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We study the large scale behavior of a collection of hard core run and tumble particles on a one-dimensional
lattice with periodic boundary conditions. Each particle has persistent motion in one direction decided by an
associated spin variable until the direction of spin is reversed. We map the run and tumble model to a mass
transfer model with fluctuating directed bonds. We calculate the steady-state single-site mass distribution in
the mass model within a mean field approximation for larger spin-flip rates and by analyzing an appropriate
coalescence-fragmentation model for small spin-flip rates. We also calculate the hydrodynamic coefficients of
diffusivity and conductivity for both large and small spin-flip rates and show that the Einstein relation is violated
in both regimes. We also show how the nongradient nature of the process can be taken into account in a systematic
manner to calculate the hydrodynamic coefficients.
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I. INTRODUCTION

Motion in natural contexts, such as bacterial movement,
flocks of birds, etc., consists of units which achieve motility
by converting their chemical energy to mechanical energy.
The continuous supply of energy drives the system out of
equilibrium and also results in some remarkable collective
phenomena, such as clustering and pattern formation [1–4],
and giant number fluctuations [5,6]. These systems, widely
known as active matter, have been studied through vari-
ous simple nonequilibrium models. Examples include Vicsek
models [7–9] with alignment interaction to study flocks
of birds, active Brownian particles [10,11], and run and
tumble particles (RTPs) [12,13] to describe the interacting
micro-organisms in a liquid medium, and active lattice gases
[14–20]; for reviews, see Refs. [21,22]. Phenomenological
active hydrodynamics has been developed to characterize
flocking phenomena [23,24] and to explore the motion of
swarms of bacteria in a liquid medium [25]. There have
also been attempts to formulate a thermodynamic structure
for models of active matter by characterizing equilibrium-
like intensive thermodynamic variables, such as temperature
[26], chemical potential [27–29], or pressure [30]. However,
a general theoretical understanding of the hydrodynamics and
large-scale behavior of the steady states is still lacking. In this
paper, with a view to understanding the unique features of
active matter systems, we study the steady-state behavior and
calculate transport coefficients in a paradigmatic microscopic
model of active matter, interacting RTPs on a one-dimensional
(1D) lattice.

Run and tumble particles (RTPs) are defined as particles
which move (“run”) with a constant average velocity,
while the direction of this velocity changes intermittently (the
“tumble”). They differ from random walkers in the persistence
of the direction of their motion between such tumbling events.
In the past decade, there have been many studies of the

motion of RTPs as models for bacteria, and as interesting
nonequilibrium models of interacting particles in their own
right. Initial studies focused on a macroscopic approach by
constructing a hydrodynamic theory for RTPs in one dimen-
sion. In Ref. [12], considering a density-dependent mean run
speed and a fixed tumble rate, it was argued that the system
exhibits self-trapping, also known as motility-induced phase
separation which happens in the absence of any attractive
microscopic interaction, unlike a passive phase separation.
Numerical simulation of RTPs with hard core interaction
showed that the particles cluster more for small tumble
rates, though no true condensation occurs. By examining the
absorption and evaporation of dimers, the scaling behavior
of the steady-state cluster distributions for small tumble rates
could be obtained [31]. RTPs with multiple occupancy of
lattice sites have also been studied numerically [32]. When the
number of allowed particles on a site is larger than two, there
is evidence of a condensation transition. A comparative study
of RTPs with other models such as active Brownian particles
and active Ornstein-Uhlenbeck particles can be found in
Refs. [33,34].

More recent approaches have focused on exact studies of
systems with only one or two RTPs. For a single RTP, the
large deviation function for the displacement shows a first-
order dynamical transition with a “condensed” phase for large
displacements where the large deviation function is dominated
by a single run [35]. Studies of a single RTP in bounded
domains and confining potentials [36–38] have shown that
the steady-state distribution, under some conditions, shows
an unusual structure with peaks away from the center of the
domain. Similar results have been obtained in two dimen-
sions [39,40]. For a system of two RTPs, the steady-state
distribution of interparticle distance has three contributions: a
uniform contribution, an exponentially decaying correlation,
and a “bound state” in which two RTPs with opposite spins
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sit on adjacent sites of the lattice [17,41]. This analysis was
extended in Ref. [18] where the Markov matrix for the time
evolution of one or two RTPs was diagonalized to show that
the system undergoes a dynamical transition at certain values
of the tumble rate. When additional thermal noise is added to
the RTPs, the steady-state gap distribution becomes exponen-
tial [42]. The survival probability of two annihilating RTPs in
one dimension can also be calculated exactly, and a new length
scale, the “Milne length” can be identified which characterizes
correlations between the particles [43].

In this paper, we look at the case of many RTPs with a hard
core interaction on a one-dimensional lattice. The hard core
interaction implies that each lattice site cannot be occupied by
more than one RTP at a time. We work in the frame of the
gaps between particles, which allows use of the framework
of mass transport models, which has proven useful in other
1D models to calculate various thermodynamic and hydro-
dynamic quantities, such as the chemical potential [44] and
transport coefficients [20,45]. We go beyond previous studies
on 1D RTPs by deriving the cluster and gap distributions for
moderate and large tumble rates in the independent interval
approximation, and also in deducing the time-dependent be-
havior for small tumble rates. For moderate tumble rates, our
approach gives results which are well supported by numerical
simulations. For very small tumble rates, we develop an alter-
nate approach, also in the mass transport picture, based on a
mapping to a diffusion-limited coalescence and fragmentation
process [46,47]. We show that the results from this model
for the steady state and the relaxation to the steady state are
in excellent agreement with simulations. In addition to the
steady-state gap distribution, we also calculate the diffusivity
and conductivity for large tumble rates, and in the limit of
very small tumble rates. We show that the Einstein relation is
violated in both regimes.

The remainder of the paper is organized as follows. In
Sec. II we define the model in the particle picture as well as
the corresponding mass transport model in the gap picture.
In Sec. III, we calculate the mass distribution within a mean
field approximation and compare it to results from Monte
Carlo simulation for moderate tumble rates, showing excel-
lent agreement. In Sec. IV, we determine, for small tumble
rates, the steady-state mass distribution as well as relaxation
to the steady state, by developing and analyzing a model of
diffusion, fragmentation, and coalescence. In Secs. V and VI,
we calculate hydrodynamic quantities such as the diffusion
constant and conductivity for moderate and low tumble rates,
respectively, and compare the analytical results with results
from Monte Carlo simulations. Section VII contains a sum-
mary of the paper and discussion of the results.

II. MODEL

Consider N RTPs on a ring of L sites, where each site
can be occupied by at most one particle. Each particle is
characterized by a spin S that can take the values +1 (pointing
right) or −1 (pointing left). A particle hops at rate 1 to the
neighboring lattice site in the direction of its spin, provided
the target site is empty. Thus, particles with S = 1 hop to the
right and those with S = −1 hop to the left. In addition, each
particle reverses the direction of its spin at rate η. Clearly,

FIG. 1. An example of the mapping between (a) the RTP model
and (b) the mass transport model. In the mapping, mass at site i
equals the number of empty sites between the ith and (i + 1)th RTP,
and the spins transform as si−1/2 = −Si. In the mass model, a unit
mass hops in the direction of the spins on the neighboring bonds. A
particle hopping to the left in the RTP model [shown by a bent arrow
in (a)] corresponds to a unit mass being transferred to the right in the
mass model [shown by a bent arrow in (b)].

when η → ∞, the value of the spin is random, and the model
reduces to the well-studied symmetric exclusion process [48].

It is convenient to study the dynamics of the gaps between
particles and define a corresponding mass transport model
[49]. In this picture, the gaps between RTPs are mapped
onto masses on a corresponding lattice, and the spins live
on the bonds on this lattice. We now describe the mapping
more precisely. Let xi be the position of the ith RTP on
the original lattice, and let Si denote its spin as shown in
Fig. 1(a). In the mass transport model, the ith site has a mass
mi = xi+1 − xi − 1, the number of empty sites between the
ith and (i + 1)th RTPs. Spin si− 1

2
in the mass model lives on

the bonds between sites (i − 1) and i, and is equal to −Si,
the negative of the spin of the ith RTP. An example of this
mapping is shown in Fig. 1. It is clear that the mass model
has N sites with total mass L − N . The mass density ρmass,
which we henceforth denote by ρ, is related to the density in
the particle picture, denoted ρRTP, as

ρ ≡ ρmass = 1

ρRTP
− 1. (1)

The dynamics of the mass model can be derived as follows.
Particle (i + 1) moving one unit to the left in the RTP picture
maps to a unit mass transfer from site i to the right across the
bond (i + 1

2 ) (where si+1/2 = 1) in the mass model, as shown
in Fig. 1, and similarly, mass transfers to the left across a bond
correspond to an RTP moving to the right. The value of si+ 1

2

dictates the direction of mass transfer between sites i and i +
1. If si+ 1

2
= +1, mass from i can move to site i + 1, but not

from i + 1 to i. If si+ 1
2

= −1, the reverse is the case. Thus, the
dynamics of the mass model may be summarized as follows:
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from a nonzero mass at site i, unit mass is transferred with
rate one to the right and rate one to the left, provided the spin
on the bond that it crosses is in the direction of transfer, while
the spins si+ 1

2
themselves flip at rate η independently of the

masses and the other spins.

III. STEADY-STATE SOLUTION WITHIN A MEAN
FIELD APPROXIMATION

In this section, we derive the steady-state mass distribution
or, equivalently, the distribution of gaps between particles
in the RTP picture, within a mean field approximation. Let
P({mi}, {si+ 1

2
}, t ) denote the probability of finding the system

in a certain configuration of masses {mi} and spins {si+ 1
2
} at

time t . P({mi}, {si+ 1
2
}, t ) may be expressed as

P
({mi},

{
si+ 1

2

}
, t

) = P
({mi}

∣∣{si+ 1
2

}
, t

)
P
({

si+ 1
2

}
, t

)
, (2)

where the notation P(x|y) denotes the conditional probability
of x given y. Equation (2) is exact since it simply reexpresses
joint probabilities in terms of conditional ones. Now, since
each spin flips independently, we have

P
({

si+ 1
2

}) =
∏

i

P
(
si+ 1

2

) = 1

2N
. (3)

We will assume that the spins are initially chosen with this
steady-state probability so that the probabilities for spins are
invariant in time.

We implement a single-site mean field approximation
where, for each mass, we only keep track of the neighboring
spins. Thus, we approximate the conditional mass distribution
in Eq. (2) as

P
({mi}

∣∣{si+ 1
2

}) ≈
∏

i

P
(
mi

∣∣si− 1
2
, si+ 1

2

)
. (4)

Thus, there are four conditional distributions P(mi|si− 1
2
, si+ 1

2
),

which we denote as P++
m , P−+

m , P+−
m , and P−−

m . The first
(second) superscript refers to the neighboring spin on the left
(right) bond, with + referring to +1 (or rightward) and −
referring to −1 (or leftward). Among these, only three are
independent since due to left-right symmetry

P++
m = P−−

m , m = 0, 1, 2, . . . . (5)

This is because both probability distributions correspond to
a site with one of its neighboring spins pointing inwards and
the other outwards. Also, due to translational invariance, the
probability distributions do not depend on the site index.

For ease of notation, we introduce the quantities α, β, γ , δ:

α ≡ P−+
0 ,

β ≡ P++
0 ,

(6)
γ ≡ P−−

0 ,

δ ≡ P+−
0 ,

as they will appear repeatedly in the calculations. These quan-
tities will be determined in terms of the mass density ρ and
spin-flip rate η. From Eq. (5), we see that in the steady state,
β = γ , and we will use the symbol β for both P++

0 and P−−
0

in this section. In Sec. V, in the presence of a field or a density
gradient, we will see that this symmetry is broken.

First, let us consider the temporal evolution of P−+
m . For

this combination of neighboring spins, the site cannot receive
mass, as both spins point away from it. The master equation
for P−+

m is

dP−+
m

dt
= 2η(P++

m − P−+
m ) + 2P−+

m+1 − 2(1 − δm,0)P−+
m , (7)

where the first term on the right-hand side describes spin flips
and the last two terms describe transfer of unit mass to and
from neighboring sites. In the steady state, the time derivative
may be set to zero and we obtain

P−+
m+1 = −η(P++

m − P−+
m ) + (1 − δm,0)P−+

m . (8)

Equation (8) can be solved using the generating function
method. Let

P̃−+(z) =
∞∑

m=0

P−+
m zm, (9)

with similar definitions for the other two distributions: P̃++(z)
and P̃+−(z). Multiplying Eq. (8) by zm and summing over m,
we obtain

P̃−+(z) = (1 − z)α − zηP̃++(z)

1 − z(η + 1)
, (10)

where α is as defined in Eq. (6). Note that P̃−+(z) depends
upon the generating function P̃++(z).

In Appendix A we similarly solve for the generating func-
tions P++(z) and P+−(z). Finally, we obtain

δ = 2ηβ

2η + 2 − α − β
, (11)

P̃++(z) = 2[(α + β − 2)(z − 1) + 2η][(α + β )ηz + β(z − 1)]

h(z)
,

P̃+−(z) = 2[(α + β )ηz + β(z − 1)]

h(z)
, (12)

P̃−+(z) = 2η(z − 1)[3α2z + α((4β − 6)z + 2) + (β − 2)βz] + 4η2z(α + β ) + α(z − 1)2(α + β − 2)[z(α + β − 2) + 2]

h(z)
,

where the denominator h(z) is given by

h(z) = [(α + β − 2)(1 + η)z + 2 − α − β + 2η][(α + β − 2)z2 − (α + β − 4η − 4)z − 2]. (13)
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We note that the denominator h(z) is common to all three
generating functions, and α and β remain undetermined.

The behavior of the probability distributions for large m is
determined by the poles of the generating functions, which in
turn are determined by the three zeros of h(z):

z1 = 2 − α − β + 2η

(η + 1)(2 − α − β )
,

z2 = α + β − 4η − 4 −
√

(α + β − 4η)2 + 32η

2(α + β − 2)
,

z3 = α + β − 4η − 4 −
√

(α + β − 4η)2 + 32η

2(α + β − 2)
. (14)

Among these, z1, z2 > 1 and z3 < 1. A root whose magnitude
is less than unity implies an exponentially diverging P(m) for
large m, which is unphysical. Hence, z3 cannot be a valid
pole. This can be true only if the numerator of all the three
generating functions vanishes at z3, thus, removing the pole at
z3 [50,51]. This leads to the constraint (for all three generating
functions) that

α = 2β
√

β + 2η + η2 − β2

β + 2η
, (15)

leaving only β to be determined.
To determine β, we use the fact the total mass is a con-

served quantity. The generating function P̃(z) = ∑∞
m=0 Pmzm,

where Pm is the probability of a randomly chosen site having
mass m, is given by

P̃(z) = 1
4 P̃+−(z) + 1

4 P̃−+(z) + 1
2 P̃++(z). (16)

The density ρ is then given by

ρ = z
dP(z)

dz

∣∣∣∣
z=1

= (α + β )(3α + β ) + 8(2 − 2α − β )

8η(α + β )
+ 2 − α − β

α + β
. (17)

Equations (15) and (17) may be solved to obtain α and β in
terms of ρ and η. Thus, we have obtained the full solution to
the single-site mass distribution within the mean field approx-
imation.

As there remain two poles of magnitude larger than one,
the mass distribution P(m) will be a sum of two exponentials.
For large m, the pole closest to origin, which turns out to be
z1, will have the dominant contribution. All three conditional
distributions will show the same asymptotic decay,

P(m) ∼ e−m/m∗
for m � 1, (18)

where

m∗ = − 1

ln z1
, (19)

with z1 as in Eq. (14). This completes the calcula-
tion of the single-site distributions within a mean field
framework.

For large η, the RTP model approaches a symmetric
simple exclusion process since the particle motion decou-
ples from the spin fluctuations. For large η, Eqs. (15)
and (17) may be solved as a series expansion to

FIG. 2. The single-site mass distribution P(m), obtained from
Monte Carlo simulations, is compared with the predictions from the
mean field theory (shown as solid lines) for moderate values of the
spin-flip rate η. The data are for systems with density ρ = 1 and
L = 500. The inset shows, for η = 4.0, the comparison of the sim-
ulations and the mean field results for the distributions P++ = P−−,
P+−, and P−+.

give

α = 1

1 + ρ
+ ρ(2 + 3ρ)

2(1 + ρ)3η
+ O(η−2),

β = 1

1 + ρ
+ ρ2

2(1 + ρ)3η
+ O(η−2), (20)

δ = 1

1 + ρ
− ρ(2 + ρ)

2(1 + ρ)3η
+ O(η−2),

1

m∗ = − ln

(
ρ

1 + ρ

)
− 1

2(1 + ρ)2η
+ O(η−2). (21)

Also, the probability of a site being empty P(0) = 1
1+ρ

+
O(η−2). The leading terms, corresponding to η = ∞, are con-
sistent with the results for the symmetric simple exclusion
process.

For small η, the probabilities have the series expansion

α = 1 − 8ρ(2ρ + 1)η2 + O(η3), (22)

β = 1 − 8ρη + 56ρ(ρ + 2ρ2)η2 + O(η3), (23)

δ = 1

1 + 4ρ
+ 16ρ(ρ + 1)η

(4ρ + 1)2
+ O(η2), (24)

1

m∗ = log

(
1

4ρ
+ 1

)
+ (8ρ + 5)η

4ρ + 1
+ O(η2). (25)

In the limit η → 0, we see that m∗ tends to a finite number
larger than zero, thus predicting an exponential decay. How-
ever, simulations show that the average number of particles
per occupied site diverges as η → 0, leading to clustering. We
explain this deviation from mean field theory for small η in
Sec. IV.

Figures 2 and 3 compare the predictions of the mean field
single-site mass distributions with results from simulations
for ρ = 1. It can be seen that for η � 1 there is excellent
agreement with the simulation results, for all distributions
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FIG. 3. The single-site mass distribution P(m), obtained from
Monte Carlo simulations, is compared with the predictions from
the mean field theory (shown in solid lines) for moderate and small
values of the spin-flip rate η. The data are for systems with density
ρ = 1 and L = 500. The inset shows, for η = 0.01, the comparison
of the simulations and the mean field results for the distributions
P++ = P−−, P+−, and P−+.

P++ = P−−, P−+, and P+− (see Fig. 2). For η < 1, we see
that the distributions obtained from the simulations decay
much more slowly at large m than the mean field predic-
tion, showing that the mean field approximation fails for
small η.

We now determine the particle cluster distributions in the
RTP picture within the mean field approximation for the mass
model. The gaps in the RTP picture correspond to masses in
the mass model, and conversely an empty site in the mass
model corresponds to two neighboring particles in the RTP
picture. Let pRTP(n) denote the probability in the RTP picture
that a given empty site has a cluster of exactly n particles to its
right (n = 0 corresponds to there being no cluster immediately
to the right of the site). In the mass model, this corresponds
to the probability of a given nonempty site having n empty
sites to its right, with the (n + 1)th site being nonempty. This
probability, in the mean field approximation, may be written
as a product of single-site mass distributions at different sites.
Recall that P(mi|si− 1

2
, si+ 1

2
) is the probability of site i having

mass mi, given the two neighboring spins [see Eq. (4)]. Let
P(•|si− 1

2
, si+ 1

2
) denote the probability that there is a nonzero

mass at site i. Then, pRTP(n) can be written as

pRTP(n) = 1

2n+2

∑
s− 1

2

. . .
∑
s

n+ 1
2

×
[

n+1∏
k=1

P
(
0
∣∣sk− 1

2
, sk+ 1

2

)]
P
( • ∣∣sn+ 1

2
, sn+ 3

2

)
. (26)

The sum over the spins is more easily evaluated using the
transfer matrices

T =
(

P++
0 P+−

0
P−+

0 P−−
0

)
=

(
β α

δ β

)
(27)

FIG. 4. The probability of finding a cluster of size n in the RTP
picture pRTP(n) for η = 0.1 and 4 and ρ = 1 or, equivalently, ρRTP =
0.5. The solid lines correspond to the results from mean field theory
[see Eq. (29)]. The mean field predictions match with results from
simulations for large η. The data are for system size L = 500 in the
mass model picture.

and

T̃ =
(

1 − β 1 − α

1 − δ 1 − β

)
, (28)

where α, β, and δ, defined in Eq. (6), are functions of ρ and
η. Equation (26) then simplifies to

pRTP(n) = 1

2n+2

2∑
i=1

2∑
j=1

(T nT̃ )i, j . (29)

We now check that in the limit η → ∞, we recover the
results for the symmetric exclusion process. In this limit,
from Eq. (20), we know that α = β = δ = (1 + ρ)−1 = ρRTP,
and hence T = ρRTPJ , while T̃ = (1 − ρRTP)J , where J is the
2 × 2 matrix with all entries one. Clearly, Jn = 2n−1J . It is
straightforward to simplify Eq. (29) to

pRTP(n)
η→∞= ρn

RTP(1 − ρRTP), (30)

in agreement with results for the symmetric exclusion process
on a ring which has a product measure in the steady state.

In Fig. 4, the cluster distribution in the RTP picture, ob-
tained from Monte Carlo simulations, is compared with the
mean field prediction in Eq. (29) for different values of η. The
distribution pRTP(n) is exponential for large n. We see that the
mean field expression is able to describe the distribution accu-
rately for larger η. For values of η less than 1, the mean field
result underpredicts the probabilities, thus failing to capture
tendencies towards clustering.

We now estimate the regime of validity of the mean field
approximation. Consider the RTP picture. The mean distance
between two particles is ρ−1

RTP. If no spin flips occur, then the
collision times are proportional to the interparticle distance.
For mean field theory to hold, there must be multiple spin
flips during this time. Thus, we obtain the criteria for the
validity of mean field theory to be η−1 	 ρ−1

RTP, or effectively
η � (1 + ρ)−1. The results from simulations (see Figs. 2–4)
are consistent with this criterion, where we find a good match
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between results from simulations and mean field predictions
for η � 1 for ρ = 1.

We now provide an alternative description of the mass
model that is valid for small η, based on a mapping to a single
species birth and coalescence process.

IV. COALESCENCE-FRAGMENTATION MODEL
FOR η � 1

In Sec. III, we showed that the numerical results for the
mass distribution for η � 1 are well described by the mean
field results, while the mean field analysis fails for small
values of η. In this section, we provide an alternate description
of the dynamics that allows us to capture the mass distribution
for the case η 	 1. We work, as above, in the mass transfer
picture. For small η, when no site contains large masses, there
is a separation of the timescales associated with spins and
hopping. In this limit, we can treat the mass transfers in an
adiabatic approximation, wherein we assume the spins to be
fixed when the masses move.

A. Relaxation to the steady state

For simplicity, we assume that initially the mass is dis-
tributed uniformly on the lattice. The system first evolves to
a state in which only sites whose neighboring spins on the left
and right are + and −, respectively (denoted as +− sites),
have nonzero mass. These sites have both spins pointing into
the site, and thus the mass at that site cannot move out. On
the other hand, the masses at ++, −−, and −+ sites hop out
to neighboring sites. Each +− site has a basin of attraction,
which consists of all the sites that are connected to it by spins
pointing towards the site. Thus, for η 	 1, the initial stage
of evolution, which is of very short duration ∼O(1) (the mean
size of a basin of attraction is four), consists of masses moving
to the +− sites and staying there.

We now look at the dynamics on timescales of O(η−1) and
larger. In the adiabatic approximation, the masses are assumed
to move only between +− sites, considering occupancy of
other sites as transient. A mass can only move out of a +−
site if one of its neighboring spins flips, leading to the mass
being transferred to the nearest +− site in the direction of
the flipped spin. The typical time taken for this transfer is
of the order of the typical mass-cluster size at that time. If
this time is smaller than η−1 (the time for a spin flip), the
spins involved in this transfer can be assumed to be fixed.
Looking at sites with nonzero mass as units A, this process
can thus be modeled by the single-species coalescence reac-
tion A + A → A [46,47,52], with diffusion constant η〈(�d )2〉,
where �d is the average distance over which a mass cluster
is transferred after a spin-flip event. From the known exact
solution of A + A → A, we obtain that the mean density of
sites with nonzero mass nc(t ), during this coalescence stage
of evolution, decreases as

nc(t ) ≈ 1√
2πη〈(�d )2〉t , t 	 η−2 (31)

where the regime of validity t 	 η−2 will be shown later in
this section. This implies that the typical mass m(t ) of an
occupied site increases as m(t ) ≈

√
2πη〈(�d )2〉t .

FIG. 5. The variation of the mean density of clusters nc(t ) with
time t for three different values of η 	 1. The data are for density
ρ = 1, system size L = 1000, and have been averaged over 200 his-
tories. The solid lines correspond to the analytical result in Eq. (34),
with a and b as given in the text.

We now give an argument to calculate 〈(�d )2〉 in the coa-
lescence regime. A mass transfer is initiated when one of the
spins of a +− site flips, say the spin on the right. The mass is
then transferred to the right from site to site until it encounters
a − arrow. The probability of the first − arrow being a distance
�d to the right is P(�d ) = 2−�d , �d = 1, 2, . . ., and thus

〈(�d )2〉 = 6. (32)

Hence,

nc(t ) ≈ 1√
12πηt

, t 	 η−2. (33)

This result is valid for times t � η−1. In the case of the RTP
in the mass transport picture, A sites are +− sites, which
are an average distance 4 apart. For t ∼ η−1, we find better
agreement with the interpolation

nc(t ) ≈ b√
12πη(t + aη−1)

, (34)

where a and b are constants that do not depend on η (for
η 	 1). Effectively, the equation says that for such an initial
condition, time is shifted to τ = t + aη−1. The constants a
and b are easily estimated by the observation that for t 	 η−1,
all masses are present only on +− sites, and for initial densi-
ties larger than 1

4 , all +− sites are occupied. This implies that
nc(t ) → 1

4 as t → 0. We also know that nc(t ) should approach
the form in Eq. (31) for t � η−1. Hence, we obtain b = 1 and
a = 4(3π )−1. From Fig. 5, we see that Eq. (34) describes the
numerical data for nc(t ) well.

It is possible to keep track of the time-dependent
mass distribution by considering the coalescence process as
constant-kernel aggregation reaction Ai + Aj → Ai+ j in one
dimension. From the known solution of this problem [52–55],
the mass distribution, during the coalescence stage of evolu-
tion, can be predicted to be

P(m, t ) ≈ nc(t )2g(mnc(t )). (35)
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FIG. 6. The numerically obtained data for P(m, t ), the probabil-
ity of having a mass m on a site at time t , for different times and flip
rate η collapse onto a single curve when P(m, t ) and mass are scaled
as in Eq. (35). The scaled data are reasonably well described by the
scaling function g(x) (shown by solid line) in Eq. (36) with ρ = 1.

For a uniform initial distribution of mass and the case where
the diffusion is only to the nearest neighbor sites, the scaling
function g(x) is known to be given by

g(x) = πx

2ρ2
exp

(−πx2

4ρ2

)
. (36)

In Fig. 6, we show the numerically obtained P(m, t ) for dif-
ferent times and spin rates η. When the variables are scaled
as in Eq. (35), the data for different η and times collapse onto
a single curve, showing that the scaling collapse is excellent,
except at large values of the argument, where it is possible that
the data have not reached the scaling limit. This shows that
the adiabatic approximation is able to capture the approach
to the steady state very well. It is seen that the curve of the
scaling collapse deviates from the known scaling function g(x)
in Eq. (36), due to the fact that the evolution in the RTP system
does not start with uniformly distributed mass, but with mass
only on +− sites.

B. Characterization of the steady state

The adiabatic approximation of treating the spins as fixed
during mass transfer breaks down when typical masses be-
come large and there is no longer a clear separation between
the spin-flip rates and mass transfer rates. The evolution can
no longer be modeled as a pure coalescence process. An
example of interrupted mass transfer is when a second spin
flips while mass transfer is going on.

Consider a +− site. Suppose one of the neighboring spins
flips so that the mass at the site starts transferring in the
direction of the spin one by one. If the other neighboring
spin flips before the total mass has been transferred, then the
mass at the site ends up at both its neighbors. This leads
the reaction 0A0 → A0A, where 0 denotes a vacancy. If, on
the other hand, the other neighboring spin does not flip, we
have a diffusion move A0 → 0A. At large times t � η−2,
there is a balance between diffusion, coalescence, and break-
ing up, and the system reaches a steady state. As a visual

FIG. 7. Steady-state space-time trajectories of N = 100 run and
tumble particles on a lattice of size L = 200 for a low spin-flip
rate η = 0.001. The trajectories of different particles are represented
by different colors. Large clusters of particles are observed, with
infrequent movements of particles triggered by spin flips.

demonstration of the dynamics, Fig. 7 shows the steady-state
space-time trajectories of 100 RTPs, in the RTP picture, for
a low spin-flip rate η = 0.001. We observe the formation
of large clusters of particles and also of vacancies (which
can be identified with mass clusters in the mass description).
Infrequent movements of particles are seen, corresponding to
spin flips, can also be seen, leading over a large timescale to
equilibration of the clusters.

We now determine the steady-state value of nc by con-
sidering the coalescence and fragmentation rates. We assume
below that in addition to η 	 1, the number of clusters nc 	
1, and only consider terms to leading order in nc.

We first calculate the coalescence rate. For the purposes of
this section, we assume that sites are independently occupied
or empty with probability nc and (1 − nc), respectively, except
for the necessary caveat that two occupied sites cannot be next
to each other. To leading order in nc, this is consistent with
the more detailed calculation of the steady state using empty
interval probabilities, given in Appendix C.

Then, to leading order in nc, the probability that two sites
on a lattice separated by a distance n are both occupied is
n2

c (1 + ε(n)), where ε(n) is O(nc). Now, consider the two
occupied +− sites separated by a distance n. The sites will
coalesce into one if (a) the − arrow on the site on the left or
the + arrow on the site on the right flip, which happens at rate
2η, and (b) all the arrows on the (empty) sites in-between the
two sites are to pointing the right, in the former case, and to
the left in the latter case. If the sites are separated by a distance
n, there are n − 2 arrows in-between, this probability is 2−n+1.
Hence, the total rate of coalescence is

rc = 2ηn2
c

∑
n=2

2−n+2[1 + ε(n)] = 4ηn2
c + O

(
ηn3

c

)
. (37)

Now, we calculate the fragmentation probability. A frag-
mentation occurs when, during the course of a mass transfer,
a spin between the original site and the target site flips, inter-
rupting the transfer. Now, consider an initial flip of the right
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spin of an occupied +− site, leading to a transfer to a site
a distance k to the right. This requires that the arrows at all
intervening sites be pointed to the right, and the kth arrow be
pointed to the left, to stop the mass transfer. The rate of this
process is

η × nc × 2−k . (38)

Now, consider the case where the (k − 1)th spin from the
original site flips. For k = 1 this means the − spin on the
original site flips back from + to −. Then, all the mass simply
ends up at a new site a distance k − 1 from the original since
the original target site is no longer +− but is −− now, and
thus cannot hold mass. In this case, fragmentation does not
occur.

However, if any of the k − 1 sites between the original
and the target flip during the transfer, the mass will end up
at two sites. If the left spin on the original site flips during the
transfer, some of the mass will start getting transferred to the
left, and in this case too, the mass will end up at two sites. A
mass transfer over k sites takes a time m∗ + δ(k), where m∗ is
the average mass on an occupied site, and δ(k) is a correction
of O(1). The probability that one of k spins flips during this
time is, to first order,

η × k × [m∗ + δ(k)]. (39)

And hence, the total fragmentation rate is (the factor of 2 in
front signifies that the case of the mass transfer being initiated
by the + spin on the original site flipping can be treated in
exactly the same fashion)

r f = 2η2nc[m∗ + δ(k)]
∑
k=1

2−kk

= 4η2ncm∗ + O(η2ncm∗). (40)

A steady state is reached when the coalescence rate is equal to
the fragmentation rate rc = r f , which gives

nc = ηm∗. (41)

We also use the equality ncm∗ = ρ, the average density, to
eliminate m∗ from the above equation. Thus, we finally obtain

nc = √
ηρ, (42)

m∗ =
√

ρ

η
, (43)

to leading order.
We now compare the predictions from the effective

aggregation-fragmentation model discussed above with re-
sults from simulations of the mass model. Figure 8 shows the
variation of the steady-state mean nc with different densities
ρ and spin-flip rates η. The data for different densities col-
lapse onto a curve when nc is scaled by

√
ρ, as predicted by

Eq. (42). From the figure, it is clear that the dependence on η

is as predicted by Eq. (42), right up to the constants.
In Fig. 9, we compare the predictions for m∗ with estimates

from simulations for small η. To obtain m∗ from simulations,
we first measure the mass distribution P(m). For each m, we
obtain m∗(m) as

1

m∗(m)
= 1

2
ln

P(m − 1)

P(m + 1)
. (44)

FIG. 8. The variation of the steady-state mean density of clusters
nc with spin-flip rate η for different mass densities ρ. The data for
different ρ collapse onto a single curve when scaled as in Eq. (42).
The scaled data are well described the theoretical prediction (shown
as solid line) in Eq. (42). The data are for system size L = 500.

m∗(m) converges to m∗ for large m. The variation of m∗(m)
with m is shown in Fig. 9 for three values of η. It is clear that
for small η, we find an excellent match between the theoretical
prediction in Eq. (43) and numerical results.

Knowing the initial temporal decay n(t ) ≈ 1√
12πηt

[see
Eq. (33)], and the steady-state value n(t ) ≈ √

ηρ, we can
develop a scaling form for the behavior of n(t ). The crossover
time is obtained by equating the early and late time behaviors
to give t∗ ∼ 1/(ρη2). Thus, we can write

nc(t ) = √
ηρ f (tρη2), t → ∞, η → 0, (45)

where the scaling function f (x) ≈ 1 for x → ∞, and f (x) ≈
1/

√
12πx for x → 0. Figure 10 shows the variation of the

mean density of clusters nc(t ) with time t for four different
values of η 	 1. As η decreases the extent of the coarsen-
ing regime increases, and the final number of clusters in the

FIG. 9. The variation of the typical mass m∗(m) [as defined in
Eq. (44)] with m for three different values of spin-flip rate η. The
solid lines are the theoretical predictions for m∗ from Eq. (43). For
small η, m∗(m) converges to the theoretical value for large m.
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FIG. 10. The variation of the mean density of clusters nc(t ) with
time t for four different values of η 	 1. The data are for density
ρ = 1 and system size L = 1000 and have been averaged over 200
histories. Inset: The data for different times collapse onto a single
curve when t and nc are scaled as in Eq. (45). The dotted lines are
the theoretical predictions for the asymptotic behavior of the scaling
function [see text after Eq. (45)].

steady-state decreases, as expected from Eq. (42). The inset
in Fig. 10 shows that the data for different times collapse
onto a single curve when the different variables are scaled
as in Eq. (45), confirming the scaling hypothesis. In addition,
the numerical data are consistent with the predictions for the
asymptotic behavior of the scaling function.

We briefly outline how our results translate to the RTP
picture. The single-site mass distribution is the distribution
of gaps between RTPs, and since only +− sites are occu-
pied (to the lowest order in η), we conclude that all RTP
clusters have particles are bounded by right-moving RTPs on
the left and left-moving RTPs on the right. The single-site
mass distribution P(m) for m > 0 is the distribution of the
lengths of the gaps between RTP clusters. The empty-interval
probabilities En for finding an empty interval of length n (see
Appendix C) between occupied +− sites give the cluster
size distribution of the RTP clusters, through the relation
Pcluster (n) = En + En−2 − 2En−1 [47].

We conclude that the aggregation-fragmentation model
complements the mean field approximation in providing an
accurate description of the mass model for small values of the
spin-flip rate η.

V. HYDRODYNAMICS FOR LARGE η: MEAN
FIELD APPROXIMATION

In this section, we derive hydrodynamic equations along
the lines of recently developed macroscopic fluctuation theory
[56], within the mean field approximation, which is valid for
η � 1/(1 + ρ). We derive explicit expressions for the diffu-
sion and drift coefficients D(ρ) and χ (ρ) [see Eq. (47) for
definitions], and test the Einstein relation

1

σ 2(ρ)
= D(ρ)

χ (ρ)
, (46)

where σ 2(ρ) is the single-site mass fluctuation. To derive the
hydrodynamic equations for the mass model, we consider the
current across a bond in presence of a small density gradient
∂ρ/∂x, and in presence of a small field of strength F 	 1,
that couples to the mass [20,45,56]. In the presence of the
field, particles hop to the right with rate 1 + F and to the left
with rate 1 − F . The average current across a bond 〈J〉 is then
expressed in terms of the hydrodynamic coefficients D(ρ) and
χ (ρ) as

〈J〉 = −D(ρ)
∂ρ

∂x
+ Fχ (ρ). (47)

In Appendix B, we derive the relationship between the hydro-
dynamic coefficients in the original, RTP, picture, and those
in the gap picture, which are our main focus for the next two
sections.

The mean current between sites i and (i + 1) can be written
in terms of the steady-state mass distribution. In the presence
of the field, these distributions become site dependent. We
introduce the following notation. Let the conditional proba-
bility of finding a mass m on site i, given the site has a −
bond to the left and a + bond to the right, be denoted as
P−+

m,i . Similar definitions hold for P++
m,i , P−−

m,i , and P+−
m,i . These

distributions are, in the presence of a field, different from
the distributions P+−, P−+, P++, and P−− defined in Sec. III
for the homogeneous case. We also note that the symmetry
P++

m,i = P−−
m,i is no longer valid in the presence of a field or

density gradient.
The mean current between sites i and i + 1 has contri-

butions from particles hopping from i to i + 1 (denoted by
〈J+

i,i+1〉) and particles hopping from i + 1 to i (denoted by
〈J−

i,i+1〉). Clearly,

〈J+
i,i+1〉 = 1 + F

4

[ ∞∑
m=1

P++
m,i +

∞∑
m=1

P−+
m,i

]

= 1 + F

4
(2 − P−+

0,i − P++
0,i ). (48)

Similarly,

〈J−
i,i+1〉 = −1 − F

4
(2 − P−+

0,i+1 − P−−
0,i+1). (49)

The average current across the bond is the sum of the two
currents:

〈Ji,i+1〉 = P−+
0,i+1 + P−−

0,i+1 − P−+
0,i − P++

0,i

4

+ F
4 − P−+

0,i+1 − P−−
0,i+1 − P−+

0,i − P++
0,i

4
. (50)

The current depends on the site-dependent values of P−+
0,i ,

P++
0,i , and P−−

0,i . The mass model is not a pure mass transfer
process, but has other degrees of freedom, the spins on the
bonds that do not relax infinitely fast. It is not surprising that
even a small density gradient or field modifies the steady-state
probabilities. Thus, to calculate the current in the presence
of a field or gradient, we also need to calculate the modified
steady-state mass distributions.
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The different probability distributions evolve in time according to

dP−+
m,i

dt
= η[P++

m,i + P−−
m,i − 2P−+

m,i ] + 2P−+
m+1,i − 2(1 − δm,0)P−+

m,i , (51)

dP+−
m,i

dt
= η[P++

m,i + P−−
m,i − 2P+−

m,i ] + [P+−
m−1,i(1 − δm,0) − P+−

m,i ]

[
(1 + F )

2 − P−+
0,i−1 − P++

0,i−1

2
+ (1 − F )

2−P−+
0,i+1−P−−

0,i+1

2

]
,

(52)

dP++
m,i

dt
= η[P+−

m,i + P−+
m,i − 2P++

m,i ] + 1 + F

2
(2 − P−+

0,i−1 − P++
0,i−1)[P++

m−1,i(1 − δm,0) − P++
m,i ]

+(1 + F )[P++
m+1,i − (1 − δm,0)P++

m,i ], (53)

dP−−
m,i

dt
= η[P+−

m,i + P−+
m,i − 2P−−

m,i ] + 1 − F

2
(2 − P−+

0,i+1 − P−−
0,i+1)[P−−

m−1,i(1 − δm,0) − P+−−
m,i ]

+(1 − F )[P−−
m+1,i − (1 − δm,0)P−−

m,i ]. (54)

In the following we solve for the probabilities Pm,i as a series expansion in the density gradient ρ ′(x) = ∂ρ/∂x in Sec. V A and
field F in Sec. V B.

A. Current in the presence of a density gradient

In this section, we solve for the steady-state mass distribu-
tion in the presence of a nonzero density gradient ρ ′, but field
F = 0. We look for perturbative solutions of the kind

Pab
m,i = Pab

m (ρi ) + ρ ′Qab
m,i + O(ρ ′2), a, b = +,− (55)

where Pi j
m is the steady-state solution in the absence of a field,

as obtained in Sec. III, and Qab
m,i is the first-order correction.

Some of the Qab
m,i may be determined from symmetry

considerations. If the sign of ρ ′ is reversed, it is clear that
P++

m,i (ρ ′) = P−−
m,i (−ρ ′). In addition, P+−

m,i (ρ ′) = P+−
m,i (−ρ ′)

and P−+
m,i (ρ ′) = P−+

m,i (−ρ ′). This implies that

Q−−
m,i = −Q++

m,i , (56)

Q+−
m,i = Q−+

m,i = 0. (57)

For convenience, we also introduce the notation β1,i = Q++
0,i ,

such that

P++
0,i (ρ ′) = β(ρi ) + ρ ′β1,i, (58)

consistent with the notation in Eq. (6). Note that the leading-
order term depends on the site i through the site-dependent
density. For notational convenience, henceforth, we will not
explicitly denote this dependence.

To determine β1,i, consider Eq. (53) for P++
m,i . Expanding

the different quantities to order ρ ′, and using Eq. (57), it
is straightforward to show that the term proportional to ρ ′
satisfies

0 = Q++
m+1,i − Q++

m,i

[
2η + 1 − δm,0 + 2 − α − β

2

]
+ 2 − α − β

2
(1 − δm,0)Q++

m−1,i

+ 1

2

[
d (α + β )

dρ
− β1

]
[P++

m−1(1 − δm,0) − P++
m ]. (59)

Consider the generating function

Q̃++
i (z) =

∞∑
m=0

Q++
m,i zm, (60)

with P̃++(z) = ∑∞
m=0 P++

m zm as defined earlier in Eq. (9).
Multiplying Eq. (59) by zm and summing over m, we obtain

Q̃++
i (z) =

z(1 − z)
[ d (α+β )

dρ
− β1

]
P̃++(z) + 2(1 − z)β1

(2 − α − β )z2 − (4 − α − β + 4η)z + 2
.

(61)

Here, β1 is still undetermined. We determine it using the
root cancellation method that was used in the mean field
approximation. Equation (61) has two poles. Of these, the pole

zc = 4 + 4η − α − β−
√

(4 + 4η − α − β )2−8(2 −α− β )

2(2 − α − β )

(62)

is less than 1. This pole will contribute to an exponentially
diverging probability unless zc is a zero of the numerator. This
implies that

β1 = zcP̃++(zc)

zcP̃++(zc) − 2

d

dρ
(α + β ). (63)

In Fig. 11, we show the variation of β1 with density ρ/(1 +
ρ) = 1 − ρRTP for different spin-flip rate η. It can be seen that
for most values of ρ, the correction is O(1), and hence not
negligible. It is also seen that |β1| decreases with η for fixed
density. This is reasonable since in the η → ∞ limit the RTP
approaches a simple exclusion process, for which β1 = 0. |β1|
is also smaller for larger ρ, as the probability of a site being
empty decreases in this limit, and hence both β1 and β also
decrease.

We can now calculate the current in Eq. (50) when the field
F = 0. Expanding to order ρ ′, we obtain

〈J〉 = 1

4

[
d

dρ
(α + β ) − 2β1

]
ρ ′. (64)
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FIG. 11. The variation of β1, the correction to the steady state
due to the presence of a density gradient [see Eq. (58) for definition]
with density ρ/(1 + ρ ) = 1 − ρRTP for (from top to bottom) η =
1, 2, and 5. We see that the contribution of β1 to D(ρ ) is significant
for moderate η and low ρ, but decreases with increasing η and ρ.

Comparing with Eq. (47), we immediately read off the diffu-
sion constant

D(ρ) = −1

4

[
d

dρ
(α + β ) − 2β1

]
. (65)

Note that D(ρ) depends on the correction β1 to the steady state
due to the presence of a nonzero density gradient. Substituting
for β1 from Eq. (63), we obtain

D(ρ) = 1

4

[
zcP++

0 (zc) + 2

zcP++
0 (zc) − 2

]
d

dρ
(α + β ). (66)

In simulations, we test the above prediction for D(ρ) by
measuring the spreading of an initial small density inhomo-
geneity

ρ(x) = ρ0 + ρ1
exp

(−x2

�2

)
√

π�2
. (67)

The initial width is chosen to be � = 10, and the spread is
averaged over many realizations in the Monte Carlo simu-
lations. The analytical prediction is obtained by numerically
integrating Eqs. (47) and (66) using the Euler method. In
Fig. 12, we compare the numerical results for the spreading
of an initial density profile with those from the analytically
calculated D(ρ) for two different values of η. As can be seen
from the figure, the two are in excellent agreement. We stress
that the term proportional to β1 turns out to be essential for
reproducing the numerical results, and comparing with the
naive prediction for D(ρ) does not produce similar agreement
(plots not shown).

B. Current in the presence of a field

We now consider the case of a nonzero field F but in the
absence of a density gradient, i.e., ρ ′ = 0. Since the system on
a ring is translationally invariant, it is easy to see that Pab

m,i =
Pab

m is independent of the index i. We expand the probabilities

(a)

(b)

FIG. 12. Numerical results for the spreading of an initial Gaus-
sian density perturbation, as described in Eq. (67), with time τ is
compared with the results from the analytical mean field expression
for D(ρ ) [see Eq. (66)] for (a) η = 1 and (b) η = 2.

to first order in F :

Pab
m = Pab

m + FRab
m + O(F 2), a, b = +,− (68)

where Pab
m is the steady-state mean field solution obtained in

Sec. III for the homogeneous case, and Rab
m denotes the first-

order correction.
For nonzero F , the system has certain symmetries. For sites

with one spin pointing inward and one spin pointing outward,
the probabilities are invariant under F → −F , s → −s. This
implies that P−−

m (F ) = P++
m (−F ). For sites with both spins

pointing inward or both pointing outward, the probabilities
are invariant under F → −F . This implies that P+−

m (F ) =
P+−

m (−F ) and P−+
m (F ) = P−+

m (−F ), i.e., they are even func-
tions of F . These symmetries thus imply that

R++
m = −R−−

m , (69)

R+−
m = R−+

m = 0, m = 0, 1, 2, . . . . (70)

We now solve for the only unknown first-order correction
R++

m . It is convenient to introduce the notation

R++
0 = −R−−

0 = βF
1 . (71)
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FIG. 13. The variation of βF
1 , the correction to the steady-state

probability, in the presence of a field F [see Eq. (71) for definition]
with density ρ/(1 + ρ ) = 1 − ρRTP for η = 1, 2, and 5. We see that
the contribution of βF

1 to χ is quite small, and decreases in magnitude
with increasing η.

Consider Eq. (53) with ρ ′ = 0 in the steady state. Using the
symmetries in Eqs. (69) and (70), the O(F ) term in Eq. (53),
after simplification, satisfies

R++
m−1[1 − δm,0][2−α−β] − R++

m [4 + 4η−α−β−2δm,0]

+ 2R++
m+1 + 2P++

m+1 − P++
m

[
4 − α − β − 2δm,0 − βF

1

]
+ P++

m−1(1 − δm,0)
[
2 − α − β − βF

1

] = 0. (72)

Equation (72) can be solved by the method of generating
functions. Let R̃++(z) = ∑

m=0 R++
m zm. Multiplying Eq. (72)

by zm and summing over m, we obtain

R̃++(z)

1 − z
= 2

(
β + βF

1

) + P̃++(z)
[
(2−α−β )z −2−zβF

1

]
(2 − α − β )z2 − (4 − α − β + 4η)z + 2

.

(73)

R̃++(z) has two poles, one of which is less than zero. This
pole equals zc, as given in Eq. (62). At this value of zc, the
numerator should also vanish, allowing βF

1 to be determined:

βF
1 = [2 − (2 − α − β )zc]P̃++(zc) − 2β

2 − zcP̃++(zc)
. (74)

Knowing βF
1 , we can now calculate the drift coefficient

χ (ρ). From Eqs. (47) and (50), we obtain

χ (ρ) = 2 − α − β − βF
1

2
. (75)

We see that the nongradient nature of the process also affects
χ (ρ) through βF

1 .
The variation of βF

1 with density ρ/(1 + ρ) = 1 − ρRTP for
different values of η is shown in Fig. 13. It is clear that, in the
regime η > 1, where we expect the mean field theory to be
valid, βF

1 gives only a small contribution to χ (ρ). In addition,
|βF

1 | decreases with increasing η, consistent with the fact that
it equals zero for η = ∞.

We now compare the predictions for χ (ρ) with results
from simulations. We measured the conductivity χ (ρ) in

FIG. 14. The variation of conductivity χ (ρ ) with spin-flip rate η

for density ρ = 1, 2, as measured in simulations. The solid lines are
the theoretical predictions as given in Eq. (75).

simulations of the system on a periodic ring, with a field F bi-
asing the mass transfers. The current was measured for various
values of η and ρ, and J/F for F = 1, 2, 3 was extrapolated
to F = 0 to obtain the linear conductivity. In Fig. 14, we
compare the theoretical result for χ (ρ) with simulation data
for different values of η and ρ. It is clear that the mean field
hydrodynamic theory is in excellent agreement with simula-
tions.

C. Mass fluctuations

To test the Einstein relation [see Eq. (46)], we need to
calculate the mass fluctuations σ 2 defined as

σ 2 =
〈
m2

�

〉 − 〈m�〉2

�
, � → ∞ (76)

where m� denotes the total mass in a subsystem of � sites.
Although we work in the mean field approximation, we
cannot treat the masses as completely independent, as differ-
ent sites are correlated through the interconnecting spins. If
P(m1, m2, . . . , m�) denotes the joint probability distribution
function of � consecutive sites numbered 1, 2, . . . , �, then

P(m1, . . . , m�) = 1

2�+1

∑
k,n

[
�∏

i=1

(
P++

mi
P−+

mi

P+−
mi

P−−
mi

)]
kn

. (77)

Now consider the generating function P�(z) for the total
mass of the subsystem

P�(z) = 〈zm1+m2+···+m�〉. (78)

Multiplying Eq. (77) by zm1+···+m� and summing over the
masses, we obtain

P�(z) = 1

2�+1

∑
i, j

[(
P++(z) P−+(z)
P+−(z) P−−(z)

)l]
i j

. (79)

For large subsystem sizes �, the generating function P�(z) is
dominated by the larger eigenvalue �(z) of the matrix on the
right-hand side of Eq. (79). Diagonalizing, we obtain

�(z) = P++(z) +
√

P−+(z)P+−(z). (80)
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FIG. 15. The variation of the numerically obtained subsystem (in
this case, single-site) mass fluctuations with density ρ for different
values of η. The solid lines are the theoretical predictions as given in
Eq. (82).

Then,

ln P�(z)

�
= ln �(z) − ln 2 + O

(
1

�

)
. (81)

The mass fluctuations are given by

σ 2 =
(

z
d

dz

)2 ln P�(z)

�
. (82)

In Fig. 15, we compare the theoretical result for the subsys-
tem fluctuations with simulations for different η and ρ. In the
simulations, we measure single-site mass fluctuations. They
are in excellent agreement, further confirming the validity of
mean field theory for moderate and large η. Knowing the
subsystem mass fluctuations σ 2(ρ), we can proceed to test the
Einstein relation.

D. Einstein relation

In this section, we test the Einstein relation 1
σ 2(ρ) = D(ρ)

χ (ρ)
given in Eq. (46). To do so, we note that our analytic expres-
sions for the transport coefficients reproduce the numerical
results quite accurately (see Figs. 12, 14, and 15). Hence,
we check for the Einstein relation using these analytic ex-
pressions. Figure 16 shows the variation of D(ρ)σ 2(ρ)

χ (ρ) with ρ

for various values of η. If the Einstein relation is valid, this
ratio should equal one. It is clear that the Einstein relation is
not valid for moderate to large η. However, the ratio D(ρ)σ 2(ρ)

χ (ρ)
tends to one as η → ∞.

We see that the Einstein relation fails for all finite η, even
in the regime where the mean field approximation shows
excellent agreement with simulations. There are two reasons
for this. First, since the current in the mass transfer process
depends on the spin configuration, the process is no longer a
gradient process. Second, the persistence of the spin configu-
ration over a time η−1 means that the noise in the macroscopic
current at two different times is no longer uncorrelated, and
hence the conductivity χ (ρ) no longer represents the strength
of the fluctuating part of the current. Thus, care has to be

FIG. 16. The variation of the ratio D(β )σ 2(β )/χ (β ), calculated
within mean field theory, with density ρ/(1 + ρ ) = 1 − ρRTP for
different values of the spin-flip rate η. If the ratio equals one, then the
Einstein relation in Eq. (46) is satisfied. The ratio D(β )σ 2(β )/χ (β )
approaches 1 as η → ∞ (the simple exclusion process limit) and for
low densities.

taken when writing a fluctuating hydrodynamics for the RTP,
and in analyzing its relation to the conductivity. In the next
section, we shall see that these problems are even more severe
for small η since the persistence times get longer.

VI. HYDRODYNAMICS FOR THE COALESCENCE MODEL

We showed in Sec. IV that in the limit of η 	 1, the steady-
state mean density of clusters as well as the approach to the
steady state is well approximated by an effective aggregation-
fragmentation model. We now calculate the hydrodynamic
coefficients D(ρ) and χ (ρ) [see Eq. (47) for a definition] by
determining the rates of mass transfers across a given bond in
the presence of a density gradient ρ ′ = ∂ρ/∂x and a field F .
In the presence of a field, the rate of mass transfer towards the
right is increased by a factor (1 + F ) and the rate towards the
left is decreased by a factor (1 − F ). We show in Appendix D
using the empty interval method that, unlike in the previous
section, the presence of a field or density gradient does not
change the steady-state measure. This implies that we can use
the equilibrium formulas for nc(ρ) and m∗(ρ) in calculating
the current under a small density gradient or field.

A. Calculation of current: Preliminaries

To derive the hydrodynamic coefficients D(ρ) and χ (ρ),
we now calculate the mass current across the bond (−1, 0) to
first order in F and ρ ′. As a preliminary observation, we note
that the mass current across a given bond might originate in a
spin flip at a site far away from the bond, if all the intervening
arrows between the site and the bond point towards the bond.
We will first consider mass transfers across (−1, 0) to the
right, initiated by the flip of one of the spins around the site
−k. Symmetrically, one can similarly calculate the current to
the left across (−1, 0) from mass transfer from site (k − 1),
finally summing over k to calculate the total current.
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Now, if the site −k is occupied, then s−k+ 1
2

= −1 and
s−k− 1

2
= 1 since we assume that only +− sites are occupied.

The probability that a given site is occupied is nc(ρ). If s−k+ 1
2

flips to 1, which happens at rate η, then mass transfer is
initiated to the right. The probability of the nearest −1 spin
to the right being a distance j away is thus

p( j) = 2− j . (83)

Similarly, we denote the probability that the nearest −1 spin
to the right being a distance � j away as

p�( j) = 2− j+1 = 2p( j). (84)

The time for a mass transfer over a distance j ∼ O(1)
is m∗ + O(1) on average since m∗(ρ) is the average mass
on a site, since the rate of mass transfer over each bond is
1. In the presence of a field, the mass transfer time to the
right is (1 − F )m∗, and to the left is (1 + F )m∗, to leading
order.

B. Current in a constant density gradient

We consider the current across the bond (−1, 0) due to
a mass at site −k, in the presence of a small, constant
density gradient ρ ′. The average density at site j is then
ρ j = ρ0 + jρ ′. Our aim is to calculate the leading-order
term in the diffusion constant. For this purpose, it is suffi-
cient to consider processes where only a single spin flip has
occurred.

Consider the mass transfer from site −k across the bond
(−1, 0) through a process of a single spin flip. The proba-
bility that site −k is occupied is given by nc(ρ−k ) since nc

depends on position only through the local density. If site −k
is occupied, it is of type +−, and hence the spin s−k+ 1

2
= −1.

Mass transfer to the right is initiated by the flipping of the
spin s−k+ 1

2
. If all the spins between −k + 1 and 0 are pointing

to the right, the mass is transferred across (−1, 0) to the
right. Since spin flips happen at rate η, the current due to site
−k is

J+
−k = ηnc(ρ−k )m∗(ρ−k )p(k). (85)

The current to the left across (−1, 0) due to site k − 1 is
similarly

J−
k−1 = ηnc(ρk−1)m∗(ρk−1)p(k). (86)

Summing over k, the total current is

J =
∞∑

k=1

J+−k − J−
k−1

= η
∑

k

p(k)(ρ−k − ρk−1) (87)

= −η
∑

k

p(k)(2k − 1)ρ ′ = −6ηρ ′, (88)

which gives, to leading order,

D(ρ) = 6η. (89)

FIG. 17. Numerical results for the spreading of an initial Gaus-
sian density perturbation, as described in Eq. (67), with time τ is
compared with the results from the analytical expression for D(ρ )
[see Eq. (92)] for (a) η = 0.001 and (b) η = 0.002.

In Eq. (88) we used

∞∑
k=1

p�(k) = 2
∞∑

k=1

p(k) = 2, (90)

∞∑
k=1

kp�(k) = 2
∞∑

k=1

kp(k) = 4. (91)

The calculation of the next-to-leading-order term is beyond
the scope of our calculations, as it requires careful considera-
tion of empty interval probabilities. As in the mean field case,
we verify our result for D(ρ) by fitting it to simulations of
spreading from an initial density perturbation (see Fig. 17).
Although Eq. (89) gives a reasonable estimate of the spread,
we find that postulating a form

D(ρ) ≈ η(6 + d
√

ηρ) (92)

allows us to obtain an excellent fit. This is because for the
values of ρ and η we study, the subleading correction is im-
portant for the initial stages of the spread. Our simulations are
consistent with the above form, and an excellent fit is obtained
with d = 3, as shown in Fig. 17.

062111-14



HARD CORE RUN AND TUMBLE PARTICLES ON A … PHYSICAL REVIEW E 102, 062111 (2020)

C. Current in a small field F

We now assume that the field F is nonzero, but that there
is no density gradient. Since the system is on a ring, it is
translationally invariant. As before, we consider the current
across the bond (−1, 0), in a time T . The probability that a
given bond flips during this time is ηT . The probability that j
given bonds flip is (ηT ) j while the probability that j given
bonds do not flip is, to leading order, 1 − jηT . The probe
timescale T is chosen so that it is greater than the timescale of
mass transfer m∗, but T 	 η−1, allowing for an expansion in
numbers of bonds flipped during the transfer.

There are five processes which contribute to mass transfer
across the bond (−1, 0) from the site −k, with k > 0.

(1) s−k+ 1
2

flips initially and no other spin flips. This leads
to a mass m∗ being transferred across (−1, 0) if all of the
intervening spins are pointing to the right. If the mass ends
up beyond site 0, no spins between −(k + 1) and 0 should flip
during the mass transfer. If the mass ends up at site 0, the spin
s− 1

2
should not flip during the probe timescale T , as this will

lead to a mass less than m∗ being transferred across (−1, 0) at
the end of the probe time period. The current due to process
(1) is

J+
1 = ncηm∗{p�(k + 1)[1 − (k + 1)ηm∗(1 − F )]

+ p(k)[1 − ηm∗k(1 − F ) − ηT ]}, (93)

where the first term is the contribution to current from mass
transfer to sites 1 and beyond, and the second describes the
contribution to mass to transfer to site 0.

(2) s−k+ 1
2

flips initially followed by s−k− 1
2

flipping during
transfer. This leads to some mass being transferred to the
left of site −k. On average, the spin s−k− 1

2
flips halfway

through the transfer, thus the remaining mass is m∗/2. Of this
remaining mass, due to the field F , a fraction (1 + F )/2 ends
up on the right and (1 − F )/2 on the left of site −k. If the
spins between −k and 0 point to the right, the mass transferred
across (−1, 0) is m∗/2 + m∗(1 + F )/4. The current is

J+
2 = ncη

(
3
4 m∗ + 1

4 m∗F
)
[ηm∗(1 − F )]p�(k). (94)

(3) s−k− 1
2

flips initially followed by s−k+ 1
2

flipping during
transfer. The initial mass transfer is to the left of −k (and
against the field), but during the transfer the flipping of s−k+ 1

2

leads to some mass being transferred across (−1, 0). Since
the transfer is in the direction of the field, the average mass
transferred to the right is m∗(1 + F )/4. Therefore,

J+
3 = ncη

1
4 m∗(1 + F )[ηm∗(1 + F )]p�(k). (95)

(4) s−k+ 1
2

flips initially followed by a spin between −k and
0 flipping from right to left during the mass transfer. Such
a flip interrupts the transfer and on average leads to only
mass m∗/2 being transferred across (−1, 0). However, as in
(1) above, we have to distinguish between the cases where
the transfer is to site 1 or beyond, and the transfer ending at
site 0. In the latter case, flipping of any spin between −k and
−1 interrupts the transfer as before, but flipping of spin s− 1

2

will lead to the whole mass ending up at site −1 and no mass
transferred across (−1, 0) at the end of the probe period T .

Hence,

J+
4 = ncη

m∗

2
{p�(k + 1)kηm∗(1 − F )

+ p(k)[(k − 1)ηm∗(1 − F ) + ηm∗(1 + F )]}. (96)

(5) s−k+ 1
2

flips initially followed by a spin between −k and
0 flipping from left to right during the mass transfer. The
fifth type of process is in a way the inverse of (4) above:
say the initial closest −1 spin was s−i+ 1

2
, with 0 < i < k,

but that spin flips during the time T . If the next nearest −1
spin is beyond site 0, then mass will end up across (−1, 0).
Taking the mass transfer time into account, if this flip happens
in [0, T − m∗(1 − F )], the whole mass m∗ ends up across
(−1, 0). If it happens in [T − m∗(1 − F ), T ], on average only
half the mass ends up across (−1, 0) after time T . Note that
the probability that the nearest spin is at −i + 1

2 and the next
nearest beyond 0 is p(k − i)p�(i) = p�(k). The site i can be
in one of (k − 1) positions. If site i was initially occupied,
which happens with probability nc, an additional mass m∗
will be transferred across (−1, 0). However, if i = k − 1, the
site i cannot be occupied since two occupied sites cannot
be directly adjacent. Hence, when i is in one of the other
(k − 2) places, 2m∗ is transferred across (−1, 0). Thus, the
current is

J+
5 = ncηp�(k)(k − 1)

{
m∗η[T − m∗(1 − F )]

+ m∗

2
ηm∗(1 − F )

}
+ ncηp�(k)(k − 2)

{
m∗η[T − m∗(1 − F )]

+ m∗

2
ηm∗(1 − F )

}
�(k − 2), (97)

where the Heaviside theta function accounts for the fact
that the contribution of the second type when k = 1 is
zero.

Summing up the contributions to the current from the
above five processes, we obtain the total current from left to
right across the bond (−1, 0). To calculate the conductivity
χ (ρ), we only need to consider those terms in J+ that are
proportional to F . In the absence of a density gradient, the
other terms of the current will cancel each other. We denote
the part of the current J proportional to F as JF . Using
p�(k) = 2p�(k + 1) = 2p(k), we obtain

J+
F = F (ηρ)3/2

∞∑
k=1

p(k)

(
5k

2
+ 1

2

)

= 11

2
F (ηρ)3/2. (98)

Similarly, the F -dependent term of J−
F is

J−
F = 11

2
F (ηρ)3/2. (99)

Thus, we obtain

χ (ρ) = 11(ηρ)3/2, η 	 1. (100)
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FIG. 18. The variation of conductivity χ (ρ ) with ηρ for two
different values of density ρ. The data for different ρ lie on one
curve, which for small ηρ is compared with the theoretical prediction
11(ηρ )3/2 (solid line), as given in Eq. (100). Inset: The coefficient of
the power law is obtained by plotting χ/(ηρ )3/2 against

√
ηρ. The

best fit, shown by dotted line, is 11.01 − 20.02
√

ηρ − 68.18ηρ.

In Fig. 18, we show the variation of χ with η for two values
of density ρ. The data for the two densities collapse onto one
curve when χ is plotted against ηρ, consistent with Eq. (100).
For small ηρ, the data are consistent with a power law with
exponent 3

2 as in Eq. (100). However, the curve deviates from
the power law for larger ηρ. In the inset, we account for
these correction terms in order to measure the prefactor of the
power law more accurately to be ≈11.01, consistent with the
theoretical prediction in Eq. (100). The leading correction to
conductivity is numerically estimated to be

χ (ρ) = 11(ηρ)3/2 + κ (ηρ)2 + O((ηρ)5/2), (101)

with κ ≈ 20.

D. Transport coefficients and Einstein relation

To test the Einstein relation, we need to estimate the mass
fluctuations in a subsystem. We will see that the Einstein
relation is not obeyed in the low η regime, and the discrep-
ancy is of the order of η−1 and thus not simply a matter
of getting the numerical factors correct. So far, we have not
considered the distribution of mass on an occupied site in the
low η regime. To proceed with the estimate, we postulate that

the mass distribution on occupied sites is Pocc(m) ∼ e−√
η

ρ
m.

Since the density of occupied sites is nc = √
ηρ, we have

(after normalization)

P(m) =
{

1 − √
ηρ for m = 0,

ηe−√
η

ρ
m for m > 0.

(102)

If we assume the masses at different sites are independent, this
gives

σ 2(ρ) = 〈m2〉 − 〈m〉2 = 2
ρ3/2

√
η

+ O(1). (103)

Comparing with

D(ρ)

χ (ρ)
= 6

11

1

η1/2ρ3/2
+ O(1), (104)

we see that the Einstein relation, given in Eq. (46), is not
satisfied for the dynamics in the coalescence picture, i.e., for
η 	 1. The physical reason for this is that mass transfers in
the low η regime are correlated over a time η−1, which can
be very large. The Einstein relation assumes that χ (ρ) is also
the coefficient of a delta-correlated noise term in the current.
However, the long-time persistence makes this assumption
false, and hence the Einstein relation is not expected to
hold.

VII. CONCLUSION

In this paper, we studied a system of hard core run and tum-
ble particles on a one-dimensional lattice. A particle moves
persistently in the direction of its spin, until the spin flips di-
rection. We study the properties of the gaps between particles
by mapping the model to a mass transport model across fluc-
tuating directed bonds that are persistent for a time η−1. We
solve for the mass distribution using a mean field approxima-
tion which reproduces well the distribution for moderate and
large spin-flip rates η, but fails for small η. For small η, we de-
velop an aggregation-fragmentation model which analytically
characterizes both the approach to the steady state as well as
the steady state itself, both in excellent agreement with results
from simulations. For both large and small η, we also derived
the hydrodynamic coefficients of diffusivity and conductivity
by calculating the current across a bond in the presence of a
small density gradient and a small biasing field, respectively.
In the moderate and large η cases, we see that the steady
state changes upon introduction of a small gradient or biasing
field, and such a change in the steady state contributes sig-
nificantly to the hydrodynamic coefficients. This is due to the
fact that crowding occurs differently behind particles parallel
to and antiparallel to the field or gradient, and the direction
of particle motion is persistent for a time η−1. For small η,
we calculate the hydrodynamic coefficients exactly to leading
order.

The Einstein relation between the hydrodynamic coeffi-
cients and the subsystem mass fluctuations is not obeyed for
η �= ∞. This is, again, because of persistence of the motion
of individual particles. In particular, unlike in usual lattice
gases, the conductivity does not equal the amplitude of the
current fluctuations in the steady state because the current
fluctuations are correlated over a time η−1. It is the balance
between the diffusivity and the current fluctuations in the
steady state that dictates the subsystem mass fluctuations, and
not the balance between the diffusivity and the conductivity.
Thus, the discrepancy in the Einstein relation in both regimes
is proportional to η−1.

Our calculations explicitly demonstrate the unusual effects
of persistence on the hydrodynamics of RTPs, namely, the
effect of the change in the steady state in a field, and the mis-
match between the conductivity and current fluctuations. Our
findings have implications for attempts to develop a hydrody-
namics of active matter [12,22], showing that the nongradient
nature of the process has to be carefully accounted for, and
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that unlike the case of weak persistence (η−1 ∼ L−1) [19],
local equilibrium does not hold in the presence of strongly
persistent motion.

There are several promising areas for future study. A
straightforward generalization is to higher dimensions. In di-
mensions higher than one, the effect of caging is absent and,
hence, one would expect the mean field results to be more
accurate. Although the mapping to a mass model breaks down
in higher dimensions, the mass transport model with directed
bonds whose direction fluctuates in time is also an interesting
model to study. In the low η regime, especially if one intro-
duces interactions between the directed bonds, one expects to
find novel clustered and patterned phases. This generalized
mass model can easily be studied with the techniques devel-
oped in this paper.

In the RTP model studied here, a site can be occupied
by at most one particle. A generalization of the model is to
increase the occupancy of a site to more than one. Clearly,
when the maximum occupancy is infinite, the effect of hard
core repulsion disappears and the problem reduces of that
of independent persistent random walkers. However, when
the maximum occupancy is larger than two but finite, it has
been reported, based on Monte Carlo simulations, that there
is a condensation transition [32]. It would be interesting to
apply the techniques developed in this paper to study the
hydrodynamics in this model, as well as the cluster size
distribution.

The RTP model considered in this paper may be consid-
ered as adding spins to particles in the symmetric exclusion
process. A tractable generalization of the symmetric exclu-
sion process where exact results are easy to obtain is the
random average process (RAP) [57], where particles live
on the continuum and make jumps which can be of any
distance as long as the order of particles is maintained. A
RAP model with persistent spins would be interesting as a
more general model to study using the techniques developed
here.
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APPENDIX A: CALCULATION OF THE MEAN FIELD
SOLUTIONS FOR P++(z), P+−(z)

Consider the transfers leading to changes in P+−
m . For this

configuration of spins, the lattice site can only receive mass,
as both the neighboring spins point inward. P+−

m evolves in

time as

dP+−
m

dt
=

∞∑
m′=1

(P−•
m′ + P•+

m′ )[P+−
m−1(1 − δm,0) − P+−

m ]

+ η(P−−
m + P++

m − 2P+−
m ), (A1)

where the • in the superscript means that the spin could be
either + or −. Clearly,

P−•
m = 1

2 P−−
m + 1

2 P−+
m . (A2)

Substituting Eq. (A2) into (A1) and simplifying, we obtain

dP+−
m

dt
= (2 − α − β )[P+−

m−1(1 − δm,0) − P+−
m ]

+ 2η(P++
m − P+−

m ). (A3)

Setting time derivatives to zero in the steady state and solving
for P+−

m , we obtain

P+−
m = 2ηP++

m + (2 − α − β )P+−
m−1

2η + 2 − α − β
. (A4)

Multiplying by zm and summing over m, we obtain the gener-
ating function to be

P̃+−(z) = 2ηP̃++(z)

2η + (1 − z)(2 − α − β )
. (A5)

Note that P̃+−(z) is also determined in terms of P̃++(z).
Setting z = 0 in Eq. (A5), we obtain δ is terms of α

and β as

δ = 2ηβ

2η + 2 − α − β
. (A6)

We now examine P++(m). The spin configuration is such
that the site can receive particles from the left neighbor but
also lose particles to the right neighbor. Like the earlier cases,
the time evolution equation for P++(m) may be written. In the
steady state, we obtain

P++
m+1 = 2 − α − β

2

[
P++

m − P++
m−1(1 − δm,0)

]
+ P++

m (1 − δm,0) + η(2P++
m − P−+

m − P+−
m ).

(A7)

Multiplying by zm and summing over m, we obtain the gener-
ating function to be

P̃++(z) = 2(1 − z)β + 2ηz[P̃+−(z) + P̃−+(z)]

2(1 − z) − z(1 − z)(2 − α − β ) − 4ηz
. (A8)

Solving for the generating functions P̃++(z), P̃+−(z), and
P̃−+(z) from Eqs. (10), (A5), and (A8), we finally obtain

P̃++(z) = 2[(α + β − 2)(z − 1) + 2η][(α + β )ηz + β(z − 1)]

h(z)
,

P̃+−(z) = 2[(α + β )ηz + β(z − 1)]

h(z)
,

P̃−+(z) = 2η(z − 1){3α2z + α[(4β − 6)z + 2] + (β − 2)βz} + 4η2z(α + β ) + α(z − 1)2(α + β − 2)[z(α + β − 2) + 2]

h(z)
,

(A9)
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where the denominator h(z) is given by

h(z) = [(α + β − 2)(1 + η)z + 2 − α − β + 2η]

× [(α + β − 2)z2 − (α + β − 4η − 4)z − 2].

(A10)

APPENDIX B: RELATING THE HYDRODYNAMIC
COEFFICIENTS IN THE RTP AND GAP PICTURES

As stated in Sec. II, the particles in the RTP picture become
sites in the gap picture. Thus, a length �x in the gap picture
is equivalent to a length �xRTP in the corresponding RTP
configuration through

�x = ρRTP�xRTP. (B1)

Flow of gap particles across a bond in the gap picture is
equivalent to the movement of the RTP corresponding to the
bond in the opposite direction. Thus, current in the gap picture
is the negative of the average velocity in the RTP picture:

J = −vRTP. (B2)

Now, let us consider the current in the RTP picture in the
presence of a density gradient. Since the average current is
equal to the density multiplied by the average velocity of
particles, we have

JRTP = ρRTPvRTP = −ρRTPJ

= ρRTPD(ρ)
dρ

dx

= ρRTPD

(
1

ρRTP
− 1

)
ρRTP

d

dxRTP

(
1

ρRTP − 1

)
= −D

(
1

ρRTP
− 1

)
dρRTP

dxRTP
. (B3)

Thus, the diffusion constants in the two pictures are simply
related as

DRTP(ρRTP) = Dgap

(
1

ρRTP
− 1

)
. (B4)

Similarly, it can be derived that the conductivity in the pres-
ence of a field in the RTP picture is related to the conductivity
in the gap picture through

χRTP(ρRTP) = −ρRTPχgap

(
1

ρRTP
− 1

)
, (B5)

where the negative sign, included for consistency, accounts
for the fact that a right-biasing field for the gap particles is a
left-biasing field for the RTPs.

APPENDIX C: EMPTY INTERVAL APPROXIMATION FOR
SMALL η

Let En be the probability that a given set of n contiguous
sites is empty. Then, the probability that a set of n contiguous
sites is empty and has an occupied site on the immediately
right is En − En+1 ≡ Qn. We now study the time evolution
of the probability En for n � 1. There are two contributions:
complete mass transfers labeled as (1) and incomplete mass
transfers due to fragmentation labeled as (2).

(1) Consider the contribution from complete transfers. An
empty cluster of length n is destroyed if there is a transfer over
a distance k or greater from an occupied site at the end of an
empty cluster of length n + k − 1. The rate of this happening
is given by η p>(k) Qn+k−1, where p>(k) is the probability of
mass being transferred a distance larger than k.

A cluster of length n is created if there is a cluster of length
n − k, followed by an occupied site, followed by an empty
cluster of length k − 1, and there is an event which transfers
the mass at the occupied site by a distance �k. The probability
of this event can be approximated as ηp>(k)Qn−kQk−1/nc,
where nc is the density of occupied sites in the steady state.
Collecting together the creation and destruction processes, we
obtain

dEn

dt

∣∣∣∣
(1)

= 2η
∑

k

p>(k)

(
Qn+k−1 − Qn−k

Qk−1

nc

)
, (C1)

where the subscript (1) denotes the contribution from com-
plete mass transfers.

Since we have assumed n � 1, we can approximate the
above by a continuum description

dEn

dt

∣∣∣∣
(1)

≈ 2η
∑

k

p>(k)

[
(2k−1)

dQn

dn
+ Qn−k

(
1 − Qk−1

nc

)]
,

= 12η
dQn

dn
+ 2η

∑
k

p>(k)Qn−k

[
1 − Qk−1

nc

]
. (C2)

We note that the quantity Qk−1 is of the order of nc times
the probability of finding an interval of length k, and hence
1 − Qk−1/nc is of O(nc). We have assumed that we are in the
limit nc 	 1. Now, for large n, Qn ∼ nce−ncn, Q′

n is O(n2
c ),

and thus the two terms are of comparable order, and hence we
cannot neglect the second term.

In order to evaluate the second term in Eq. (C2), we ap-
proximate Qj as follows: Q0 = Q1 = nc since the density of
occupied sites is nc and an occupied site is always followed
by an empty site since two +− sites cannot be contiguous.
And for k > 1, we assume Qj ≈ nc(1 − nc) j−1. With this
assumption, we can calculate the second term to be

2η
∑

k

p>(k)Qn−k

(
1 − Qk−1

nc

)
≈ 2η

∑
k

p>(k)Qn−k (k − 2)nc ≈ 2ηncQn, (C3)

where we used Qn−k ≈ Qn − kQ′
n = Qn + O(n2

c ).
(2) We now consider the contributions to the empty interval

probabilities due to incomplete mass transfers. Consider a
mass transfer event initiated at a +− site due to the flipping of
the − spin, and the nearest − spin to the right is at a distance
k. If, during this transfer, a spin a distance i < k − 1 to the
right flips, the mass ends up at two sites i and k. (If the spin at
k − 1 flips, the whole mass ends up at k − 1 instead of k.) The
probability of this event for a given i is ηm to leading order.
This happens also in case the + spin on the original +− site
flips as well, where now some of the mass ends up on the
right of the original site and some on the left. Note that since
some mass does end up a distance k away, the destruction of
empty clusters to the right happens whether there is a splitting
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or not. However, the creation of new empty clusters might not
happen.

Consider the change in the creation term due to splitting
events. If during a mass transfer over a distance >k from
an occupied site inside the cluster, one of the intervening k
spins flips (k − 1 in case of a transfer over exactly k sites), the
creation is interrupted. This could also happen in case the spin
on the other side of the occupied site also flips. Thus,

dEn

dt

∣∣∣∣
(2)

= 2η2
∑

k

m∗[kp(k) + (k + 1)p>(k + 1)]
Qn−kQk−1

nc

= 10η2m∗[Qn + O
(
n2

c

)]
. (C4)

Collecting together the contributions from Eqs. (C2), (C3),
and (C4), we obtain, to leading order,

dEn

dt
= 12η

dQn

dn
+ (2ηnc + 10η2m∗)Qn. (C5)

Thus, in the steady state,

− 1

Qn

dQn

dn
= 1

6
(nc + 5ηm∗). (C6)

Since the density of clusters is nc, the average distance be-
tween clusters is n−1

c and, hence, for large n, we can write
Qn ≈ Ce−ncn to leading order. C is a constant that might de-
pend on nc and other factors. We use the equality ncm∗ = ρ,
the average density, to eliminate m∗ from the above equation.
Thus, we finally obtain

nc = √
ηρ, (C7)

m∗ =
√

ρ

η
(C8)

to leading order.

APPENDIX D: INVARIANCE OF THE LOW η STEADY
STATE TO FIRST ORDER IN ρ′ AND F

In this Appendix, we show that, for small η, the empty
interval probabilities are invariant up to order η in the presence
of a field F . Consider the equations [see (C2) and (C4)] for
the empty interval probabilities En, the probability of finding
a void of length n. Consider the terms in Eqs. (C2) and (C4),
but written in the general form

dEn

dt

∣∣∣∣
right

=
∑

i

fiFi
(
Ek1 , Ek2 , . . .

)
, (D1)

where we have written only the equation for the creation and
destruction terms at the right boundary of En. The fi denote
the rates for the various jump processes, which depend on
the spin configurations and rates for spin flips, and the Fi are
functions of the void probabilities Ek . Now, in the presence
of a constant density gradient, the rates fi remain unchanged,
but the Ek depend on position due to their dependence on the
density field ρ(x). It is convenient to specify the position of
a void of size n by the position of its midpoint, say at x, and
denote the probability of this cluster of sites being empty as

En,x. In the presence of a density gradient,

En,x = En,0 + ρ ′(x)
dEn

dρ
x + O((ρ ′)2). (D2)

Now, the equation for the rate of change of void probabilities
En in the presence of a density gradient, due to transfer of
particles through its right boundary becomes

dEn,0

dt

∣∣∣∣
right

=
∑

fiFi
(
Ek1,x1 , Ek2,x2 , . . .

)
, (D3)

where for convenience we have taken the original void to be
centered at x = 0, and the void which contributes to Fi to be
centered at x1, x2, and so on. To first order, this equals

dEn,0

dt

∣∣∣∣
right

=
∑

i

fiFi
(
Ek1,0, Ek2,0, . . .

)
+

∑
i

fiρ
′(x)

∑
j

x j
dFi

dEkj

dEkj

dρ
+ O(ρ ′2).

By symmetry, the equation for the rate of change of En,0

due to flows across its left boundary is

dEn,0

dt

∣∣∣∣
left

=
∑

i

fiFi
(
Ek1,−x1 , Ek2,−x2 , . . .

)
,

=
∑

i

fiFi
(
Ek1,0, Ek2,0, . . .

)
−

∑
i

fiρ
′(x)

∑
j

x j
dFi

dEkj

dEkj

dρ
+ O(ρ ′2).

Hence, the equation for the rate of change of En,0 in the
presence of a density gradient is

dEn,0

dt
= 2

∑
i

fiFi
(
Ek1,0, Ek2,0, . . .

) + O(ρ ′2), (D4)

which proves that the steady state does not change in the
presence of a density gradient, to first order in ρ ′(x).

Now, in the presence of a constant field F , assuming the
system is on a ring, the probabilities En do not depend on
position. However, the jump rates to the right and left become
functions of F . If a jump to the right occurs at rate p(F ), the
same jump to the left occurs against the field, and hence at a
rate p(−F ). To first order in F , p(F ) + p(−F ) = 2p(0). Now,
the rate of change of En due to a left jump across the right
boundary has its corresponding process on the left boundary
as a right jump. Hence, denoting the functional dependence of
the jump rates fi,

dEn

dt
=

∑
i

fi(F )Fi
(
Ek1 , Ek2 , . . .

)
+

∑
i

fi(−F )Fi
(
Ek1 , Ek2 , . . .

)
,

= 2
∑

i

fi(0)Fi
(
Ek1,0, Ek2,0, . . .

) + O(F 2). (D5)

Hence, the steady state also does not, under a constant field F ,
change to first order in F . Thus, we can also conclude that m∗,
P(m), and nc remain unchanged from their steady-state values
to first order in F and ρ ′.
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