation underlying Eq. (A1) is that knowing the actual size of Dt , the future excursion inside the visited area
is disconnected from the past. In the bulk of the visited territory the walker performs a classical symmetric nearest-neighbor
random walk, thus for 0 < n < N one can write

p+(n, N ) = 1
2 p+(n + 1, N ) + 1

2 p+(n − 1, N ). (A2)

The solution of (A2) can be written

p+(n) = λ + μn, (A3)

where λ and μ can be deduced from the boundary conditions{
p+(0, N ) = (1 − β ) p+(1, N )
p+(N − 1, N ) = β + (1 − β ) p+(N − 2, N ) . (A4)

This yields {
λ = 1−β

2+β(N−3)

μ = β

2+β(N−3)

. (A5)

Combining the solution (A3) with (A5) and (A1) yields finally the exact recurrence relation given in the main text (1):

Ps(N + 1) =
[

1 − 1 − β

2 + β(N − 3)

]
Ps(N ). (A6)
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Let us notice that this relation is also valid for N = 1. Using the scaling of the harmonic series leads to the following asymptotics
for N → ∞, as is given in the main text:

Ps(N + 1) = 2−1 exp

{
N∑

i=2

ln

[
1 − 1 − β

2 + β(i − 3)

]}
∼

N→∞
A0N− 1−β

β , (A7)

where A0 is a constant.

APPENDIX B: RECURRENCE RELATION FOR THE EVENTS Ps AND PN

We define Ps(N, M ) as the probability that M − N − 1 sites have been visited successively from the same side starting with a
visited domain of size N + 1. Similarly to (A1), one can write the following recurrence relation for Ps(N, M ):

Ps(N, M + 1) =
[

1 − 1 − β

2 + β(M − 3)

]
Ps(N, M ). (B1)

Making use again of the N → ∞ asymptotics of the harmonic series, we finally obtain from (B1)

Ps(N, M ) = exp

[
−1 − β

β

M−1∑
i=N+1

1

j
+

M−1∑
i=N+1

O

(
1

j2

)]
∼

N→∞
N

1−β

β

M
1−β

β

. (B2)

Defining Pt (N ) as the probability that a side change occurs when the number of distinct visited sites is N , we note that Pt (N ) is
directly given by the splitting probability of (A6), which finally leads to

Pt (N ) = 1 − β

2 + β(N − 3)
∼

N→∞
1 − β

βN
. (B3)

APPENDIX C: SCALING OF THE UPPER BOND

In order to extract the scaling of the upper bond we make a partition of all possible trajectories over the sequences of side
changes. By definition, a side change occurs when the walker discovers a new site on the side opposite to the last newly visited
site. The survival probability can then be written S(N ) =∑2x0

k=0 P(N, k), where P(N, k) is the probability that k side changes
occurred until N sites have been visited in the presence of the target at x = 0; it is therefore obtained by making a partition
over the sequences of k side changes. To do so we introduce the variable ai accounting for the total number of distinct visited
sites when the ith side change occurs. Using the probability Ps and Pn defined in the previous section, the joint probability of a
sequence {a1, . . . , ak} given a specific first step, knowing that N sites have been discovered can be written as

P({a1, . . . , ak}) = 2−1Ps(1, a1)Pt (a1) ×
[

k∏
i=2

Ps(ai−1, ai )Pt (ai )

]
× Ps(ak, N ). (C1)

Making use of the scaling given by (B2) and (B3), and of Eq. (C1), we remark that all the ai terms appearing in the Ps(ai−1, ai )
factors cancel each other, which leads to

P({a1, . . . , ak}) = AK

[
1 + O

(
1

a1

)]
N− 1−β

β (a1a2 × .. × ak )−1, (C2)

where we have defined the constant AK = 2−1Ao( 1−β

β
)k . In order to obtain P(N, k), one then needs to sum over all sequences

{a1, . . . , ak}; in the limit N → ∞, sums are approximated by integrals. In addition, one must enforce the constraint that the
target is left unvisited. Because of this constraint, the walker cannot visit more than x0 sites on the side (denoted as −) of
the target; this will restrict the integration domains of the variables ai and lead to an upper bound of P(N, k) and therefore of the
survival probability. In practice, four cases need to be analyzed depending on the direction of the first step (denoted as ±) and
the parity of k.

1. Scaling of P−(N, 2p)

Summing over all sequences {a1, . . . , ak} that satisfy the constraint that the target is left unvisited yields:

P−(N, 2p) <
A2p

N
1−β

β

∫ x0

1

∫ N

a1

∫ min(x0+a2,N )

a2

∫ N

a3

..

∫ min(x0+a2p−2,N )

a2p−2

∫ N

N−x0

[
1 + O

(
a−1

1

)]( 2p∏
i=1

ai

)−1

da1..da2p. (C3)

Let us notice that the lower bound of the last integral is given by N − x0, because after the last change of side, the walker cannot
discover more than x0 successive sites without having crossed the target. This limits the integration range of the variable a2p.
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To obtain a useful upper bound for P−(N, 2p), it is in fact possible to relax all the constraints on variables ai for i � 2p − 1,
which leads to

P−(N, 2p) <
A2p

N
1−β

β

∫ N

1

∫ N

1
..

∫ N

1

∫ N

N−x0

[
1 + O

(
a−1

1

)]( 2p∏
i=1

ai

)−1

da1da2..da2p. (C4)

All the integrals are now decoupled, which yields

P−(N, 2p) <
A2p[1 + o(1)]

N
1−β

β

ln

(
N

N − x0

)
ln(N )2p−1, (C5)

from the which we finally deduce the upper bound,

P−(N, 2p) = O
(
N− 1−β

β

)
. (C6)

2. Scaling of P+(N, k = 2p)

Summing over all sequences {a1, . . . , ak} that satisfy the constraint that the target is left unvisited yields in this case:

P+(N, 2p) <
A2p

N
1−β

β

∫ N

1

∫ min(a1+x0,N )

a1

∫ N

a2

∫ N

a2p−2

..

∫ min(a2p−1+x0,N )

a2p−1

[
1 + O

(
a−1

1

)]( 2p∏
i=1

ai

)−1

da1da2..da2p. (C7)

We next relax the min conditions in the upper bounds of the integrals to get

P+(N, 2p) <
A2p

N
1−β

β

∫ 1

1/N

∫ a1+x0/N

a1

∫ 1

a2

∫ 1

a2p−2

..

∫ a2p−1+x0/N

a2p−1

[
1 + O

(
N−1a−1

1

)]( 2p∏
i=1

ai

)−1

da1da2..da2p.

(C8)

We next perform iteratively the integrals two by two and make use of (p > 1):∫ 1

a2p−2

∫ a2p−1+x0/N

a2p−1

1

a2p−1a2p
da2p−1da2p <

∫ 1

a2p−2

x0

Na2
2p−1

da2p−1 <
x0

Na2p−2
. (C9)

Applying these steps to Eq. (C8) leads to

P+(N, 2p) <
A2p

N
1−β

β

∫ 1

1/N

∫ a1+x0/N

a1

..

∫ a2p−3+x0/N

a2p−3

[
1 + O

(
1

N−1a−1
1

)](2p−3∏
i=1

ai

)−1
x0

Na2
2p−2

da1..da2p−2. (C10)

Iterating these steps finally yields:

P+(N, 2p) <
A2p

N
1−β

β

∫ 1

1/N

1 + O
(

1
Na1

)
p − 1!

xp
0

N pap+1
1

da1, (C11)

which satisfies

P+(N, 2p) <
A2p

N
1−β

β

∫ N

1

1 + O
(

1
a1

)
p − 1!

xp
0

ap+1
1

da1 = O
(
N− 1−β

β

)
. (C12)

Of note, the term p = 0 is exactly the lower bond Ps(N ), whose scaling is given by (A6).

3. Scaling of P+(N, 2p + 1)

We reproduce the steps described above and obtain:

P+(N, 2p + 1) <
A2p+1

N
1−β

β

∫ N

1

∫ min(a1+x0,N )

a1

..

∫ N

N−x0

[
1 + O

(
a−1

1

)](2p+1∏
i=1

ai

)−1

da1..da2p+1. (C13)

Similarly to (C4) the lower bond of last integral is given by N − x0. Applying the same steps (C5) and (C6) yields the expected
scaling,

P+(N, 2p + 1) = O
(
N

1−β

β

)
. (C14)
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4. Scaling of P−(N, 2p + 1)

We reproduce the steps described above and obtain:

P−(N, 2p + 1) <
A2p+1

N
1−β

β

∫ x0

1

∫ N

a1

∫ min(a2+x0,N )

a2

..

∫ min(a2p+x0,N )

a2p

[
1 + O

(
1

a1

)](2p+1∏
i=1

ai

)−1

da1..da2p+1. (C15)

We derive the same recurrence relation as obtained in (C8), which leads to

P−(N, 2p + 1) <
A2p+1

N
1−β

β

∫ x0/N

1/N

1 + O
(

1
Na1

)
p!

xp
0

N pap+1
1

da1. (C16)

For p � 1 we finally find

P−(N, 2p + 1) = O
(
N− 1−β

β

)
. (C17)

We finally conclude this section by analyzing the odd case p = 0. One finds

P+(N, 1) = A1
1

N
1−β

β

∫ N

N−No

[
1 + O

(
1

a1

)]
1

a1
da1 = o

(
N− 1−β

β

)
, (C18)

and

P−(N, 1) = A1

N
1−β

β

∫ No

1

[
1 + O

(
1

a1

)]
1

a1
da1 = O

(
N− 1−β

β

)
. (C19)

Finally, all P(N, k) are bounded by O(N− 1−β

β ), and so is S(N ), as claimed in the main text.

APPENDIX D: SCALING OF THE SURVIVAL PROBABILITY AS A FUNCTION OF TIME

Here we extract the scaling with t of the survival probability S(t ), making use of the scaling with N derived for S(N ). To
do so we consider the first passage time (FPT) distribution, defined as the probability to find the target exactly at time t . For a
continuous time variable t , it satisfies:

F (t ) = −dS

dt
∼

t→∞ t−(1+θ ). (D1)

We rewrite F (t ) as a partition over the number of sites visited by the walker

F (t ) =
∞∑

N=0

F (N, t ) =
∞∑

N=0

�N (t )F (N ), (D2)

where �N (t ) is the probability that the target is found at time t knowing that N − 1 sites have been visited before and F (N ) is
the probability that the target is the N th site discovered. In the large-N limit considering (D1) for F (N ) leads to

F (N ) ∼
N→∞

N−( 1−β

β
+1)

. (D3)

Making use of the diffusive scaling 〈N〉 ∝ √
t of the SATW [31], we assume that �N (t ) is a scaling function of the variable

t/N2. Taking into account normalization, we write

�N (t ) = 1

N2
f

(
t

N2

)
, (D4)

which is confirmed by numerical simulation (Fig. 6).
Rewriting in (D2) the sum as an integral in the limit N → ∞, and making use of the change of variable N ∼ √

t , one obtains:

F (t ) ∼ t−1− 1−β

2β , (D5)

from the which one deduces using (D1) an analytical determination of θ .

APPENDIX E: INCREMENTS OF THE ERW IN DIMENSION 1

We start by reminding two key relations that will support the following analysis of the process [16]:

〈σt+1|σ1..σt 〉 = 2β − 1

t
[X (t ) − X (0)], (E1)

〈X (t )2〉 = t

3 − 4β

[
1 − �(t + 4β − 2)

�(t + 1)�(4β − 2)

]
, (E2)
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(a) (b)

FIG. 6. Conditional pdf’s of the FPT knowing that’s the target is the N th sites discovered for β = 0.3 (a) and β = 0.7 (b). The pdf’s are
generated along the normalized variable t/N2 and are obtained with walkers starting at an initial distance x0 = 20). The expected scaling in N2

is obtained in the limit N � x0.

where we have kept the notations of the main text: {σ1, σ2, .., σt } denotes a sequence of steps up to time t . We remark from
Eq. (E1) that the knowledge of the current position of the walker and time t are sufficient to determine the future evolution of
the process. The process is non-Markovian because of the dependence on time t of the transition probabilities.

In this section, we determine a recurrence relation for the increments of the process. We denote by p(σ1, σ2, .., σT +t+1) the
probability of a path {σ1, σ2, .., σT +t+1}. Making use of

X (t + T + 1) = X (t + T ) + σT +t+1, (E3)

yields

〈[X (t + 1 + T ) − X (T )]2〉 = 〈σ 2
T +t+1 + [X (t + T ) − X (T )]2 + 2σT +t+1[X (t + T ) − X (T )]

〉
= 1 + 〈[X (t + T ) − X (T )]2〉 + 2

〈
σT +t+1

t+T∑
t ′=T +1

σ ′
t

〉
. (E4)

We notice that the last term in bracket called (a) in the following encodes the correlations between the last step and the full
trajectory after time T . We rewrite (a) by making explicit the partition over the past events {σ1, .., σt+T } :

(a) = 2
∑

{σ1,..,σt+T }
p(σ1, .., σt+T )

(
t+T∑

t ′=T +1

σ ′
t

)
〈σT +t+1|σ1..σT +t 〉. (E5)

Using (E1) and assuming with no loss of generality that the walker starts at 0 leads to

(a) = 2
2β − 1

t + T

∑
σ1,..,σt+T

p(σ1, .., σt+T )[X (t + T ) − X (T )]X (t + T )

= 2
2β − 1

t + T
[〈X (t + T )2〉 − 〈X (t + T )X (T )〉].

(E6)

We next determine 〈X (t + T )X (T )〉 by using a second recurrence relation, conditionally to the position at time T :

〈X (t + T + 1)|X (T )〉 =
∑

σT +1,..,σt+T

p(σT +1, .., σt+T |X (T ))〈σt+T +1 + X (T + t )|X (T ), σT +1..〉

=
∑

σT +1,..,σt+T

p(σT +1, .., σt+T |X (T ))[X (T + t ) + 〈σt+T +1|X (T ), σT +1..〉]. (E7)

Using (E1) for the second term inside the sum leads to

〈X (t + T + 1)X (T )|X (T )〉 =
∑

σT +1,..,σt+T

X (T )X (T + t )

(
1 + 2β − 1

T + t

)
p[σT +1, .., σt+T |X (T )]

=
(

1 + 2β − 1

T + t

)
〈X (t + T )X (T )|X (T )〉. (E8)
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Iterating this relation we finally get after averaging over X (T ):

〈X (t + T )X (T )〉 = 〈X (T )2〉
t−1∏
i=0

(
1 + 2β − 1

T + i

)
. (E9)

We now come back to Eq. (E4). Injecting (E9) into (E6) and finally replacing the squared position using (E2) leads to

〈[X (t + 1 + T ) − X (T )]2〉 = 1 + 〈[X (t + T ) − X (T )]2〉 + 2
2β − 1

3 − 4β

[
1 − �(t + T + 4β − 2)

�(t + T + 1)�(4β − 2)

]

− 2
2β − 1

3 − 4β

T

t + T

[
1 − �(T + 4β − 2)

�(T + 1)�(4β − 2)

] t−1∏
i=0

(
1 + 2β − 1

T + i

)
. (E10)

Iterating (E10) leads finally to an explicit expression of the increments:

〈[X (t + T ) − X (T )]2〉 = t

3 − 4β
− 2(2β − 1)

3 − 4β

t−1∑
t ′=1

�(T + t ′ + 4β − 2)

�(T + t ′ + 1)�(4β − 2)
..

− 2(2β − 1)T

3 − 4β

[
1 − �(T + 4β − 2)

�(T + 1)�(4β − 2)

] t−1∑
t ′=1

[
1

T + t ′

t ′−1∏
i=0

(
1 + 2β − 1

T + i

)]
− 2(2β − 1)

3 − 4β
. (E11)

Of note, the increments do not depend on the initial condition chosen for the first step. We will now exhibit the dominant
behavior for β < 3/4. Under this hypothesis the ratio of the two Gamma functions decays and the second term of (E10) is
negligible compared to t , which leads to

1

t

t−1∑
t ′=1

2(2β − 1)

3 − 4β

�(T + t ′ + 4β − 2)

�(T + t ′ + 1)
= ot (1). (E12)

In turn the prefactor of the third term increases asymptotically linearly in T :

T

3 − 4β

[
1 − �(T + 4β − 2)

�(T + 1)�(4β − 2)

]
∼

T →∞
T

3 − 4β
. (E13)

We next derive the asymptotics of the sum inside the third term. As a first step we derive the asymptotics of the product

t ′−1∏
i=0

(
1 + 2β − 1

T + i

)
= exp

[
t ′−1∑
i=0

ln

(
1 + 2β − 1

T + i

)]

=
(

T + t ′

T

)2β−1

[1 + O(T −1)]. (E14)

Making use of (E14) then leads to the following asymptotics of third term:

t−1∑
t ′=1

∏t ′−1
i=0

(
1 + 2β−1

T +i

)
T + t ′ = (T + t )2β−1 − T 2β−1

(2β − 1)T 2β−1
[1 + O(T −1)]

= 1

2β − 1

[(
1 + t

T

)2β−1

− 1

]
[1 + O(T −1)]. (E15)

Finally, gathering the different results (E15), (E13), and (E12) together with (E11) leads to the final expression,

〈[X (t + T ) − X (T )]2〉 = t

3 − 4β
− 2t

3 − 4β

T

t

[(
1 + t

T

)2β−1

− 1

]
+ o(t ). (E16)

APPENDIX F: CONDITIONAL PROBABILITY DENSITY FUNCTION OF THE ELEPHANT RANDOM WALK

In an attempt to make explicit the dependence of θ on the dynamics of the increments of the process, we remark, using the
explicit form of DL(β ) and Eq. (E16), that in the case of the ERW, θ can be reexpressed in terms of Ds, DL only:

θ = Ds

2DL(β )
. (F1)

In the case of the ERW it suggests that θ could be determined only by the limits Ds, DL of the time-dependent diffusion coefficient
D(t/T ). We propose the following handwaving argument. We first write the 1 point pdf of the ERW started at x0 > 0 with
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(a) (b)

FIG. 7. Conditional pdf’s taken at different times t for β = 0.6 (a) and β = 0.3 (b). The curves are both plotted along the normalized
variable x/

√
DLt . The conditional pdf is generated with the surviving walkers (starting with an initial number N = 4, 5.105). The solution of

(F2) is plotted in red.

an absorbing target at x = 0 as S(t, x0)P(x, t, x0), where S(t, x0) is the survival probability; this defines the conditional pdf
P(x, t, x0), which is thus normalized. From the very definition of the ERW, it is clear that for t � x2

0/DL and x → 0, memory
effects are irrelevant for all β: A step σi drawn from the past trajectory is +1 or −1 with probability ∼1/2, because as many
+1 and −1 steps have been made to ensure that x → 0. In this regime, the random walk is therefore locally for x → 0 a regular
random walk of diffusion coefficient Ds. This implies in particular that Fick’s law applies:

∂S(t, x0)

∂t
= −S(t, x0)Ds

∂P(t, x, x0)

∂x

∣∣∣∣
x=0

. (F2)

To determine the conditional pdf P(x, t, x0) we make use of the fact that in the large-t limit the process behaves as a regular
random walk of diffusion coefficient DL, as shown by the Gaussian 1 point pdf in absence of absorbing target [36]. Assuming
that the image method applies, one then obtains in the large t ,

P(t, x, x0) � x

2DLt
e− x2

4DLt , (F3)

which was checked by numerical simulations in Fig. 7. Together with S(t, x0) ∝ t−θ , this result yields, making use of Eq. (F2),
the exact expression of θ given in Eq. (F1). In order to assess the generality of Eq. (F1), we computed numerically DL in the
case of the SATW. Our results show that Eq. (F1) does not apply in this example.

APPENDIX G: PERSISTENCE EXPONENT OF THE PERSISTENT SATW

Here we derive analytically the persistence exponent of a generalization of the SATW to the case of a persistent random
walker. The model is defined as follows: When the walker is inside the visited area, it performs a simple persistent walk
characterized by two states ± that denote the direction of the last step. At each time step t the walker has a probability
Q = ek/(e−k + ek ) to reproduce the step performed at time t − 1. When the walker is at one of the edges of the visited domain,
this probability is modified and reads Q1 = ek/(e−k−u + ek ).

Similarly to the case of the SATW, we define p±(n, N ) as the splitting probability for a walker which starts at site n to hit site
−1 before hitting site N knowing that N sites have been already visited and that the walker is initially in the state ± respectively.
For n � N − 2 and n � 2 it is clear that p±(n, N ) verifies the twofold recurrence relation:{

p−(n, N ) = Qp−(n − 1, N ) + (1 − Q)p+(n + 1, N )
p+(n, N ) = Qp+(n + 1, N ) + (1 − Q)p−(n − 1, N ) . (G1)

Combining (G1) leads to the second-order difference equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p−(n−1,N )−Qp−(n−2,N )
1−Q = Q

1−Q (p−(n, N )..

− Qp−(n − 1, N )) + (1 − Q)p−(n − 1, N )
p+(n+1,N )−Qp+(n+2,N )

1−Q = Q
1−Q (p+(n, N )..

− Qp+(n + 1, N )) + (1 − Q)p+(n + 1, N ).

(G2)

The solutions of (G2) can be written as

p±(n, N ) = λ± + μ±n. (G3)
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Equation (G2) then leads to

μ−n + λ− = Q[μ−(n − 1) + λ−] + (1 − Q)[μ+(n + 1) + λ+]. (G4)

We deduce from (G4) {
μ− = μ+
λ− = − Q

1−Qμ− + μ+ + λ+
. (G5)

We finally use the conditions at the edges (0, N − 1) to derive {μ±, λ±}{
p−(0, N ) = Q1 + (1 − Q1)p+(1, N )
p+(N − 1, N ) = (1 − Q1)p−(N − 2, N ) , (G6)

which leads to {
λ− = Q1 + (1 − Q1)(λ+ + μ+)
λ+ + (N − 1)μ+ = (1 − Q1)[λ− + μ−(N − 2)]. (G7)

We finally obtain ⎧⎪⎪⎨
⎪⎪⎩

μ± = Q1(1−Q)
2Q1−2Q−Q1Q−Q1(1−Q)N

λ− = 1 + Q(1−Q1 )
2Q1−2Q−Q1Q−Q1(1−Q)N

λ+ = 1 − Q1−Q−Q1Q
2Q1−2Q−Q1Q−Q1(1−Q)N

, (G8)

which fully determines the splitting probability for all n. The large N asymptotics of p−(0, N ) is then given by

p−(0, N ) = 1 + Q(1 − Q1)

2Q1 − 2Q − Q1Q − Q1(1 − Q)N
∼ 1 − Q(1 − Q1)

Q1(1 − Q)N
, (G9)

which can be written in terms of u:

1 − p−(0, N ) ∼ e−u

N
. (G10)

Let us notice that the asymptotic regime is independent from the persistent parameter k. This expression parallels Eq. (B3)
obtained from the SATW if one sets β = 1/[1 + exp(−u)]. All technical steps can then be reproduced and lead to the following
determination of the persistent exponent, which is independent of k:

θ = e−u

2
= 1 − β

2β
. (G11)

APPENDIX H: OVERVIEW OF 1D PROCESSES WITH θ = 1/2

Here we briefly review several processes that are known to be asymptotically diffusive. We check that in all cases where
increments are stationary or stationary after a finite timescale, the persistent exponent is 1/2 in agreement with our general
criterion.

1. One-dimensional Rouse chain

We consider the Rouse model of a free polymer chain evolving in a 1D space. The chain is formed by N diffusing monomers
connected by linear springs. It can be shown that the position process of a tagged monomer is diffusive at large times, (t � τ0N2,
where τ0 is a microscopic timescale) and that in this regime the increments are stationary [40]. Recently the exact algebraic decay
of the survival probability has been obtained in Ref. [7], reporting the expected value θ = 1/2.

2. Lévy flights and Lévy walks

We now consider the case of Lévy flights, where at each step a 1D walker performs in a random direction a jump whose
length l is drawn from a distribution with the power-law tail given by

p(l ) ∼ 1

l1+β
. (H1)

By definition of the process the increments are stationary (the process is Markovian) and for β � 2 the process is diffusive.
In previous studies two definitions of the first-passage time to the target have been used. In the first case, the target can be
detected only when the walker ends a jump (arrival prescription). In the second case, the target can be detected as soon as it is
crossed by the walker (crossing prescription). Let us note that both definitions lead to a persistent exponent θ = 1/2 [8,41]. We
now turn to Lévy walks. A Lévy walker performs a series of independent and randomly oriented ballistic jump at a constant
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(a) (b)

FIG. 8. (a) Ageing of the increments for the Monkey walk (normalized by the expected diffusive scaling at long times). Each curve
corresponds to a fixed value of T . Even if the process is non-Markovian, the increments are stationary (respectively independent from T ).
(b) Survival probability as a function of time (log scale) with β = 3.0 for different values of q. Numerical simulations (symbols) and power-law
fit (plain line). All the curves perform a power-law decay with θ = 1/2.

speed, where each excursion of length l is drawn from the power-law distribution (H1). As for the Lévy flights for β � 2
the process is diffusive, performs asymptotically stationary increments [42–44]. In this case we recover a persistent exponent
θ = 1/2 [4,45].

3. Continuous-time random walk

The continuous-time random walk is a generalization of a simple random walk for the which the walker waits a random time
between each jump. The successive waiting times are independent of each other and are drawn from a power-law distribution,

p(τ ) ∼ 1

τ 1+β
. (H2)

For β > 1, the process is known to be diffusive and performs asymptotically stationary increments [46–49] and the persistent
exponent is also equal to 1/2 [4].

4. Simple persistent walk

We consider the following persistent random walk model in continuous time and space:

dx

dt
= vσ (t ) + 2Dη(t ), (H3)

where the random variable σ (t ) switches between ±1 at a constant rate γ and η(t ) is Gaussian white noise. It is easily seen
that the process is diffusive and displays transient ageing. The survival probability has been derived for this model as well as for
similar versions [50–52] and shows that the persistent exponent is equal to 1/2.

5. Random walks with preferential relocation to visited places

To confirm the validity of our criterion we consider an another reinforced random walk with long-range memory effects
introduced in Ref. [29]. It can be defined as follows in 1D. The walker starts at the origin on a discrete lattice of unit spacing.
At each time step the walker has a probability 1 − q to jump on a site chosen uniformly among the nearest neighbors or with
a complementary probability q to jump to a site that has been previously visited at a time t ′ ∈ [0, t] with a probability given
by a time-dependent kernel pt (t ′) = N (t ) 1

(t−t ′+1)β where N (t ) is a normalization constant. For β > 2 it has been shown that the
process is diffusive at large times [29]. Here we present numerical results for β = 3. The increments are found to be stationary.
The value θ = 1/2 is verified for any parameter q ∈]0, 1[, in agreement with our criterion (see Fig. 8).
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