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Capture of a diffusive prey by multiple predators in confined space
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The first passage search of a diffusing target (prey) by multiple searchers (predators) in confinement is an
important problem in the stochastic process literature. While the analogous problem in open space has been
studied in some detail, a systematic study in confined space is still lacking. In this paper, we study the first
passage times for this problem in one, two, and three dimensions. Due to confinement, the survival probability
of the target takes a form ∼e−t/τ at large times t . The characteristic capture timescale τ associated with the rare
capture events are rather challenging to measure. We use a computational algorithm that allows us to estimate
τ with high accuracy. We study in detail the behavior of τ as a function of the system parameters, namely,
the number of searchers N , the relative diffusivity r of the target with respect to the searcher, and the system
size. We find that τ deviates from the ∼1/N scaling seen in the case of a static target, and this deviation varies
continuously with r and the spatial dimensions.
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I. INTRODUCTION

Search and capture processes are ubiquitous in nature
and have been an important topic in stochastic processes
[1–3]. Such processes find application in a wide range
of fields [4–14], and the list is still growing. Theoretical
techniques to study a search and capture process involve the
statistics of the first encounter with the target, commonly
known as the first passage times (FPT). A complete charac-
terization of an encounter problem is therefore possible by
studying either the FPT distribution F (t ), or the probability
of survival of the target S(t ), and the different moments and
timescales associated with F (t ) [and S(t )] [15–20].

While a simple encounter process involves a single
searcher-target pair, more realistic first passage problems may
involve multiple targets and searchers [21]. Trapping reactions
are classic examples of such processes and studied extensively
before [22–27]. A variant of this problem is that of multiple
walkers searching for a single target. In this case, the FPT
denotes the time of the first encounter of any one of the entities
with the target. The limiting case when the target is static has
been studied before in a variety of contexts [17–19,28–34]; for
noninteracting searchers, the survival probability of the target
takes the form S(t ) = [s1(t )]N , where s1(t ) is the survival
probability in the presence of a single searcher [17]. While, in
free space, mostly s1(t ) ∼ t−γ as t → ∞, in a confined space,
s1(t ) ∼ exp(−t/τ ) in the asymptotic limit [19,35]. Here τ is
the characteristic time that represents the timescale associated
with the rare events of capture.

What happens when the target itself is not static? This
question leads to an interesting variant of the prey-predator
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type models [36–43]. Commonly known as the lamb-lion
problem, here, a diffusive target (lamb) is chased by N diffu-
sive searchers (lions). The problem has been studied in great
detail in free space [36,37,40,44,45]. In d = 1, S(t ) ∼ t−θN

asymptotically where, in contrast to a static target, here θN not
only depends on N but also on the ratio of the diffusivities
of the lamb and lion [36,37]. While the exact value of θN

is known for N = 1, 2, for N > 2 approximate calculations
based on statistics of extremes show that θN ∼ ln N [36,37].
As N → ∞, the dependency on N is washed away, and
S(t ) ∼ exp(− ln2 t ) [36]. The problem becomes difficult to
solve analytically in higher dimensions.

While open space is relevant in many physical problems,
on the other hand there are many diffusive processes that
occur in confined spaces [46]. Transport inside living cells
is limited by the cellular dimensions; relevant examples in
this context are proteins binding to a target site on DNA
[47] or microtubules trying to capture a kinetochore [11].
Likewise, neutrophils chase and engulf diffusing bacteria or
foreign particles within a finite region of the bloodstream
[48]. Similarly, in ecology one may consider the movement of
prey and predators confined within an island. Although most
of these examples exhibit both active and passive transport,
such examples serve as a natural motivation to study the clas-
sic lion-lamb problem under confinement for pure diffusion.
Moreover, realistic examples are often in dimensions d > 1,
hence the dependence on dimensionality should be systemat-
ically studied. Note that, for this problem, only a couple of
analytical results are known, those also in d = 1 and for a
single searcher-target pair only. Assuming equal diffusivities
of the lion-lamb pair, the full survival probability and hence
the characteristic time are known exactly [49]. For the case of
unequal diffusivities, a very recent study has shown that the
characteristic time can be estimated approximately in the limit
when the lamb diffuses much slower than the lion [20]. For
multiple lions, the problem is hard to solve analytically. In this
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FIG. 1. Schematic of N noninteracting searchers or lions [green
(light gray)] are foraging for a diffusive target or the lamb [red (dark
gray)] in d-dimensional confined geometry. The lamb has diffusivity
Dl , and all the lions have equal diffusivity DL . The confined region
is (a) a line segment of length R in d = 1, (b) a circle in d = 2, and
(c) a sphere in d = 3 of radius R. The lamb is considered to be a
circle and a sphere of radius a in d = 2, 3 respectively. In d = 1, the
system is bounded by two reflecting (rigid) boundaries at x = 0 and
R. In d = 2 and 3, the system is bounded by a radially symmetric
reflecting (rigid) boundary at radius R.

paper, we take a computational approach to tackle the prob-
lem. Note that even computationally finding S(t ), particularly
its asymptotic behavior characterized by τ , is a challenging
task. Often the asymptotic exponential tail is not visible unless
one goes to extremely low values of S(t ). Here we use a
numerical algorithm [45], which allows estimates of S(t ) to
a striking degree of accuracy (∼10−100), thus allowing us to
obtain τ unambiguously. While the mean first passage time
is commonly used to characterize a capture process, previous
studies have shown that mean times depend on the initial con-
ditions, particularly for capture processes under confinement
[17,50]. Recent work on the study of kinetochore capture by
multiple microtubules within the nuclear volume showed that
τ is independent of the initial positions of the walkers, and
hence is a robust characterization of capture timescales [11].
Moreover, it was shown that, for a moving kinetochore, τ

shows a nontrivial power-law dependence on the microtubule
number N . To understand this generic behavior of τ , here
we consider a simpler prototype setup with pointlike walkers,
searching for a moving target in confined space in d = 1, 2,
and 3. We study τ as a function of the system parameters,
namely the number of lions N , the relative diffusivity r of the
lamb with respect to a lion, and the dimensionality d .

The structure of the paper is as follows. In Sec. II, we
introduce the model. In Sec. III, we discuss the numerical
method to obtain τ . In Sec. IV, we present the results for the
variation of τ with the system parameters and a perspective
based on extreme value statistics related to the N dependence
of τ . We discuss our results in Sec. V.

II. DESCRIPTION OF THE MODEL

Our system consists of a moving target (lamb) with N
searchers (lions), all moving independently of each other,
in a d-dimensional closed volume (see Fig. 1). For d = 1,
the bounding volume is a box with two reflecting walls at
x = 0 and R [Fig. 1(a)]. For d = 2 and 3, we choose the
confining volumes to be a circle and a sphere, each of radius R
respectively [Figs. 1(b) and 1(c)]. The lions are noninteracting
point particles with equal diffusivities DL. The lamb has a
diffusivity Dl and is chosen to be a point particle in d = 1

[Fig. 1(a)], and a circle or a sphere of radius a in d = 2, 3
respectively [Figs. 1(b) and 1(c)]. At t = 0, the lamb is placed
to the left of the lions in d = 1, and in d = 2 and 3 it is always
placed at the centers of the circle and the sphere respectively.
The lions start from the same initial point in all our simula-
tions. Because of the choice of the boundary conditions and
initial conditions, radial symmetry is ensured and the survival
probability will only depend on the initial radial positions of
the lions and time t . The condition of capture of the lamb by
any of the lions in d dimensions is | ri(t ) − rl (t ) |� a, where
rl (t ), ri(t ) represent the positions of the lamb and the ith lion
at any instant t . For d = 1 since a = 0, the capture condition is
[ri(t ) − rl (t )] � 0. The lions and the lamb get reflected at x =
0 or R in d = 1 and at r = R in d = 2 and 3 respectively. Here
we focus on the behavior of τ as a function of N , the relative
diffusivities r = Dl/DL of lamb-lion, and the system size R in
d = 1, 2, 3.

The backward Fokker-Planck equation [51] for the survival
probability of the lamb in the presence of N lions is as follows:

∂S(t, rl , {ri})

∂t
= Dl∇2

l S(t, rl , {ri}) + DL

N∑
i=1

∇2
i S(t, rl , {ri}).

(1)
Here S(t, rl , {ri}) is the survival probability of the lamb up to
time t with the initial positions rl and ri of the lamb and the
ith lion respectively. Here ∇2 is the d-dimensional Laplacian.
Dividing the above equation by DL, we get

∂S(t, rl , {ri})

∂ (DLt )
= r∇2

l S(t, rl , {ri}) +
N∑

i=1

∇2
i S(t, rl , {ri}). (2)

As commented earlier, although the survival probability de-
pends on the initial positions rl and {ri}’s, the characteristic
times τ are independent of them and depend on the diffusivi-
ties Dl and DL. However in Eq. (2), the right-hand side (RHS)
is only dependent on the parameter r. This indicates that
the scaled characteristic time τDL would not depend on DL

and Dl separately but only on their ratio r. This significantly
simplifies the parameter landscape if one uses τDL instead of
τ . One can solve for S(t, rl , {ri}) for a given initial condition
and with known boundary conditions.

When the lamb is static (r = 0), the survival probability
S(t ) = [s1(t )]N [17], where s1(t ) denotes survival probability
of the lamb due to a single lion. Thus, in closed geometry
limt→∞ S(t ) ∼ [exp(−t/τ1)]N , and the characteristic time is

τ = τ1/N, (3)

where τ1 is the characteristic capture time by a single lion.
Although the motions of the lions are independent of each
other, their relative motions with respect to the diffusing lamb
are no longer independent. Thus, τ does not follow the above
1/N form. One main focus of this work is to understand how
τ deviates from Eq. (3) as a function of the relative diffusivity
(r) of the lamb. Before presenting our results, we briefly dis-
cuss the computational algorithm for evaluating the survival
probabilities.
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FIG. 2. Illustration of the cloning algorithm to compute the sur-
vival probability S(t ) of the lamb [red (dark gray)] in the presence of
N lions [green (light gray)] in a d = 1 setup. At t = 0, one starts with
M realizations of the system. Here M = 4 and N = 1. According
to this algorithm, when capture happens at time t1 in half of the
realizations [S(t1) = 1/2], we replace them with the replications of
the survived ones (Enrichment-1). A similar step (Enrichment-2) is
performed at time t2 when S(t2) = 1/4. We depict the captured lion
by changing its color from green to red.

III. NUMERICAL METHOD

Obtaining reliable estimates of τ from the exponential tail
of S(t ) is a difficult task, as reaching this asymptotic limit
numerically is itself challenging. The conventional method
of ensemble averaging limits the precision of S(t ), which is
not good enough to estimate τ . However, based on algorithms
proposed earlier in the context of the lamb-lion problem [45],
we have recently shown for a biophysical problem that S(t )
can be obtained to very high precision [11]. The algorithm
is depicted for a single lion-lamb pair in Fig. 2 for d = 1.
For d = 2 and 3, we use the setups discussed in Sec. II (see
Fig. 1). In general, we start with M realizations of the lion-
lamb system at t = 0. The time evolution in every realization,
for each lion and the lamb, follows the Langevin dynam-
ics corresponding to the Fokker-Planck equations [Eqs. (1)
and (2)]. As time progresses, first-passage occurs in some of
the realizations, while the remaining number of realizations
[say q(t )] determines the survival probability S(t ) = q(t )/M.
When S(t ) � 1/2, we replace the realizations where capture
has occurred with replications of the surviving realizations.
This step is called cloning or enrichment [45]. By doing this,
we maintain the ensemble size M constant throughout the
simulations. By repeating enrichment n times one can obtain
the survival probability S(t ) ∼ O(1/2n) to a high degree of
accuracy. In our simulations, we choose ensemble size M
to be 104 in d = 1, 3 × 103 in d = 2, and 103 in d = 3.
According to IEEE 754 double-precision floating-point for-
mat, the smallest positive number can be stored is ≈10−308

[52]. Instead of storing very small values of S(t ) directly,
we always store the logarithm of S(t ) at the nth enrichment
step as ln[S(tn)] = ln[S(tn−1)] + ln[q/M], where tn represents
the time at nth enrichment step. The computational cost of
generating each S(t ) plot varied between a few hours and a
few days.
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FIG. 3. S(t ) of a lamb inside a d = 1 box with R = 4.0 (arb.
units) and in presence of 50 lions is plotted in a semilog scale. Three
curves correspond to three distinct initial positions x0 = 2.5 (purple
lower line), 3 (blue middle line), and 3.5 (cyan upper line) (arb.
units) of the pack of lions. The initial position of the lamb is x = 1
(arb. units) for all the cases. Although the curves are distinct from
each other, asymptotically they are all exponentials with the same
τ ; numerically we obtained τ−1 = 11.98, 11.94, and 11.79 for the
three different cases, respectively, which are very close. A plot of
−d (ln S)/dt vs t (corresponding to the blue middle line) is shown in
the inset, and its saturation value τ−1 (in the steady state) is indicated
by a black dashed line.

In Fig. 3, S(t ) is shown on a semilogarithmic scale. The
three different curves correspond to the three different initial
separations between the lamb and the pack of lions. Although
the S(t ) curves are distinct, note that their asymptotic tails
are parallel to each other indicating a unique τ . Moreover,
for certain initial conditions, we notice that the tail does not
even appear for S(t ) � 10−30. Thus a regular ensemble aver-
aging would have lead to erroneous estimates of τ . By taking
negative time derivative of the function ln[S(t )], we obtain
τ−1 = − limt→∞ d

dt [ln S(t )]. As shown in the inset of Fig. 3,
τ−1 is thus calculated by taking an average of − d

dt [ln S(t )],
after it has attained a steady state. Apart from this averaging
at the steady state, the final value of τ for every case studied
in this paper is obtained by further averaging over three dif-
ferent initial conditions. The error bars were within the size
of the plotted data points, and therefore not shown here. We
observe in our simulation that with increasing N , one needs to
choose higher values of the enrichment steps n to obtain τ−1

reliably. Depending on N , our choice for n varied in the range
∼(300–900).

IV. RESULTS

A. Dependence of τ as a function of N and r for
a moving lamb under confinement

We study how τ varies with the number N of the lions as
well as the relative diffusivity r of the lamb for a fixed N , in
different dimensions (see Fig. 4). Recall that, when the lamb
is static, τ ∼ 1/N [see Eq. (3)] and the exact value of τ1 is
known analytically (see the Appendix). We first benchmark
our simulations with this limiting results in all the three di-
mensions. In Figs. 4(a)–4(c), we plot τDL for different N and
in different dimensions, obtained numerically (blue squares),
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FIG. 4. τDL vs N is plotted in the log-log scale for (a) d = 1, (b) d = 2, and (c) d = 3 setups (see Fig. 1). Each color of the above figures
represents τDL for different ratios r = 0, 0.2, 1, 5, 20, 80 (see the key) of diffusivities of the lamb and lions (Dl/DL). Static lamb or r = 0 (navy
blue solid square) curves give the exact power law τDL ∼ N−1 (navy blue solid line). For moving lamb or r �= 0, the curves show departures
from the power law N−1, and τDL nontrivially decreases with N . At smaller N , the power of N changes faster in a lower dimension than in
the higher dimension upon increasing r (top to bottom). For r = 80 (cyan hollow triangle), curves in (a) d = 1 shows τDL ∼ N−0.3, (b) d = 2
shows τDL ∼ N−0.52, and (c) d = 3 shows τDL ∼ N−0.8 at smaller N . However, at larger N for different r, the curves seem to approach a
parallel trend by coming closer to each other. The above numerics are done with a = 0.4 (arb. units) and R = 8, 4, 4 (arb. units) in d = 1, 2, 3
respectively.

together with the exact theoretical lines (blue), which shows a
very good agreement. The scalings 1/N and the prefactor are
indeed as expected.

When the lamb is nonstationary (r �= 0), there is a clear
violation from the simple 1/N scaling in all dimensions.
Moreover this departure increases upon increasing r. A simi-
lar deviation from the 1/N scaling has been recently reported
in the context of a biophysical problem, namely the capture
of kinetochore by spindle microtubules [11]. Here we notice
that, for limited N range (N � 100), τDL roughly follows a
power-law form ∼N−β with exponent β < 1 and decreasing
with increasing r. For r = 80 and at small N range, β ≈ 0.3
in d = 1 [see cyan dashed line in Fig. 4(a)]. Note that with
increasing N the chance of capture increases, and hence τ

will always be a decreasing function of N . However with an
increase in the relative diffusivity of the lamb, the chances of
a lion-lamb encounter also become higher. This reduces the
effectivity of N in regulating the capture time. This could be
a possible explanation of why we observe a smaller value of
β as r increases. A similar trend of β < 1 is also observed in
d = 2 and 3 [Figs. 4(b) and 4(c)].

We observe that as the dimensionality increases, the power
law (at small N) has lesser departure from the static case. For
r = 80, we notice that the exponent β becomes successively
bigger: 0.52 and 0.8 in d = 2 and d = 3, respectively, see
the cyan dashed line in Figs. 4(b) and 4(c). Although it is
expected that the capture times will be larger for higher d as
the effective volume (Rd/N) available per lion increases with
d , it is not immediately clear why at higher dimensions τDL

is more sensitive to the variation of N .
As N becomes large, we saw that the variation of τDL

with N starts deviating from the trends discussed above for
small N . We varied N up to 103, but the − d

dt [ln S(t )] did not
reach steady state similar to the case shown in the inset of
Fig. 3. Thus, we were unable to get reliable estimates of τ

beyond N = 200 even after going down to S(t ) ∼ 10−300. We
therefore show our data only up to N = 200. Whether τDL

crosses over to a different functional form at large N cannot

be ascertained even with the high precision numerics we have.
Thus analytical approaches would be preferable to study the
N → ∞ limit.

B. The N dependence of τ: A perspective from extreme statistics

In open geometry in d = 1, the analytical study of the
asymptotic dependence of the power-law exponent θN on
N associated with S(t ) ∼ t−θN is based on the statistics of
extremes [37]. While the distributions of the positions of non-
interacting lions are spreading Gaussians e−x2/4DLt/

√
4πDLt ,

that of the leader lion closest to the lamb is a Gumbel dis-
tribution [53] with a time dependent mean position 〈x(t )〉 =√

4DLt ln N [36]. The diffusing lamb thus sees an approaching
leader at location 〈x(t )〉 ∼ √

t , and subsequent analysis leads
to θN = ln(Nr)/4r [36,37].

Under confinement, one may view the problem from two
limits. In the first, one may assume that the lion-lamb in-
teraction happens quite fast so that the lions do not see the
boundaries of the box by the time capture happens. In that
case, like free geometry, the distributions of the lions may
be taken as spreading Gaussians, and the leader lion mean
position would be 〈x(t )〉 = √

4DLt ln N following Gumbel
statistics as discussed above. Assume initial separation of x0

between the lamb and the pack of lions. Given the confine-
ment, the leader only has to travel a finite distance ∼x0 before
capture, and hence, equating 〈x(tc)〉 ≈ x0, we get an estimate
of a capture time tc ≈ x2

0/(4DL ln N ). This prediction of cap-
ture times ∼1/ ln N has no similarity with the characteristic
times τ in our numerical study, which go like power laws
in N .

A second view is that characteristic times represent rare
and long-lived events, and by the time a capture happens the
lions explore a substantial part of the available finite volume
(∼Rd ) and have many reflections off the boundary walls. Thus
in this limit we may assume that the probability distribution
of the radial position ri (assuming radial symmetry) of the ith
lion may be assumed to be uniform, i.e., P(ri, t ) ≈ Cd over a
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sub-volume of order ∼Rd . Statistics of extremes predict the
cumulative distribution of the position w of the leader lion
closest to the lamb to be given by (for large N)

QL(w) = QL(w < min{ri})

= Prob(w < r1)Prob(w < r2) · · · Prob(w < rN )

=
[

1 −
∫ w

0
P(ri )�d rd−1

i dri

]N

= exp(−qd Nwd ),

and the corresponding probability distribution is the Weibull
distribution [54,55]

PL(w) = −[dQL(w)/dw] = qd Nwd−1d exp(−qd Nwd ). (4)

Here �d is the d-dimensional solid angle and qd = �dCd/d .

The peak value of PL(w) occurs at w∗ = [ (d−1)
dqd N ]

1/d
(for d >

1), while for d = 1 a typical position would be w1 ∼ 1/N .
Now if we assume that the lamb travels diffusively within this
length scale w∗ (or w1 for d = 1) and gets captured, then an
estimate of capture time is

tc ∼ w2
∗/Dl ∼ N−2/d (5)

in general d . It is interesting that this Weibull distribution
based view gives at least a power-law capture time, as we
observe for our numerical estimates of τ for finite N . But the
values of the predicted exponent β = 2/d (= 2, 1, and 2/3 in
d = 1, 2, and 3 respectively) are unrelated to what we find in
our numerical study. Moreover, β has no r dependence, as we
find in our simulations. Thus this approximate analytical argu-
ment is not appropriate to explain the accurate computational
data but is indicative that power laws may arise at large values
of N .

C. Comparison with previous analytical study for N = 1

As mentioned earlier, the analytical solution of S(t ) is
known for a couple of cases for a single lamb-lion pair (N =
1) in d = 1. When Dl = DL = D, it is known exactly that
τ = R2/π2D [49]. For r �= 1, the problem is not solvable ex-
actly. An approximate answer is known in the limit of r → 0
(Dl � DL ) [20]:

τ (Dl , DL ) 
 4R2

π2DLDl
(Dl + DL ) arctan2(

√
Dl/DL )

×
(

1 + 24/3α′

π2/3
arctan2/3(

√
Dl/DL )

)
, (6)

where α′ ≈ −1.0188 is the first zero of the derivative of the
Airy function. We compare our high precision numerical esti-
mates of the timescales with this analytical result (see Fig. 5).
We see that the analytical approximation of Ref. [20] agrees
with our numerical results for Dl/DL � 0.01.

D. Scaled characteristic time τDL/gd (R, a)
depends mainly on r and N

For a first passage process, the timescales of capture will
in general depend on the system parameters. For example, in
our study τ = f (Dl , DL, N, R, a) in general. However, τ can

r

R
2
/
τ
D

L

FIG. 5. Comparison of R2/τDL obtained numerically (dark red
squares) with the approximate analytical prediction in Eq. (6) (light
red circles) for different values of r.

be scaled appropriately such that the scaled quantity depends
mainly on N and r, as we show below. This is also the main
reason for presenting the N and r dependent study of τ sepa-
rately in Sec. IV A.

As shown earlier, if we scale time with DL [see Eq. (2)],
then the results will only depend on the relative diffusivity r
and the other parameters, i.e., τDL = f1(r, N, R, a). A verifi-
cation of this important feature is shown in Fig. 6(a) for d = 2
with fixed R and a. For different sets of lamb-lion diffusivities
(Dl , DL ) but with equal relative diffusivity r, the curves of
τDL versus N collapse.

Next, we look at the dependence of τDL on the system
dimensions, R and a. Since we do not have analytical ex-
pressions for f1, we proceed numerically. Additionally, we
start with an initial guess (although not guided by any theory)
that these dependences are same as in the case of a static
lamb. Our numerical results show below that this is a good
approximation for (reasonably) large system sizes R. In the
Appendix, the derivations of the dependence of τ on the R
and a for the case of a static lamb in d = 1, 2, 3 are shown.
These results are as follows:

d = 1 : τDL =
(

4R2

π2

)
1

N
,

d = 2 : τDL ≈
(

R2

2
[ln(R/a) − 0.5]

)
1

N
,

d = 3 : τDL ≈
(

[R − a]3

3a

)
1

N
. (7)

In Eq. (7), the terms in the parenthesis, which we will denote
as gd (R, a), indicate the dependence on R and a. Note that for
d = 1 the lamb is taken to be a point-sized particle (a = 0).
In d = 2 and 3, the relationships are approximate and hold
true for R � a (see the exact transcendental equations in the
Appendix). For a static lamb, the 1/N scaling is true for every
dimension. As shown earlier in Sec. IV A, for a moving lamb,
there is a deviation from this 1/N behavior. Yet we find that
the prefactor gd remains roughly unchanged if we compare the
moving and the static cases. To show this, we first plot τDL/gd

versus R in Fig. 6(b) for fixed r �= 0, N , and a. We see that for
d = 2, 3 the curves are essentially constant at large R, while
for d = 1 the curve is constant at any R. This suggests that
the approximation is good even in the case of a moving lamb.
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FIG. 6. (a) τDL vs N is plotted for d = 2 setup [see Fig. 1(b)] for r = 5, 20 in log-log scale. τDL is a function of r and does not depend
upon the individual diffusivities Dl or DL . For a fixed r, τDL collapses for any pair of diffusivities Dl , DL . (b) τDL/gd vs R is plotted for
r = 1 with fixed a = 0.4, N = 5 in d = 1, 2, 3. Here, gd (R, a) corresponds to the scaling of τDL for the static lamb case, in d dimensions.
(c) τDL/g2 vs N is plotted for three distinct radii a = 0.2, 0.3, 0.4 of the lamb, in log-log scale with fixed R = 0.4. We show this for two
different relative diffusivities r = 1 (Dl = 3, DL = 3) and 5 (Dl = 5, DL = 1) [see Fig. 1(b) setup].

Thus the function f1(r, N, R, a) ≈ gd (R, a) f2(r, N ). Next, to
show that there is no strong dependence of f2 on a, we plot
τDL/g2 versus N in d = 2 for two different values of r with
three distinct values of a in each case. In Fig. 6(c), for both
values of r, the data collapse for different radii a, confirming
the hypothesis.

V. CONCLUSION

The capture of a moving target by multiple random walk-
ers is an important problem in stochastic processes and has
been extensively studied before in free space. However a
similar study in confined space is still lacking. The presence
of confinement is pertinent to many physical and biological
processes. Such a constraint makes the study challenging due
to nonlinear effects introduced by the presence of boundaries.
In fact, so far no exact result exists for the problem of moving
lamb chased by multiple lions in confined geometry, except
for a single lion-lamb pair, that too in d = 1. In this work, we
took a computational approach to study this classic open prob-
lem for multiple lions and in one, two, and three dimensions.
We did an extensive characterization of the capture process
by accurately computing the characteristic capture timescale
τ (which is an initial position-independent quantity), and stud-
ied its dependence on the various system parameters. The
significant point is that the estimates are based on very high
precision computation of S(t ) (to ∼10−300). Hence the results
would serve as reliable checkpoints for future analytical theo-
ries, either approximate or exact.

Here the main system parameters are the number of lions
N and the relative diffusivity r. We showed that instead of the
characteristic time itself, a more relevant quantity to study is
the scaled quantity τDL, which depends only on the relative
diffusivities r. We first benchmarked our numerical estimate
of the characteristic time by computing it for the static case
(r = 0) with varying N in all the dimensions. We found a
very good agreement of our result to the ∼1/N scaling, which
is known theoretically. For the case of a nonstationary lamb
(r �= 0), our results exhibit a clear deviation from the 1/N
scaling. We noticed that the timescale varies nontrivially with
N , which cannot be explained by a single power-law scaling

and depends on the relative diffusivity r as well as the dimen-
sion d of the system.

Our computational study of obtaining τ , even though of
high precision, is inadequate for large N > 200. Obtaining
the asymptotic exponential tail of S(t ) becomes increasingly
difficult and computationally expensive, leading to unreli-
able estimates of τ . Using heuristic arguments based on the
statistics of extremes, we speculated an N dependence of τ .
The theoretical prediction is τ ∼ N−2/d at large N , indicating
the possibility of a power-law behavior. Although not quan-
titatively consistent with our numerical results, which were
obtained over a limited range of N , this new possibility based
on Weibull statistics may be of interest to problems within
confined geometries.

Interestingly we notice that the dependence of the scaled
quantity τDL on system dimensions R and a is quite similar
(for large R) to that of the static case, which is known the-
oretically. We numerically verified this in all dimensions by
appropriately scaling τDL by the relevant function gd (R, a).

Our central result showing the deviation of the character-
istic time from the 1/N scaling for nonzero diffusivity of the
lamb may be of general interest in problems of biophysics and
ecology. Recently similar power laws with exponent that dif-
fers from unity were reported for the problem of a kinetochore
capture by mobile microtubules within a nuclear volume [11].
For approximate analytical studies, our results may be used to
test the goodness of the approximation. We made such a com-
parison to demonstrate the validity of a known approximate
result for a lion-lamb pair in d = 1 with unequal diffusivities.
We hope our study will revive interest in this rather general
first passage problem, which may arise in various phenomena
in physical and biological sciences.
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APPENDIX: DEPENDENCE OF τ ON THE SYSTEM SIZE R
AND a FOR THE STATIC LAMB

One may find the dependence of τ on the system size R for
a static lamb, from the backward Fokker-Planck equation for
survival probability [see Eq. (2)]. Since, for the static lamb in
a bounded domain, the characteristic capture times in case of
N lions are always τ = τ1/N , it is sufficient to calculate the
dependence of τ1 (the timescale for N = 1 lion) on R and a.
Substituting Dl = 0, N = 1 in Eq. (2), we get

∂S(t, r1)

∂t
= DL∇2S(t, r1),

where ∇2
1 = d2

dr2
1

+ (d−1)
r

d
dr1

is the d-dimensional radially
symmetric Laplacian operator. For all the spatial dimensions,
we consider the lamb to be at the origin (see Fig. 1). By
applying the spherically symmetric absorbing boundary con-
dition S(r1 = a) = 0 (a is 0 for d = 1) and the reflecting
boundary condition ∂S

∂r1
|r1=R = 0 for d = 1, 2, 3, we may ob-

tain solutions of the form S(r1, t ) = ∑
k ckR̃k (r1)e−k2DLt . Note

that ck is a constant that obeys
∑

k ckR̃k = 1 due to the initial
condition S(r1, 0) = 1. The time-independent function R̃k (r1)
represents a d-dimensional radial solution, with the modes k
satisfying the following transcendental equations:

d = 1 : k = (2n + 1)π/2R,

d = 2 : J1(kR)Y0(ka) = J0(ka)Y1(kR),

d = 3 : tan[k(R − a)] = kR. (A1)

Here for d = 1, integer n = 0, 1, . . . ,∞. For d = 2, Ji and Yi

represent the Bessel functions of ith order for first and second
kinds. We note that τ1 corresponds to the longest timescale
which further corresponds to the smallest value of {k} (say
kmin = min{k}) in Eq. (A1) such that τ1 = 1/(k2

minDL ).

1. Length dependence for d = 1

By substituting n = 0 in Eq. (A1), we get the exact expres-
sion of τ1 as a function of R for d = 1:

k2
min = [τ1DL]−1 = π2

4R2
⇒ τ1 = 4R2

π2DL
. (A2)

2. Length dependence for d = 2

We approximate value of kmin in Eq. (A1) by ex-
panding J0, J1,Y0,Y1 in the small k limit. Expansions of

J0(x), J1(x),Y0(x),Y1 are as follows:

J0(x) = 1 − x2

2
+ x4

64
+ O[x6],

J1(x) = x

2
− x3

16
+ x5

384
+ O[x6],

Y0(x) = 2

π

[
ln

(
x

2

)
+γ

]
+ x2

2π

[
1 − γ + ln

(
2

x

)]
+ O[x3],

Y1(x) = − 2

πx
+ x

2π

[
2γ − 1 + ln

(
x2

4

)]
+ O[x3].

Here γ is the Euler-Mascheroni constant. Retaining up to
linear order analytic terms in x = kmin, plus the singular terms,
we get

J0(kmina) ≈ 1,

J1(kminR) ≈ kminR

2
,

Y0(kmina) ≈ 2

π

[
ln

(
kmina

2

)
+ γ

]
,

Y1(kminR) ≈ − 2

πkminR
+ kminR

2π

[
2γ − 1 + ln

(
(kminR)2

4

)]
.

By substituting the above equations in Eq. (A1) we get

k2
min ≈ 2

R2
[

ln
(

R
a

) − 0.5
] ⇒ τ1DL ≈ R2

2

[
ln

(
R

a

)
− 0.5

]
.

(A3)

3. Length dependence for d = 3

The Taylor series expansion of tan(x) about x = 0 is

tan(x) = x + x3

3
+ O[x5].

Expanding Eq. (A1) for small k and keeping up to the cubic
term we get

kmin(R − a) + k3
min(R − a)3

3
≈ kminR

k2
min ≈ 3a

(R − a)3

⇒ τ1DL ≈ (R − a)3

3a
. (A4)
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