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Distributions of bubble lifetimes and bubble lengths in DNA
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We investigate the distribution of bubble lifetimes and bubble lengths in DNA at physiological temperature, by
performing extensive molecular dynamics simulations with the Peyrard-Bishop-Dauxois (PBD) model, as well
as an extended version (ePBD) having a sequence-dependent stacking interaction, emphasizing the effect of the
sequences’ guanine-cytosine (GC)/adenine-thymine (AT) content on these distributions. For both models we find
that base pair-dependent (GC vs AT) thresholds for considering complementary nucleotides to be separated are
able to reproduce the observed dependence of the melting temperature on the GC content of the DNA sequence.
Using these thresholds for base pair openings, we obtain bubble lifetime distributions for bubbles of lengths up to
ten base pairs as the GC content of the sequences is varied, which are accurately fitted with stretched exponential
functions. We find that for both models the average bubble lifetime decreases with increasing either the bubble
length or the GC content. In addition, the obtained bubble length distributions are also fitted by appropriate
stretched exponential functions and our results show that short bubbles have similar likelihoods for any GC
content, but longer ones are substantially more likely to occur in AT-rich sequences. We also show that the ePBD

model permits more, longer-lived, bubbles than the PBD system.
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I. INTRODUCTION

Over the past two decades, the study of thermally induced
transient local openings in double-stranded DNA (the so-
called bubbles) has given valuable insight into the potential
effect of DNA dynamics on gene transcriptional activity. The
fundamentally dynamic process of transcription, which re-
quires the opening of the DNA helix to allow formation of
the corresponding RNA strand and then closing again, has
prompted the idea that DNA dynamics may be an intrinsic
factor in the very first stages of transcription [1,2]. Bubble
opening profiles of various promoter sequences have been
studied extensively, revealing correlations between the tran-
scription start site (TSS) or other transcription factor binding
sites and regions of high propensity for bubble formation
[2-11], suggesting that large fluctuational openings of dou-
ble stranded DNA may play some role in the process of
transcription. Moreover, investigating the lifetimes of bub-
bles through Langevin molecular dynamics, it has been found
that in several experimentally well-studied promoters, long-
lived bubbles tend to form particularly frequently at the TSS
[5,6,12].

The advent of coarse-grained mesoscale models has been
a major factor enabling the study of bubbles in DNA. In
particular, the Peyrard-Bishop-Dauxois (PBD) model [13] has
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proved to be very successful in reproducing various experi-
mental observations. The model has been developed over time
to include a nonlinear coupling to accurately model stacking
interactions between the base pairs, resulting in the observed
sharp denaturation curve of DNA molecules [14-17]. This
nonlinearity has also been shown to be crucial for the forma-
tion of bubbles in double stranded DNA [18]. The PBD model
has been used extensively to investigate various properties
of DNA, from quantifying its chaoticity [19,20], to studying
signatures of localized large thermal openings in the dynamic
structure factor [21], examining nonexponential decay of base
pair opening fluctuations [22], and more [23—-34]. Beyond this,
other models have been devised to study different aspects of
DNA activity [35-45].

The importance of bubbles extends beyond studying
DNA’s transcriptional function, as for example the presence
of bubbles has been found to impact charge transport in DNA
molecules [46-50]. Particularly the propagation of a charge
along the double helix interacts with bubble openings [51-53],
while mobile discrete breathers [54] have been suggested as
playing a role in charge trapping in DNA [55].

In this work, considering the PBD model, as well as an
extended version of it (ePBD) which takes into account the
particular type of neighboring base pairs in the stacking inter-
action parameters, we present statistical properties of DNA
bubbles, including a detailed numerical study of the distri-
butions of bubble lifetimes and lengths in arbitrary DNA
sequences at physiological temperature (7 = 310 K). The
paper is organized as follows. In Sec. I we describe the PBD
and the ePBD models used in this investigation and calculate
the energy-temperature curves of the two systems. In Sec. III
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TABLE 1. Values of the ePBD stacking constants K, ,_; of
Eq. (2), in units of eV/A2. The rows denote the base at site n — 1
and the columns denote the base at site n in the conventional 5'-3’
direction. The values have been obtained from Fig. 2 of Ref. [57].

Ko n-i C-3 G-3 A-3 T3
5'-C 0.0192 0.028 0.025 0.0229
5'-G 0.0249 0.0192 0.019 0.0226
5-A 0.0226 0.0229 0.0228 0.023
5'-T 0.019 0.025 0.0193 0.0228

we suggest physical thresholds for considering base pairs to
be open in the studied models and show that they are con-
sistent with conventional melting examinations. Then, using
these thresholds, in Secs. IV and V, respectively, we present
the distributions of bubble lifetimes and bubble lengths and
discuss their characteristics. Finally, in Sec. VI we summarize
our results and mention some future directions for research.

II. DNA MODELS

In this work we use the PBD model of DNA, as well as its
extended version ePBD (see below), to study DNA sequences
using microcanonical molecular dynamics. In the PBD frame-
work, the on-site intrabase-pair interactions are modeled by a
Morse potential V,

V(yn) = Dule™ ™ — 12, (1)

with y, representing the relative displacement from equilib-
rium of the bases within the nth base pair of a DNA sequence.
The nonlinear stacking interaction is accounted for by an
anharmonic coupling W,

K,

W(yna yn—l) =

n—1
S pe N =y’ ()

Thus, considering periodic boundary conditions, the resultant
Hamiltonian of a DNA sequence having in total N base pairs
reads

N 2
H= 21: |:2p_’;11 + V(yn) + W(Yn’ yn—l):|7 (3)

where p, are the conjugate momenta to the canonical dis-
placements y,. The parameter values used here are taken
from fittings to melting curves of short oligonucleotides [56],
which have been used extensively in previous studies (e.g.,
Refs. [2-5,20-22,25-28]). These values are m = 300 amu
for the base pair reduced mass, Dgc = 0.075 eV, age = 6.9
A-'and Dsr = 0.05eV, asr = 4.2 A1 for guanine-cytosine
(GC) and adenine-thymine (AT) base pairs, respectively, in
the Morse potential, and K, ,—; = k = 0.025 eV/A‘z, p =2,
and b = 0.35 A~! for the stacking interaction.

In the extended ePBD model, more sensitive sequence de-
pendence is encoded by varying the coupling constant K, ,—;
in Eq. (2) depending on the particular succession of neighbor-
ing base pairs [57]. The used, sequence-dependent, coupling
constants are given in Table I, for each possible configura-
tion of successive base pairs. This extended model has the
advantage of more accurately modeling the experimentally

observed strong effects on melting temperatures of particular
base sequences [57], and it has been used efficiently for in
silico genetic engineering of gene promoters [6].

Our microcanonical numerical simulations were per-
formed by using symplectic integrators, which are integration
techniques designed specifically for the efficient long-time
integration of Hamiltonian systems (see e.g., Ref. [58]).
In particular, we used the fourth-order symplectic Runge-
Kutta-Nystrom method (SRKNb6) [59], which managed to
numerically preserve the constancy of Hamiltonian Eq. (3)
(usually referred to as the system’s energy) with very good
accuracy, as the relative energy error |H(t) — H(0)|/H(0)
was always smaller than 1075, The initial conditions of our
simulations were set as follows: For all n = 1,2, ..., N the
initial base pair stretchings are y, = 0, while p,, are randomly
chosen from a normal distribution with zero mean and unit
variance. Then the p, values were uniformly scaled in order
to achieve the required energy H, Eq. (3), or energy density
Exy = H/N value. We note that in all simulations we impose
periodic boundary conditions: yo = yn, Yn+1 = Y1, Po = PN
and py11 = p1.

As a first step in examining the properties of the PBD
and ePBD models, we investigate the relationship between
the energy density Ey and the temperature 7 for the two
models. Since simulations for both systems are performed in
the microcanonical ensemble at constant energy H, Eq. (3),
the effective temperature of the system is estimated using
the mean kinetic energy per base pair (K) = 1lv >, pi/(2m),
through the relation T = 2(K)/kg, with kz = 8.617 x 107>
eV /K being the Boltzmann constant. Computing this effec-
tive temperature at different energy densities for the two
models yields similar but quantitatively slightly different
behaviors.

Figure 1(a) shows the energy-temperature relation for the
ePBD model, when DNA sequences with various AT/GC
composition (quantified by the percentage of GC base pairs,
Psc) are considered. More specifically, results for a homoge-
neous DNA sequence consisted solely by AT (Pgc = 0%, blue
circles) or GC (Pgec = 100%, purple squares) are presented,
along with data for the heterogeneous case with Pgc = 50%
(green triangles). Similar data for Pgc = 25% and Pgc = 75%
have been also computed [not shown in Fig. 1(a) for clarity].
For all these cases, averaging was obtained over 100 different
realizations of DNA sequences with N = 1000 base pairs
each. For the homogeneous cases 100 different initial condi-
tions were created, while in the case of heterogeneous DNA
sequences with fixed Pgc, 100 different random arrangements
of the AT and GC base pairs were considered with random
initial conditions. All these cases were integrated for 10 ns
to allow the system’s thermalization, and then the tempera-
ture was recorded every picosecond for a further nanosecond.
Averaging over all these numerical results yields the final
data points as those shown in Fig. 1(a), where the computed
standard deviations give the presented error bars. Results for
the PBD model are very similar to those shown in Fig. 1(a).

Atlow temperatures we see in Fig. 1(a) a linear relationship
between the energy density Ey and the temperature 7' of the
form Ey = kgT, as expected. As the temperature increases, a
nonlinear dependence appears and the addition of a simple
cubic term provides a close fit to the data [see curves in
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FIG. 1. (a) Relationship between the energy density Ey and the
temperature 7' of the ePBD model, for different percentages Pgc of
GC base pairs in the DNA sequence (points). The data are fitted quite
well with Eq. (4), as shown by the curves. Results obtained for the
PBD model are similar. (b) Variation of the fitting parameter y in
Eq. (4) with the GC percentage Psc of the DNA sequence, showing
a linear increase as Psc grows for both the PBD (blue circles) and
the ePBD (empty orange squares) models. Lines represent linear
fits of the corresponding data, whose equations are also shown. The
values in the parentheses indicate the error of the computed fitting
parameters, with, for example, 4.97(1) denoting 4.97 & 0.01.

Fig. 1(a)]. We used the fitting equation
Ey = kT +yT°, 4)

with y being a fitted constant. Applying a least-squares fitting
algorithm [60], we find Eq. (4) to approximate very well
the numerical data for both models, at all Pgc percentages.
The resulted values of the fitting parameter y are shown in
Fig. 1(b). For both systems the obtained values of the co-
efficient y are of the order of 107!° eV/K3 and are very
well represented by linear functions of the percentage Pgc,
as shown by the straight lines in Fig. 1(b). The parameter y
of the ePBD model is shifted to higher values than that of
the PBD system, indicating that the ePBD energy is slightly
above the corresponding PBD energy for larger temperatures.
This suggests that the lower average stacking energy of the
ePBD model (see Fig. 2 of Ref. [57]) results in a slightly
higher overall energy as compared to the PBD model at the
same temperature.

The calculated energy-temperature relations will be used in
the following sections in order to obtain results corresponding
to fixed temperatures, through our microcanonical numerical
computations. In particular, to simulate the PBD or ePBD
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FIG. 2. The fraction f, of open base pairs as a function of tem-
perature T in the PBD model, for chains of various Pgc percentages,
stopping at the melting temperature in each case (points). Data are
line-connected to guide the eye. The thresholds used here for consid-
ering a base pair as open are y/. = 0.15 A and Yl =0.24 A (see
text for details). The horizontal, solid black line indicates the value

f, = 0.5, 1.e., 50% of base pairs are open.

system at a desired temperature, we determine its conserved
energy density through the respective Ey — T relation and
then follow the numerical integration procedure mentioned
above.

III. BUBBLE OPENING THRESHOLDS

In order to effectively investigate statistical properties of
bubble openings, we first define a threshold for considering a
base pair to be separated. In various studies, the thresholds
used for this purpose range from around 0.5 A up to 5 A
or more, depending on the particular application (see, e.g.,
Refs. [2-9]). Here we choose a threshold that is able to re-
produce the known melting behavior of DNA molecules in
the PBD model [28], taking into account that by definition at
the melting transition 50% of base pairs are separated. Thus
the requirement is for our threshold to mark 50% of base pairs
open at the melting temperature, for sequences of varied AT
and GC base pair compositions.

Actually the characteristic length of the intrabase-pair
Morse potential in Eq. (1), 1/agc and 1/asr for GC and
AT base pairs, respectively, provides a physical choice that
turns out to fulfill our requirements on such a threshold. It is
important to note here that we are using a different opening
threshold for AT and GC base pairs. The use of a common
threshold is not so consistent with the requirement of 50%
open base pairs at melting. On the other hand, it is reasonable
to consider different thresholds for the opening of GC and AT
base pairs due to the variation of the parameters describing the
corresponding on-site Morse potential.

In Fig. 2 we see for the PBD model the increase in the frac-
tion of open base pairs f, with temperature 7, up to the melt-
ing temperature defined by T78P = 325 4 0.4P5¢ [28], for
the proposed thresholds of y{i. = 1/agc = 0.15 A and y/fi =
1/asr = 0.24 A for GC and AT base pairs, respectively. Each
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FIG. 3. The fraction f, of open base pairs at a given tempera-
ture T for the ePBD model with various Pgc percentages (points),
stopping when f, = 0.5 (horizontal solid line) in each case. Data
are line-connected to guide the eye. The thresholds for considering a
base pair as open are as in Fig. 2. Vertical dotted lines indicate the
estimated melting temperatures 7,, for the corresponding Pg¢ value.

point gives the averaged fraction of open base pairs over 100
different realizations of DNA sequences with N = 1000 base
pairs, apart from the last five points (closest to the melting
transition) shown in each case, where 200 runs were used
in order to have better statistics in the region of interest. At
the melting point (corresponding to the high temperature end
of the presented data), almost exactly 50% of the base pairs
are open (the value f, = 0.5 is indicated by the horizontal,
solid line in Fig. 2). These results suggest that the proposed
thresholds can be efficiently used as appropriate measures
for considering base pairs to be open. It is worth noting that
since in the PBD model a scaling factor of 1/+/2 is applied to
the stretchings y, [3,14], the actual relative displacements of
complementary bases represented by these thresholds are 0.21
A and 0.34 A for GC and AT base pairs, respectively.

Noting that the Morse potential, Eq. (1), governing the
intrabase-pair interactions remains unchanged in the ePBD
model, we can implement the same threshold values as in the
PBD system for defining the opening of a base pair in the
ePBD case. Then, repeating in Fig. 3 for the ePBD model
similar calculations to the ones presented in Fig. 2, we can
obtain the melting temperatures of the ePBD system as the
temperature values at which the fraction of open base pairs
is f, = 0.5, without going through the detailed procedure
implemented for the PBD model in Ref. [28]. This approach
allows us to estimate the melting temperature T¢75P of the
ePBD model for various Pgc levels. The corresponding 7,¢"5P
values are indicated by the vertical lines in Fig. 3, and they are
accurately obtained (in K) by the relation

TePBP = 315 4+ 0.4Pgc, 5)

which retains the experimentally observed linear relationship
between the melting temperature and the GC percentage, ex-
hibiting a slope in quantitative agreement with the measured
value [61].

IV. BUBBLE LIFETIME DISTRIBUTIONS

Based on the base pair opening thresholds determined in
Sec. I1I, we are now investigate in detail the statistical proper-
ties of bubbles in DNA at 7 = 310 K. By performing constant
energy molecular dynamics (MD) simulations, we track the
creation and destruction of bubbles, and record their life-
times. Our microcanonical simulations differ from previous
studies of bubble lifetimes using Langevin MD [5,6,12]. The
microcanonical ensemble probes the inherent characteristic
times of the model, in contrast to the Langevin dynamics
which introduces artificial time scales through the arbitrary
damping coefficient. On the other hand, there are of course
benefits to considering the fluctuations provided by the ran-
dom forces in Langevin dynamics, in order to better mimic a
heat bath at finite temperatures and assess relative timescales
of different fluctuations. However, even in this case it is
not known whether the white noise of the stochastic term
in Langevin simulations realistically describes the biological
environment, or a colored noise with specific characteristics
is more appropriate to describe the interactions of DNA with
its surroundings. Therefore we have preferred as a first step
to investigate the inherent dynamics of the system using mi-
crocanonical simulations, while its temperature is effectively
represented through the energy density Ey as is described in
Sec. II [see Eq. (4)]. It is not obvious what effect Langevin
dynamics would have on the calculated distributions and how
the arbitrary friction constant affects the lifetime distributions.
Such an investigation is left for a future work.

Obtaining statistically sound bubble lifetime distributions
for different bubble lengths is a computationally nontrivial
task, due to both the large amounts of data required and the
complexity of the problem of identifying and tracking bubbles
accurately. To clarify the method we used to obtain bubble
lifetime distributions, the outline of the implemented algo-
rithm for the production of the distributions for an individual
realization is as follows:

(1) Perform MD simulations to create records of open or
closed information for each base pair in the DNA sequence at
each time step.

(2) At each time step, look along the sequence and record
the length of any occurring bubble, attributed at the corre-
sponding starting site.

(3) Check each bubble (site and length) against the previ-
ous time step:

a. If a bubble occurs somewhere that there was no bub-
ble previously, begin a record of that bubble—a tuple of
(Iength, lifetime).

b. If a bubble survives identically, increment the life-
time of that bubble by one time step.

c. If a bubble changes length, close the record of that
bubble, and start a new record at that site with the new
length.

d. If no bubble is present somewhere that it was exist-
ing a bubble previously, close that record.

(4) At the end of the simulation, record the list of (Iength,
lifetime) tuples at each site.

We note that our simple bubble-tracking criteria are fairly
strict, in that small fluctuations at the end of a given bubble,
due to transient openings or closings of base pairs at its ends,
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FIG. 4. Bubble lifetime distributions P,(¢) for different GC per-
centages Pgc, in the case of bubble length (a) [ =1, (b) [ =2,
(¢) I =3, and (d) [ = 8 (points). Results are shown for the ePBD
model, with similar distributions being obtained for the PBD system.
The dashed curves correspond to fits of the data with the stretched
exponential function of Eq. (6).

would result in starting new bubbles from the beginning.
While this choice provides a straightforward and efficient
method of lifetime calculation, other more flexible criteria
allowing small fluctuations of bubbles when computing their
lifetimes may be relevant too. Further, other algorithms mea-
suring the lifetime of bubbles with size larger than a particular
length may also be of interest, in particular for exploring
bubble dynamics in biologically functional DNA sequences.
Data from many runs can be combined to create statisti-
cally meaningful distributions. In our investigation, for each
case studied (different AT/GC content) we have in generally
used 1000 different realizations of N = 100-base-pair-long
DNA sequences, integrated until 10 ns for thermalization, and
then data recorded every 0.01 ps for the next 1 ns. In order to

establish the accuracy of the implementation of the used algo-
rithm, in the absence of existing results for bubble lifetimes
by microcanonical simulations, tests were performed against
artificially created data sets with known distributions, and the
full analysis as outlined above was performed on these data
sets. The code exactly reproduced the known distributions,
providing an assurance about the reliability of the results
presented below.

Based on the data obtained with this approach we first
examine the effect of the AT/GC composition of DNA
molecules on the bubble lifetime distributions P;(¢), for differ-
ent bubble lengths /. Representative distributions for several
bubble lengths and GC percentages are shown with points
in Fig. 4, illustrating an approximately exponential profile
with the exception of single base pair openings for / =1
[Fig. 4(a)]. Data for nine different P;c percentages have been
obtained, but for clarity we do not present all of them in
Fig. 4. Further, lifetime distributions P;(¢) for bubble lengths
[ =1,2,...,10 have been calculated, but the cases [ > 4 are
very similar, and thus only the P,_g(¢) is shown in Fig. 4(d).
Only results for the ePBD model are shown in Fig. 4, as on
this scale the difference between the PBD and ePBD data is
very small.

We see from Fig. 4(a) that in the case of bubbles with
| = 1 a two-peaked profile is present, with the height of these
two peaks depending on the GC content. Apart from the case
with Pgc = 0%, the two peaks are visible around ¢ = 0.1 ps
and t = 0.25 ps. In the case of homogeneous AT sequences
(Pgc = 0%) the two peaks are very broad, located around ¢t =
0.15-0.20 ps for the first one and around ¢t = 0.4-0.5 ps for
the second. The positions of these peaks are not related to the
periods of the ¢ =  vibrational normal modes of GC or AT
base pairs (at around 0.4 ps and 0.8 ps, respectively, which are
further increased due to thermal softening at T = 300 K [21]).
The particular complex structure of these distributions may
arise from the interplay of the characteristic times of single
base pair bubbles and the transient / = 1 base pair openings
of either increasing or decreasing in size larger bubbles dur-
ing their opening and closing, respectively. As evidenced in
Figs. 4(b) and 4(c) some peaks can be still distinguished in the
cases of [ =2 and [ = 3, but they become less prominent a [
increases. For longer bubbles a smoothing out of these peaks
is observed, as seen, for example, in Fig. 4(d).

The bubble lifetime distributions P;(¢) can be fitted quite
well with a stretched exponential function,

P(t) = Aexp[—(t/7)"], (6)

for all cases apart from [ = 1, where the stretched exponen-
tial parameters S and t depend on / and Pgc. These fits
are shown for all cases in Fig. 4 by dashed curves. When
the corresponding curve is not visible, it is covered by the
overlying data points. From Fig. 4(a) we see that the stretched
exponential distribution, Eq. (6) does not capture of course the
somewhat complex double-peaked profile for / = 1, but still
provides a rough approximation of the overall behavior. For
| > 2 however, the stretched exponential of Eq. (6) describes
the numerical data much more accurately [see Figs. 4(b)—4(d)]
and can be used to meaningfully approximate the bubble life-
time distributions.
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FIG. 5. The fitting parameters of the bubble lifetime distributions
P,(¢) of Eq. (6) for different Pgc percentages (points shown by dif-
ferent colors): (a) the stretched exponent 8 and (b) the characteristic
time t, with respect to the bubble length / [in number of base pairs
(bp)]. The dependencies on / of both of these parameters are fitted
with the exponentially decaying functions, Egs. (7) and (8). In (a) and
(b) filled (empty) symbols indicate results for the PBD (ePBD) model
and solid (dashed) curves show fits with Eq. (7) and Eq. (8), respec-
tively. The insets in (a) present the dependence of the parameters cp
and A of Eq. (7) on the GC content of the sequence (quantified by the
Pgsc value) for the PBD (blue circles) and the ePBD (empty orange
squares) models. Solid and dashed curves represent appropriate fits
of the corresponding PBD and ePBD data with quadratic functions.
These parameters are almost identical for the two models. The insets
in (b) are similar to the ones in (a) but for the ¢, and 7, parameters of
Eq. (8).

The values of the numerically obtained fitting parameters t
and B of Eq. (6) are shown in Fig. 5. It is apparent, already by
inspection of Fig. 4, and, more precisely, from the behavior
of the stretched exponent 8 in Fig. 5(a) (which practically
becomes B = 1 for larger / values, irrespective of the GC
percentage), that the P;(¢) distributions of Eq. (6) become
more closely exponential as the bubble length [ increases.
In fact, because B > 1 for short bubbles, the corresponding
distributions show a compressed exponential behavior mean-
ing that there exist more short-lived bubbles (with lifetimes
smaller than t) and less long-lived bubbles (with lifetimes
larger than 7) in these cases as compared to a purely expo-
nential distribution. This leads to average lifetimes which are
smaller than the characteristic times 7, as we will see below

(cf. Fig. 7 below). This functional dependence reflects the
extreme rarity of large long-lived bubbles in arbitrary DNA
sequences. It is worth noting that as we see from the data of
Fig. 5(a) the values of the 8 exponent decay exponentially, and
they are practically the same for the PBD (filled symbols and
solid lines) and the ePBD (empty symbols and dashed lines)
models, at any GC content.

From the results of Fig. 5(b) we see that the characteristic
time v of Eq. (6) also decreases exponentially with bub-
ble length, up to an asymptotic value dependent on the GC
content. The PBD and ePBD models give a little different
values for 7, with slightly longer characteristic times observed
always in the ePBD model, while the difference is more no-
ticeable as the AT content of the sequence increases. This,
taking also into account that the exponent 8 is practically the
same for both models, suggests that the ePBD model exhibits
typically longer-lived bubbles than the PBD model.

The variation of both parameters 8 and t of Eq. (6) with
the bubble length / can be fitted with simple exponentials, of
the form

B =cgexp(—=I/ig)+1, @)
T =cyexp(—I/ ;) + 1. ®)

As already mentioned, the 8 values are almost indistinguish-
able for the PBD and ePBD models. This is also reflected
by the fact that the computed cg and Ag values of Eq. (7)
for various GC contents are practically identical for both
DNA models, as shown in the insets of Fig. 5(a). Thus, the
dependence of cg and Ag on Pgc can be very well approx-
imated by the same quadratic functions for the PBD and
the ePBD models, and the corresponding fitted equations
are cg = 0.0017(1)(Pgc)* — 0.14(1)Psc + 5.9(2) and Ag =
—0.00015(2)(Pgc)? + 0.014(2)Pge + 0.93(4). Thus, for both
DNA models the bubble lifetime distributions P;(¢), Eq. (6),
approach simple exponential functions for larger bubble
lengths / at the same way, as the exponent § tends towards
1 identically in both cases.

We also find that the values of ¢; and A, in Eq. (8) are
similar for the two models. As demonstrated in the upper inset
of Fig. 5(b), c; varies almost linearly with the GC percentage,
fitted by ¢, = 0.66(1) — 0.0026(2)Pg¢ for both models, while
Ar = 1.9 bp is constant across all compositions for both PBD
and ePBD cases. On the other hand, as we see in the lower
inset of Fig. 5(b), the asymptotic value 7 in Eq. (8) shows a
linear decrease with Pgc for both systems, while it is always
slightly larger for the ePBD model. In particular, this linear
dependence can be fitted by 79 = 0.19(1) — 0.0006(2)Pgc,
for the PBD model and 7y = 0.20(1) — 0.0007(2)Pg¢ for the
ePBD model.

These results show that the difference between the two
models in random averages is only evident in the linear shift
of the asymptotic value 7y of 7 in Eq. (8), with the shape of
the distributions P;(¢), Eq. (6), otherwise being very similar.
In our computations the normalization constant A in Eq. (6)
was considered as a free fitted parameter. The numerically
obtained A values quite accurately reproduce the normaliza-
tion condition fooo Pi(t)dt = 1, as this property was recovered
with an overall discrepancy of around 5%.
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FIG. 6. The difference Poc — Pcg in the ePBD model between
the normalized bubble lifetime probability distributions for DNA
sequences containing only C bases along one strand (and G bases
along the complementary one), and sequences of alternating CG
bases along each strand. The positive difference at longer lifetimes
indicates the tendency of longer-lived bubbles to be formed in the
homogeneous sequence as compared to the CG periodic repeats.
Each line corresponds to a different bubble length, as shown in the
legend.

The advantage of the ePBD model is that it can accurately
predict the thermal openings and denaturation temperatures
of homogeneous and periodic DNA sequences exhibiting
unusual melting transitions, where the original PBD model
makes no distinction [57]. A characteristic example is pro-
vided by the homogeneous (C)s;s and the periodic (CG)g
oligonucleotides, where their melting temperatures differ by
more than 20 degrees (74 °C and 96 °C, respectively [57]).
The PBD model cannot distinguish these two sequences. On
the contrary the ePBD model can successfully describe their
different melting behavior through the different stacking con-
stants K¢¢ in the former sequence and K¢, Kgc in the latter
one. Even though the averaged results on random sequences
presented in this work show small quantitative differences
between the PBD and ePBD models, when such specific DNA
segments are considered then the ePBD model provides more
accurate calculations of the bubble distributions. To explicitly
demonstrate this, we have calculated the bubble lifetime dis-
tributions for the homogeneous (C)s¢ and the periodic (CG);g
DNA segments of 36 base pairs using periodic boundary
conditions in both cases. For simplicity we refer to these
sequences as CC and CG, respectively, and the corresponding
normalized bubble lifetime distributions are denoted as Pcc
and Pcg. The PBD model obviously gives identical distribu-
tions Pcc and Pcg. These are very similar to the Pcg obtained
by the ePBD model, due to the almost identical value of Kg¢
with the parameter k of PBD and the relatively nearby value
of Kcg (see Sec. II and Table I). However the ePBD model
results in systematic differences in the Pc¢ distributions due
the much smaller value of K¢¢. This is shown in Fig. 6 through
the difference Poc — Peg, computed by averaging over 4000
realizations. A systematic variation can be seen in these distri-
butions for all bubble lengths examined here, as Pec is smaller

+ Poc=100% ¢ Poc=3"%
0.35f  Poc=88% o Puoc=2% 1
PGC =75% A PGC = 12%
0.301 » Poo = 63% & FPoo= 0% A
z Pac = 50%
2 0.25¢ ]
=
0.201 ]
0.15¢ ]
Pge = 100% o  Poc=3T%
0.35F Poe = 88% o Pgoc=2% |
PGC:75% A PGC: 12%
Pao = 63% & Pao = 0%
/g 0.30 Poe — 50%
=< 0.25¢ ]
=
0.20f RRE S TRE i ot B
0.15¢ ]
1 2 4 5 6 7 8 9 10
L (bp)

FIG. 7. Mean bubble lifetimes (), as a function of bubble length
[ for (a) the PBD and (b) the ePBD model, for different Psc per-
centages (points). Solid and dashed curves in, respectively, (a) and
(b) show fits of the data with Eq. (10).

than Pcg for relatively short-lived bubbles (indicating more
such bubbles in the CG alternating sequences), while it is the
other way around for longer-lived bubbles (revealing more
long-lived bubbles in the homogeneous CC segment, which
has a lower stacking energy). At their largest, these differ-
ences are greater than 10% of the distribution values at that
point. These results show the effect of the sequence-dependent
stacking encoded in the ePBD model on the bubble lifetimes
of specific DNA segments.

We can numerically estimate the mean bubble lifetime (¢);
according to

M
(1) =Y Pt ©)
i=1

where P;(t;) is the numerically estimated probability density
of bin { with width §¢, and ¢; is the time at the middle of
that bin. As this sum is finite and based on the fact that P;(t)
practically vanishes for relatively large ¢, the (¢t); value in
Eq. (9) is computed by considering M = 500 bins of width
8t = 0.01 ps. The obtained results are presented in Figs. 7(a)
and 7(b) for the PBD and ePBD model, respectively. We
see that the mean bubble lifetime decreases exponentially
with bubble length /. A clear monotonic decrease in bubble
lifetimes with increasing Pgc values is also evident at every
bubble length. By comparing Figs. 7(a) and 7(b) we see that
the ePBD model exhibits slightly higher average lifetimes, but
nevertheless shows the same trend as the PBD model. These
longer average lifetimes in the ePBD model are consistent
with results found in Ref. [57] showing that in general larger
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FIG. 8. Dependence of (a) the asymptotic value §, (b) the char-
acteristic length o, and (c) the prefactor B, of the fitting of the (¢),
numerical data in Fig. 7 with Eq. (10) on the GC content of the
DNA sequence. Blue circles show results for the PBD model and
empty orange squares for the ePBD model. Lines show linear fits of
the presented data with the equations reported at the corresponding
panel.

base pair displacements are observed in the ePBD than the
PBD model (see Fig. 4 of that reference), taking also into
account that the same opening thresholds are considered here
in both cases.

The dependence of the mean bubble lifetime (¢); on the
bubble’s length / for both PBD and ePBD models is accurately
fitted through a simple exponential decay of the form

(t); = Bexp (—l/a) 44, (10)

as shows the good description of the data points in Figs. 7(a)
and 7(b) by the solid and dashed curves, respectively. The Pg¢
dependence of the three free parameters of Eq. (10), namely
the asymptotic value § [see Fig. 8(a)], the characteristic length
o [see Fig. 8(b)], and the prefactor B [see Fig. 8(c)] is reason-
ably approximated by linear fits. These are shown by solid
blue and dashed orange straight lines in Figs. 8(a)-8(c) along
with the corresponding PBD (blue circles) and ePBD (empty
orange squares) data.

Closing this section, we note that the characteristic times
of the bubble lifetimes calculated here are of the order of
~ 107! ps. This timescale coincides with the faster relaxation
time (between at least two distinct relaxation processes ap-
peared in the range from 1072 up to 3 x 10% ps) observed
in the time-dependent autocorrelation functions of base pair
fluctuations in the PBD model for homogeneous (purely AT
or GC) DNA sequences (see Figs. 1 and 2 of Ref. [22]). In that

<a> * Poe = 100%
]_071 3 Poe = 5% 4
| 2 P(;(j = 50%
10_2 3 [ ] ch = 25% 3
= Pae = 0%
< 107%F 3
10~4¢ i
1075} :
(b) & PGC = 100%
107! 'O'~_~ Pae=175%
*\ﬁ PGC = 500/0
1072 3 Q@\g o PGC =25% 1
= ‘ AL Poc = 0%
< 107°F
1074,
1075,
10° 102

FIG. 9. The probability P.(/) for the appearance of bubbles of
length / in double-stranded DNA at physiological temperature 7 =
310 K, for various Pgc percentages, plotted in log-log scale for (a) the
PBD model and (b) the ePBD model (points). Solid curves in (a) and
dashed curves in (b) depict fits of the data with Eq. (11).

work, local fluctuations of base pair openings were considered
(corresponding to [ = 1), while microcanonical MD was also
used.

V. BUBBLE LENGTH DISTRIBUTIONS

Let us now discuss the distribution of bubble lengths
based on our MD simulations. Investigations of such distribu-
tions and their dependence on GC content have already been
performed using Monte Carlo simulations, at physiological
temperature [27], as well as in the temperature range 270—
350 K [28]. A uniform threshold of y, = 1.5 A was used
for both types of base pairs in those studies. Here we use
extensive MD calculations and the base-pair-specific thresh-
olds defined in Sec. III to examine these distributions, at a
fixed temperature of 7 = 310 K. For this purpose we per-
form simulations for DNA sequences of N = 1000 base pairs,
considering 8000 different, random realizations. Each case is
again integrated for 10 ns to ensure thermalization, and then
bubble length data are recorded every 0.1 ns for a further
10 ns. These conditions ensure a quite rich statistics, which
is necessary for the accuracy of the tails of the distributions
for bubble lengths of the order of tens of base pairs.

Corresponding results are shown in Fig. 9. Distributions
of bubble lengths Py () for different GC percentages at T =
310 K are presented in Fig. 9(a) for the PBD and in Fig. 9(b)
for the ePBD model. Similar data have been obtained for
four more Psc cases, in between of those values depicted
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in Fig. 9, not shown here for clarity. From the profiles of
these distributions we see that for short bubble lengths (I < 4)
the probabilities are relatively unaffected by the base pair
content, as practically the Py (l) results coincide for all Pge
values. However for longer bubbles, the GC content of the
DNA sequence plays a significant role on the bubble length
probabilities as different Pp (/) values are observed at dif-
ferent Psc levels. In particular, in this case AT-rich strands
exhibit noticeably more large bubbles than GC-rich sequences
in both models, as expected. While this behavior, at larger
bubble lengths, is in accordance to what has been previously
observed for the PBD model using uniform thresholds [28],
the shorter length insensitivity of the distributions on the base
pair content of the sequence shown in Fig. 9 is unique for the
base-pair-specific thresholds considered here.

The ePBD model [Fig. 9(b)] favors the appearance of more
bubbles at all lengths and GC contents with respect to the
PBD system [Fig. 9(a)], in line with the overall lower melting
temperatures exhibited by this model, although for the case
of pure GC sequences (Pgc = 100%) the two models give
quite similar results. The differences between the PBD and
the ePBD model become more pronounced as more AT base
pairs are added to the sequence, with the pure AT sequences
(Psc = 0%) showing a distinctive feature in the tail of the
probability distribution for longer bubbles (/ > 30 bp) in the
ePBD case.

The numerically computed distributions of Figs. 9(a) and
9(b) can be suitably fitted with a stretched exponential func-
tion,

Pi(l) = Cexp[—(1/k)"], (11)

as can be seen by the solid and dashed curves, respectively.
In a previous work it has been found that this functional form
provided an accurate fitting of the bubble length distributions
of PBD, equally well with a power-law modified exponential
[27]. Here, however, the latter function cannot describe sat-
isfactorily the tails of the distribution for the AT-rich ePBD
case, in contrast to Eq. (11).

The numerical values of the free parameters of the fit-
ting with Eq. (11), namely, the characteristic length «, the
stretched exponent f;, and the preexponential coefficient C
for different Pgc levels are, respectively, shown in Figs. 10(b),
10(a), and 10(c). Both the stretched exponent B; and the
characteristic length « increase linearly with GC content
[Figs. 10(a) and 10(b), respectively], with the PBD values
being always larger than the ones seen for the ePBD model.
From Fig. 10(c) we see that the coefficient C exhibits for both
the PBD (blue circles) and the ePBD (empty orange squares)
systems an exponential decrease with the GC content, captur-
ing the overall decrease in the number of observed bubbles
as Pgc increases (Fig. 9). The particular exponential fits of
the preexponential factor are shown in Fig. 10(c) for the two
models (blue solid curve for the PBD and the orange dashed
curve for ePBD). The difference between the C values for the
two models becomes larger for small Pgc percentages, with
the ePBD values being always higher, in accordance to the
larger P () values observed for this model in Fig. 9. Since
for pure GC sequences (Pgc = 100%) both models exhibit
similar Py () distributions in Figs. 9(a) and 9(b), the fitting
parameters of Eq. (11) converge for P;c = 100% in Fig. 10,

PBD: 4 = 0.421(2) + 0.00116(3) Pec
% = 0.357(3) + 0.00169(4) Pec
0.5 ]
= (a)
ol e PBD
' PBD
PBD: K = 0.077(2) + 0.00124(4) Poc:
0.2 K = 0.024(2) + 0.00576(3) Pac
=
=
¢ 0.1
(b)
4 T T T T T
PBD: € = 0.89(5)exp(—0.040(6) ) + 1.21(4)
O = 2.43(3)exp(—0.034(2) Pec) + 1.20(3)
3»
Q
2f '\'\‘\.\.\A (C) A
. . . . v L d
0 20 10 60 80 100
Paco (%)

FIG. 10. Dependence on the GC content of the DNA sequence
of (a) the stretched exponent §;, (b) the characteristic length x and
(c) the prefactor C of the fit of the P, (/) distributions shown in Fig. 9
with Eq. (11), for the PBD (blue circles) and the ePBD (empty orange
squares) models. Fits of the presented data with a straight line in
(a) and (b) and an exponential function in (c), are shown, and the
corresponding fitting equations are reported in each panel.

as expected, while they are distinctly different in the other Pg¢
cases.

The average bubble length (/) can be computed as the
number of base pairs in bubbles divided by the total number
of bubbles [27]:

_ LA
NI0N

Using the numerical results presented in Figs. 9(a) and 9(b)
and Eq. (12) we compute (/) for both the PBD and the ePBD
models for various Pgc percentages. The obtained average
bubble lengths are shown in Fig. 11 by blue circles for the
PBD model and by empty orange squares for the ePBD
system. These results indicate that the ePBD model exhibits
generally longer average bubble lengths than the PBD sys-
tem for any GC percentage, once again in agreement with
the findings of Ref. [57] that base pair openings tend to be
larger in the ePBD model. The fine sequence dependence of
the ePBD model through the stacking energy variation also
demonstrates greater sensitivity to the GC content of DNA, as
its range of (/) values is wider, corresponding to the longer
tails seen in the bubble length distributions Py (/) in Fig. 9(b)
for AT-rich sequences. For both models we see an exponential
decrease in (/) with increasing Pgc values, which has been
also observed previously for the PBD model at physiological
[27] and other temperatures [28]. Comparing our PBD results

() (12)
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FIG. 11. The average bubble length (/) as a function of the GC
percentage Pgc for the PBD (blue circles) and ePBD (empty orange
squares) models. Solid (dashed) curve shows fitting of the data with
the exponential function reported in the figure for the PBD (ePBD)
model.

to the previous findings at the same temperature [27], we see
that while the average bubble length (/) for homogeneous AT
sequences (Pgc = 0%) are the same in both investigations, in
our study we find longer average bubble lengths for GC-rich
sequences. The former observation suggests that the larger
threshold used in Ref. [27] does not affect so much the average
bubble lengths, but most likely the latter difference is due
to the base-pair-specific thresholds for openings used here as
compared to a uniform threshold value.

VI. CONCLUSIONS

We have studied in detail the distributions of bubble life-
times and bubble lengths in the PBD and ePBD models
of double stranded DNA, using base-pair-specific physical
thresholds for determining base pairs to be open, based on the
consistency of the considered openings with the melting be-
havior of both systems. In particular, the characteristic length
scale of the Morse potential, Eq. (1), for AT and GC base pairs
yields an effective threshold, as it is in agreement with the
requirement that 50% of the base pairs are open at the melting
temperature.

Implementing these thresholds and performing extensive
MD simulations we computed the bubble lifetime distribu-
tions P;(t) of DNA molecules for different bubble lengths

I, for sequences with a variable GC content (Fig. 4). A
two-peaked distribution was found for the case of single-site
openings [Fig. 4(a)], while for bubbles of length / = 2 base
pairs or greater, a stretched exponential, Eq. (6), with expo-
nent 8 2> 1 fits the distribution quite accurately. The ePBD
model predicts bubbles to be generally longer-lived than the
PBD model.

Bubble length distributions P, (/) were also produced from
our simulations (Fig. 9). We found that these distributions are
described by usual stretched exponential functions, Eq. (11),
for both models. Our results show that longer bubbles are
more likely to appear in the ePBD model, particularly when
the sequences have a larger proportion of AT base pairs. The
observation of longer in size and also longer-lived bubbles
in the ePBD model is related to the lower average stacking
energy and the larger base pair displacements occurring in the
ePBD model as compared to the original PBD model.

The distributions of bubble lifetimes P;(¢), Eq. (6), and
bubble length P (1), Eq. (11), obtained in our work, in com-
bination with the results of Figs. 5 and 10, can be used to
estimate the occurrence probability for any bubble of length
! and lifetime ¢ in a sequence of specified GC content, i.e., a
fixed Pgc percentage. Our results indicate that inherent long-
lived bubbles with lifetimes of the order of ps are infrequent,
at least in the framework of the algorithm considered here
where fluctuations of the bubble size denote starting off a
new bubble. Larger bubbles exhibit exponentially decaying
lifetimes.

Prospective future investigations include detailed studies of
bubble lifetime and length distributions at functional sites in
DNA promoters, using the thresholds proposed in Sec. III, or
investigating the effect of the opening amplitude on bubble
lifetimes. Similar investigations can also be carried out us-
ing Langevin dynamics, in order to consider the effects of a
noisy environment on the obtained distributions, as well as
exploring the possibilities for a more flexible bubble-tracking
algorithm.
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