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Deformed Fokker-Planck equation: Inhomogeneous medium with a position-dependent mass
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We present the Fokker-Planck equation (FPE) for an inhomogeneous medium with a position-dependent mass
particle by making use of the Langevin equation, in the context of a generalized deformed derivative for an
arbitrary deformation space where the linear (nonlinear) character of the FPE is associated with the employed
deformed linear (nonlinear) derivative. The FPE for an inhomogeneous medium with a position-dependent
diffusion coefficient is equivalent to a deformed FPE within a deformed space, described by generalized
derivatives, and constant diffusion coefficient. The deformed FPE is consistent with the diffusion equation for
inhomogeneous media when the temperature and the mobility have the same position-dependent functional form
as well as with the nonlinear Langevin approach. The deformed version of the H -theorem permits to express the
Boltzmann-Gibbs entropic functional as a sum of two contributions, one from the particles and the other from
the inhomogeneous medium. The formalism is illustrated with the infinite square well and the confining potential
with linear drift coefficient. Connections between superstatistics and position-dependent Langevin equations are
also discussed.

DOI: 10.1103/PhysRevE.102.062105

I. INTRODUCTION

Diffusion is understood as the thermal motion of parti-
cles, which is macroscopically translated into a net flux from
one region to another. The standard way to quantify this
phenomenon is to consider that the particles are subject to
drag (properly of the fluid) and random (Brownian motion)
forces, which gives place to the Langevin equation [1]. To
link this classical description with a probabilistic character-
ization, the usual strategy is to rewrite the Langevin equation
in terms of the probability density function (PDF), thus ob-
taining the Fokker-Planck equation (FPE) [2]. The FPE has
been widely investigated in the literature, mainly applied to
the study of different types of diffusion, including the nor-
mal and anomalous ones (associated to linear and nonlinear
FPE) [3–8]. Subsequent applications in multiple kinds of
phenomena have displayed the relevance of the FPE in the
field of statistical physics [9–15]. In particular, the FPE in a
specific medium have presented an increasing interest since it
allows to characterize electron diffusion [16], photoinduction
in nonequilibrium processes [17], rarefied gases and hetero-
geneous media [18,19], interfaces-membranes [20], multiple
diffusion from fractional kernel operators [21], superfast dif-
fusion in porous media [22], among others.

In addition, theoretical investigations have shown an in-
timate connection between generalized FPE, H-theorem,
master equations, and entropic forms, highlighting the role
played by the nonextensive statistics [23–26]. Along with this
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progress, the mathematical structure inherited by nonexten-
sive statistics turned out to be a useful tool to generalize
concepts of statistical mechanics. Some mathematical struc-
tures have been presented [27–31], referred to as generalized
algebras.

Parallel to this development, the research on systems with
a position-dependent effective mass emerged for describ-
ing transport phenomena in semiconductors heterostructures
[32,33] provided with a position-dependent chemical com-
position. The starting point of this approach was the
Wannier-Slater theorem for the wave function of the con-
duction band in homogeneous semiconductors, from which
its extension to an inhomogeneous one led to several ways
for defining the kinetic energy operator [33]. This ambigu-
ity, called the ordering problem, was unified together with
the requirement of hermiticity by von Roos [33]. Recently,
from a particular case of the von Roos kinetic energy opera-
tor, a deformed Schrödinger equation for position-dependent
mass has been studied [34–41] and linked with a generalized
translation operator inherited by the generalized q-algebra
[27–31]. Position-dependent mass systems have been proven
to be a useful theoretical tool in multiple areas and fairly
fitting to experimental data: density functional theory [42],
supersymmetric quantum mechanics [43], nuclear physics
[44], nonlinear optics [45], Landau quantization [46], among
others.

The goal of this paper is to present the FPE for an in-
homogeneous medium with a variable diffusion coefficient
within the position-dependent mass scenario [34,35,37–39],
by means of a generalized deformed derivative, where the
deformation of the space univocally determines the mass as
well as the dumping and the diffusion coefficients. As a
consequence, we find an equivalence between the FPE in an
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inhomogeneous medium and a deformed FPE with constant
mass and constant diffusion coefficient. In particular, we ana-
lyze the deformed FPE that results from the q-algebra [27,28],
controlled by a real and continuous dimensionless parameter
q. The solutions exhibit an asymmetric spatial distribution
that physically corresponds to the inhomogeneity of the
medium. We present a generalized version of the H-theorem
in which the total entropy is the sum of the Boltzmann en-
tropy with an additional term associated to the inhomogeneity
of the medium. The deformed FPE results compatible with
the van Kampen’s approach for inhomogeneous diffusion
[47–49], when the temperature and the mobility have the same
position-dependent functional form, with the superstatistics
version of the Langevin equation [50,51] and also with the
nonlinear Langevin equation [48].

The work is structured as follows. In Sec. II we review the
FPE construction from Langevin equation along with diffu-
sion in inhomogeneous media [47,48] and the q-algebra.

Section III is devoted to generalize the FPE for an inhomo-
geneous medium (the deformed FPE) from its corresponding
Langevin equation, by employing a generalized derivative
operator determined by the position-dependent mass function
and the properties of the medium. Given an arbitrary deforma-
tion space, we begin by defining a deformed linear derivative
and its associated nonlinear dual derivative, and then we estab-
lish a link between the linearity (nonlinearity) of the equation
expressed by the deformed space and the deformed linear
derivative (dual nonlinear derivative) used. We also present a
generalized version of the H-theorem for the FPE in a general
deformed position space, and the equivalence of the deformed
FPE with the nonlinear Langevin approach [48].

In Sec. IV we specialize for the case of the q-algebra in-
spired by nonextensive statistics, and we obtain its associated
deformed q-FPE, as well as an analytical expression for the
general solution within the deformed space.

Next, in Sec. V we illustrate the formalism presented for
two potentials: the infinite square well and the confining po-
tential with linear drift coefficient.

Section VI is devoted to discuss the deformed FPE in some
diffusive contexts: the van Kampen’s diffusion for inhomo-
geneous media [47,48], the superstatistics of the Langevin
equation [50,51], and the anomalous diffusion in optical lat-
tices [52,53]. The van Kampen’s diffusion equation can be
expressed in terms of the deformed FPE when the temperature
and the mobility of the particle have the same position-
dependent functional form. There is a connection between
superstatistics and position-dependent mass Langevin equa-
tions. We indicate two possible fluctuation theorems linked
with position-dependent mass systems. In the context of op-
tical lattices, for the anomalous diffusion regime we express
the stationary Rayleigh equation of the Wigner distribution as
a deformed FPE.

Finally, in Sec. VII some conclusions and perspectives are
outlined.

II. PRELIMINARIES

We present a review of the Langevin and the Fokker-Planck
equations, the van Kampen’s and superstatistics inhomoge-
neous diffusion along with the q-calculus.

A. Langevin and Fokker-Planck equations

A single particle of mass m0 in a fluid of viscosity coeffi-
cient λ0 subject to an external potential V (x) (i.e., an external
force F (x) = −dV (x)/dx) and a random force R(t ) has an
equation of motion that can be obtained from the Lagrangian

L(x, ẋ, t ) = 1
2 m0ẋ2 − U (x, t ) (1)

and using the Euler-Lagrange equation

d

dt

(
∂L
∂ ẋ

)
− ∂L

∂x
+ ∂Q

∂ ẋ
= 0, (2)

where Q = 1
2 m0λ0ẋ2 is a Rayleigh dissipation function, and

U (x, t ) = V (x) − xR(t ) is the potential due to conservative
and random forces. Thus, the corresponding Langevin equa-
tion is

ẍ = −λ0ẋ + f (x) + ξ (t ), (3)

with f (x) = F (x)/m0 and ξ (t ) = R(t )/m0.
Generally, the Langevin equation for N stochastic vari-

ables �y = {y1, ..., yN } with M white Gaussian noises �ξ =
{ξ1, ..., ξM} and a diffusion coefficient D0 (i.e., 〈ξ j (t )〉 = 0 and
〈ξ j (t )ξl (t ′)〉 = 2D0δ jlδ(t ′ − t ) ∀ j, l = 1, . . . , M and ∀t) is

dyi

dt
= Ai(�y, t ) +

∑
j

Bi j (�y, t )ξ j (t ), (i = 1, ..., N ), (4)

from which the diffusion equation results [2]

∂P

∂t
= −

∑
i

∂

∂yi

⎧⎨⎩
⎡⎣Ai(�y, t ) + �

2

∑
jl

B jl (�y, t )
∂Bil

∂y j

⎤⎦P

⎫⎬⎭
+ D0

∑
i j

∂2

∂yi∂y j

{[∑
l

Bil (�y, t )Bjl (�y, t )

]
P

}
. (5)

In the overdamped limit of the Langevin equation (i.e.,
λ0 � τ−1 with τ a coarse-grained timescale), the inertia
term ẍ is negligible compared with λ0ẋ, so dx/dt = [ f (x) +
ξ (t )]/λ0. Substituting y = x, A(x) = f (x)/λ0 and B = 1/λ0

in Eq. (5) we obtain the unidimensional FPE

∂P

∂t
= − ∂

∂x
[A(x)P(x, t )] + �

2

∂2P

∂x2
, (6)

with A(x) the confining potential and �/2 = D0/λ
2
0 a param-

eter related to the diffusion mechanism. The general solution
of Eq. (6) depends on the confining potential and the initial
conditions. For long times (t → ∞), the solution of the FPE
tends to the stationary distribution

P(st)(x) = C exp

[
2

�

∫ x

A(x′)dx′
]
, (7)

where C is the normalization constant. Analytical solutions
are obtained for a few instances. We briefly review two typical
cases [2]. In absence of external forces A(x) = 0 (free particle
case) with the initial condition P(x, t = 0) = δ(x), the proba-
bility distribution is a Gaussian

P(x, t ) = 1√
2π�t

e−x2/(2�t ), (8)
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corresponding to normal diffusion. For a linear potential
A(x) = −αx with the same initial condition P(x, t =
0) = δ(x) and the boundary conditions P(x, t )|x→±∞ =
∂P(x, t )/∂x|x→±∞ = [A(x)P(x, t )]|x→±∞ = 0 ∀t , the
solution is

P(x, t ) =
√

α

π�(1 − e−2αt )
exp

[
− αx2

�(1 − e−2αt )

]
, (9)

which asymptotically (t → ∞) tends to the Gaussian station-
ary solution

P(st)(x) =
√

α

π�
e−αx2/�. (10)

B. Diffusion in inhomogeneous media:
van Kampen’s approach and Superstatistics

The diffusion equation for a single particle immersed in an
inhomogeneous medium with Brownian motion and position-
dependent mobility μ(x) and temperature T (x), whose phase
space distribution obeys Kramers’ equation provided with a
potential V (x) that causes a drift velocity μ(x)V ′(x), is given
by (denoted by ρ(x, t ) in Ref. [47])

∂P

∂t
= ∂

∂x
[μ(x)V ′(x)P(x, t )]

+ ∂

∂x

{
μ(x)

∂

∂x
[T (x)P(x, t )]

}
. (11)

Its stationary solution is (Eq. (6) of Ref. [47])

P(st)(x) = C

T (x)
exp

[
−
∫ x V ′(x′)

T (x′)
dx′

]
. (12)

Complementarily, superstatistics has proven to be a useful
tool for describing nonequilibrium steady-state of inho-
mogeneous systems with spatial-temporal fluctuations of
temperature (or, more generally, fluctuations of any intensive
quantity) [50]. The system is conceived as composed of small
elementary cells in equilibrium in a small spatial-temporal
scale whose spatial correlation length is of the order of their
sizes, and the relaxation time is much smaller than their
characteristic times, thus their volumes are sufficiently large
for statistical mechanics to be locally valid and canonical
ensemble applies. To generalize the Langevin equation in the
context of superstatistics, in Ref. [51] is assumed the set of
equations

dv

dt
= −γ v + F (x)

m0
+
√

2γ

m0β(x)
ξ (t ), (13a)

dx

dt
= v. (13b)

β(x) is the inverse of the temperature, a position-dependent
variable within this context, and ξ (t ) has a normalized
variance. In the overdamped limit of (13a) the associated
Fokker-Planck equation for the stationary distribution P(st)

results1

0 = − ∂

∂x
[F (x)P(st)(x)] + ∂2

∂x2

[
P(st)(x)

β(x)

]
, (14)

which constitutes a particular case of van Kampen’s Eq. (11)
for μ(x) = μ0 = constant and β(x) = 1

T (x) , and whose sta-
tionary solutions are (Eq. (10) of Ref. [51])

P(st)(x) = Z−1β(x) exp

(∫ x

F (x′)β(x′)dx′
)

. (15)

In Sec. VI we will return to the van Kampen’s approach and
superstatistics’ Langevin Eq. (13a) to show the consistency
and connections with the position-dependent mass Langevin
Eq. (46).

C. Deformed q-calculus

Inspired by nonextensive statistics, the deformed q-
exponential and q-logarithm functions defined by [29]

expq(u) ≡ [1 + (1 − q)u]1/(1−q)
+ (16)

and

lnq(u) ≡ u1−q − 1

1 − q
(u > 0) (17)

have an associated nondistributive algebraic structure [27,28]
(called q-algebra): the q-sum a ⊕q b = a + b + (1 − q)ab,
the q-difference a 
q b = a−b

1+(1−q)b (b �= 1
q−1 ), the q-product

a ⊗q b = [a1−q + b1−q − 1]
1

1−q

+ (a, b > 0), and the

q-ratio a �q b = [a1−q − b1−q + 1]
1

1−q

+ (a, b > 0) [with
[·]+ ≡ max(·, 0)]. From the q-difference a deformed
derivative Dq is defined as follows [28]:

dqu = lim
u′→u

u′ 
q u = du

1 + (1 − q)u
, (18)

Dq f (u) = df (u)

dqu

= lim
u′→u

f (u′) − f (u)

u′ 
q u

= [1 + (1 − q)u]
df

du
, (19)

along with its dual derivative,

D̃q f (u) = dq f (u)

du

= lim
u′→u

f (u′) 
q f (u)

u′ − u

= 1

[1 + (1 − q) f (u)]

df

du
, (20)

where dq stands for a deformed differential. To emphasize
their features, from now on the deformed derivative and its
dual will be indistinctly called as linear deformed deriva-
tive and nonlinear deformed derivative, respectively. The

1Also studied by Borland [7] in connection with the Tsallis distri-
bution by imposing specific conditions on F (x) and β(x).
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deformed q-calculus allows to recover the usual one for q →
1. One of its applications concerns a generalization of the
Schrödinger equation for position-dependent mass systems
[34–41]. In fact, a deformed linear q-Schrödinger equation is
employed to describe systems with position-dependent mass
consistent with the von Roos kinetic energy operator [33]

ih̄
∂
q(x, t )

∂t
= − h̄2

2m(x)

∂2
q(x, t )

∂x2

− h̄2

4

d

dx

(
1

m(x)

)
∂
q(x, t )

∂x

+V (x)
q(x, t ), (21)

with

m(x) = m0

(1 + γqx)2
, (22)

where 
q(x, t ) = 
(x, t )
√

1 + γqx represents a deformation
of the wave function solution 
(x, t ) and the parameter γq ≡
(1 − q)/l0 controls the variation of the mass in relation to the
position and l0 is a characteristic length. In terms of the linear
deformed derivative Dq = (1 + γqx)∂x, Eq. (21) becomes [34]

ih̄
∂
q(x, t )

∂t
= − h̄2

2m0
D2

q
q(x, t ) + V (x)
q(x, t ). (23)

The position-dependent mass, Eq. (22), is the one that allows
Eq. (21) to be rewritten in terms of the deformed derivative
Dq and a constant mass m0, as in Eq. (23). Parallel to the
quantum case, the classical equation of motion is compactly
written by means a deformed Newton’s law, in terms of the
dual nonlinear derivative Eq. (20), as m0D̃2

qx(t ) = F (x) with

D̃qx(t ) = 1
1+γqx

dx
dt (see Ref. [38]). Other possible functions

m(x) can lead to different deformed derivatives. The theo-
retical approach for the deformed Schrödinger Eq. (23) have
been applied in the context of anharmonic potentials [35,38],
Si and Ge quantum wells [36], information theory [39,40], and
quasiperiodic potentials [41].

A different generalized nonlinear derivative, formulated by
Nobre et al. [54], has also been used to describe position-
dependent mass systems. We represent it by D̃q:

D̃q f (u) = [ f (u)]1−q df (u)

du
. (24)

It is possible to define its dual linear deformed derivative, as

Dq f (u) = 1

u1−q

df (u)

du
. (25)

The linear and nonlinear deformed derivatives Dq and
D̃q satisfy Dq expq(u) = D̃q expq(u) = expq(u)—Eq. (19) is
the linear eigenfunction of the q-exponential function, and
Eq. (24) is the nonlinear eigenfunction of the q-exponential
function—and the generalized nonlinear and linear derivative
Eqs. (20) and (25) satisfy D̃q lnq(u) = Dq lnq(u) = 1/u. The
deformed derivative Eqs. (24) and (25) constitute conformable
derivative operators in fractional calculus [55].

The second derivative of the deformed linear versions fol-
low the usual derivatives rules:

D2
q f (u) = Dq[Dq f (u)]

= [1 + (1 − q)u]
d

du

{
[1 + (1 − q)u]

df (u)

du

}
(26)

and

D2
q f (u) = Dq[Dq f (u)]

= 1

u1−q

d

du

[
1

u1−q

df (u)

du

]
. (27)

The second derivative of the deformed nonlinear versions,
differently, must obey the following definitions:

D̃2
q f (u) ≡ 1

1 + (1 − q) f (u)

d

du

[
1

1 + (1 − q) f (u)

df (u)

du

]
(28)

and

D̃2
q f (u) ≡ [ f (u)]1−q d

du

{
[ f (u)]1−q df (u)

du

}
, (29)

i.e., D̃2
q f (u) �= D̃q[D̃q f (u)] and D̃2

q f (u) �= D̃q[D̃q f (u)].
Higher-order derivatives are found analogously.

The nonlinear deformed derivative [Eq. (24)] can be used
to formulate the nonlinear Fokker-Planck equation proposed
in Ref. [4]. The deformed PDF satisfies the equation

∂Pq(x, t )

∂t
= − ∂

∂x
[A(x)Pq(x, t )] + �

2

∂2

∂x2
[Pq(x, t )]2−q, (30)

which is equivalent to

D̃q,t Pq(x, t ) = −D̃q,x[A(x)Pq(x, t )] + �q

2
D̃2

q,xPq(x, t ), (31)

where �q = (2 − q)�, and q < 2, as it is considered in
Ref. [4]. The use of a linear confining potential A(x) leads to
a q-Gaussian distribution [4–6]. The nonlinear Fokker-Planck
Eq. (31) has been useful in the description of some experi-
ments, e.g.,: single ions in radio frequency traps interacting
with a classical buffer gas [8], momentum distribution of cold
atoms in dissipative optical lattices [53].

By last, a nonlinear generalization of the Schrödinger equa-
tion, i.e., the deformed nonlinear version given by [54]

∂�q(x, t )

∂t
= − 1

2 − q

h̄2

2m0

∂2�
2−q
q (x, t )

∂x2
+ V (x)�q

q(x, t ),

(32)
where �q(x, t ) is a deformation of the solution �(x, t ) (cor-
responding to q → 1), can be recast by means of the dual
(nonlinear) derivative D̃q as

ih̄D̃q,t�q(x, t ) = − h̄2

2m0
D̃2

q,x�q(x, t ) + V (x)�q(x, t ), (33)

with D̃q,t and D̃q,x standing for the nonlinear derivatives with
respect to time and position variables t and x, respectively.
The nonlinear Schrödinger Eq. (32) has attracted the atten-
tion of theoretical physicists due to some of its features. In
particular, solutions of Eq. (32) have a solitary-wave behavior
(see, for instance, Ref. [56] and references therein), a typical
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phenomenon in several areas of physics, such as nonlinear
optics, plasma physics and superconductivity.

D. Linear and nonlinear deformed operators

Motivated by the deformed derivatives Dq and Dq and
their duals, we define more general operators for an arbitrary
deformation h(u). Without loss of generality, h(u) is assumed
to be an infinitely differentiable function. In this context, a
linear deformed derivative is defined as

D[h] f (u) = 1

h(u)

df

du
(34)

and its dual nonlinear derivative,

D̃[h] f (u) = h( f )
df (u)

du
. (35)

The function h(u) specifies the deformation. The infinites-
imal element du[h] ≡ h(u)du implies u[h](u) = ∫ u h(u′)du′,
that may be considered as a deformed independent variable,
leading to the equivalence

du[h] = d[h]u, (36)

i.e., the differential of the deformed variable u[h] is equal to the
deformed differential of the ordinary variable u. The deformed
derivative operator D[h] f (u) is regarded as the rate of varia-
tion of the function f (u) with respect to the variation of the
deformed variable u[h], or, equivalently, the rate of variation
of the function f (u) with respect to a deformed variation of
the variable u, denoted by d[h]u:

D[h] f (u) = df (u)

du[h]
= df (u)

d[h]u
. (37)

This operator is linear regarding the dependent variable f .
Analogously, the deformed derivative operator D̃[h] f (u) may
be viewed as the rate of a generalized variation of the function
f (u) with respect to the ordinary variation of the independent
variable u, and Eq. (35) becomes

D̃[h] f (u) = d[h] f (u)

du
. (38)

This derivative is nonlinear regarding the dependent variable
f . It is straightforwardly verified that D[h] f = 1/D̃[h] f −1,
expressing the duality between them. Thus, the deformed q-
derivatives Dq and Dq [Eqs. (19) and (25)] are obtained as
special cases of Eq. (38) for h(u) = 1

1+(1−q)u and h(u) = u1−q

respectively. Similarly, D̃q and D̃q [Eqs. (20) and (24)] are
special cases of Eq. (38) for h( f ) = 1

1+(1−q) f and h( f ) =
f 1−q, respectively.

Second (and higher) derivatives of these generalized oper-
ators follow the same corresponding rules,

D2
[h] f (u) = 1

h(u)

d

du

[
1

h(u)

df (u)

du

]
(39)

and

D̃2
[h] f (u) = h( f )

d

du

[
h( f )

df (u)

du

]
, (40)

i.e., D2
[h] f (u) = D[h][D[h] f (u)], but D̃2

[h] f (u) �=
D̃[h][D̃[h] f (u)].

III. DIFFUSION PROCESSES IN INHOMOGENEOUS
MEDIA FROM POSITION-DEPENDENT MASS

We revisit the path outlined in Sec. II provided with a
position-dependent effective mass m(x) in an inhomogeneous
medium, and express the FPE as a homogeneous one by
means of the deformed derivative associated with the q-
algebra. We provide a version of the H-theorem along with
a discussion on the nonlinear FPE within the context of the
deformed derivative.

A. Nonlinear Langevin equation

The nonlinear Langevin equation is (Ref. [48], Eq. (4.3))

ẋ = A(x) + L(t ), (41)

with A(x) being a generic force and L(t ) = ξ (t )/λ0 the un-
predictable term whose stochastic properties are 〈L(t )〉 = 0
and 〈L(t )L(t ′)〉 = �δ(t − t ′) (fast variation due to individual
molecule collisions). The fully nonlinear Langevin equation

ẋ = A(x) + C(x)L(t ) (42)

results equivalent to Eq. (41) by means of the change of
variable

x =
∫

dx

C(x)
,

A(x)

C(x)
= A(x), P(x) = P(x)C(x), (43)

with the coefficient C(x) representing the heterogeneities of
the medium. Thus, the nonlinear Langevin Eqs. (41) and
(42) have their equivalent Fokker-Planck equations, given by
(Eqs. (4.7) and (4.8) of Ref. [48])

∂P(x, t )

∂t
= − ∂

∂x
[A(x)P(x, t )] + �

2

∂2P(x, t )

∂x2 (44a)

∂P(x, t )

∂t
= − ∂

∂x
[A(x)P(x, t )]

+ �

2

{
∂

∂x
C(x)

[
∂

∂x
C(x)P(x, t )

]}
. (44b)

The coefficient C(x) can be identified with the variable
temperature T (x), if T (x)/μ(x) is constant, according to the
van Kampen diffusion FPE (11).

B. Generalized Fokker-Planck equation for
inhomogeneous media

The Lagrangian for a position-dependent mass system is

L(x, ẋ, t ) = 1
2 m(x)ẋ2 − U (x, t ). (45)

The Langevin equation for a position-dependent damping
coefficient λ(x) and Q = 1

2 m(x)λ(x)ẋ2 follows from the
Euler-Lagrange Eq. (2):

m(x)ẍ + 1
2 m′(x)ẋ2 = −m(x)λ(x)ẋ + F (x) + R(t ), (46)

where now we have a new kinetic term 1
2 m′(x)ẋ2 due to the

position-dependent mass m(x). We see the standard Langevin
Eq. (3) follows for m(x) = m0 and λ(x) = λ0. In the over-
damped limit [λ(x) � τ−1] the left-hand side of Eq. (46)
vanishes, so we obtain

dx

dt
= 1

m(x)λ(x)
[F (x) + R(t )] (47)
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or, alternatively,

D̃[κ]x(t ) = 1
λ0

[ f (x) + ξ (t )], (48)

a deformed Langevin equation with the dimensionless defor-
mation parameter κ (x) = λ(x)

λ0

m(x)
m0

.
Inhomogeneous diffusion can be alternatively described

by the Caldeira-Leggett’s model [57] in terms of a system
interacting with an inhomogeneous environment composed
by a large number N of harmonic oscillators having equi-
librium positions Qn(x, t ). For the special case Qn(x, t ) =
Q(x) for all n = 1, . . . , N , the overdamped Caldeira-Leggett’s
Langevin equation (Eq. (27) of Ref. [58]) and the overdamped
PDM Langevin Eq. (47) [or, equivalently, Eq. (48)] are the
same subject to the conditions −V ′(x)/Q′(x)2 = F (x)/κ (x)
and κ (x) = Q′(x) with −V ′(x)/Q′(x) an effective force, thus
showing a connection between the Caldeira-Leggett’s model
and the position-dependent mass systems.

The FPE for an inhomogeneous medium of mass m(x) and
dumping coefficient λ(x) follows from Eq. (5):

∂P

∂t
= − ∂

∂x

[
A(x)

κ (x)
P(x, t )

]
+ D0

λ2
0

∂

∂x

{[
− κ ′(x)

κ3(x)
+ 1

κ2(x)

∂

∂x

]
P(x, t )

}
= − ∂

∂x

[
A(x)

κ (x)
P(x, t )

]
+ �

2

∂

∂x

{
1

κ (x)

∂

∂x

[
1

κ (x)
P(x, t )

]}
. (49)

The van Kampen’s FPE (11) and the inhomogeneous FPE (49)
differ from each other if the temperature and mobility are not
inversely proportional to the deformed parameter κ (x) [we
address this point later, see Eq. (107)]. If we define

D(x) ≡ D0/κ
2(x) � 0 (50)

as the position-dependent diffusion coefficient, then we can
recast the Fokker-Planck equation for an inhomogeneous
medium Eq. (49) as

∂P

∂t
= − ∂

∂x

[√
D(x)

D0
A(x)P(x, t )

]

+ D0

λ2
0

∂

∂x

{√
D(x)

D0

∂

∂x

[√
D(x)

D0
P(x, t )

]}
. (51)

Equation (49) [or Eq.(51)] obeys the probability conservation
law ∂P/∂t = −∂J/∂x with the current of probability

J (x, t ) = E (x)P(x, t ) − �

2

1

κ2(x)

∂P

∂x

= E (x)P(x, t ) − D(x)

λ2
0

∂P

∂x
, (52)

and the drift coefficient

E (x) = A(x)

κ (x)
− �

2

κ ′(x)

κ3(x)

=
√

D(x)

D0
A(x) + D′(x)

2λ2
0

, (53)

where the first term is associated with the confining poten-
tial and the second term is proportional to the derivative of
the diffusion coefficient. Notice that D(x) has contributions
of the viscosity and of the mass of the particles, where the
latter may be position-dependent due to the nonisotropy of
the space. Other formulations for the FPE in inhomogeneous
media have been reported. For instance, in Ref. [26] a current
of probability [Eq. (52)], whose second term depends on the
power law of the PDF, has been considered. In the present
work, we restrict our analysis to linear current densities in
inhomogeneous media.

The stationary solution for reflecting boundary conditions
[limx→±∞ J (x, t ) = 0] may be expressed by the integral form

P(st)(x) = Cκ (x) exp

[
2

�

∫ x

A(x′)κ (x′)dx′
]

= C√
D(x)/D0

exp

[
2

�

∫ x A(x′)√
D(x′)/D0

dx′
]
. (54)

The FPE for an inhomogeneous medium [Eq. (49)] can be
formally rewritten for a homogeneous medium, and the in-
homogeneity is encompassed by an appropriate deformation
of the derivative, according to Eq. (34) (written as a partial
derivative) with h(x) ≡ κ (x), and the transformation

P[κ](x, t ) = P(x, t )

κ (x)
, (55)

so

∂P[κ](x, t )

∂t
= −D[κ][A(x)P[κ](x, t )] + �

2
D2

[κ]P[κ](x, t ).

(56)
The deformed PDF P[κ](x, t ) satisfies a generalized version of
the normalization condition,∫

P[κ](x, t )d[κ]x = 1. (57)

As a consequence of dx[κ] = d[κ]x [Eq. (36) with h = κ],
P[κ](x, t ) is normalized in the deformed space x[κ]. The sta-
tionary solution of Eq. (56) is

P (st)
[κ] (x) = C exp

[
2

�

∫ x

A(x′)d[κ]x
′
]
, (58)

which is entirely written as an integral with a deformed differ-
ential d[κ]x′. In the limit of absence of deformation (κ → 1)
we recover the standard stationary solution [Eq. (7)].

It shall be imposed κ (x) =
√

m(x)
m0

on Eq. (56), thereby

λ(x) = λ0

κ (x)
, (59a)

D(x) = D0

(
λ(x)

λ0

)2

, (59b)

i.e., the deformation of the space κ (x) [or equivalently, the
mass m(x)] univocally determines the dumping and diffu-
sion coefficients that are compatible with the deformed linear
Fokker-Planck Eq. (56).

The equivalence between the position-dependent Langevin
Eq. (47) and the fully nonlinear one [Eq. (42)] is established
by identifying C(x) with 1/κ (x), A(x) with f (x)/[λ0κ (x)]
and L(t ) with ξ (t )/λ0 and recalling that F (x) = m0 f (x) and
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R(t ) = m0ξ (t ). Moreover, C(x) ∂
∂x = D[κ] and C(x)P = Pκ

and multiplying both sides of Eq. (44b) by C(x) the equiva-
lence between the deformed FPEs (56) and (44b) also follows.

C. H-Theorem for inhomogeneous FPE: Entropy of the medium

Applying the strategy employed in Ref. [24] for the gener-
alized free-energy functional

F[P[κ]] =
∫

�[κ][x,P[κ](x, t )]d[κ]x = U − θS, (60)

(with θ an inverse of the Lagrange multiplier), it is possible
to establish a generalized version of the H-theorem for the
inhomogeneous FPE (56). The first term is

U [P[κ]] =
∫

ϑ[κ](x)P[κ](x, t )d[κ]x, (61)

where ϑ[κ](x) corresponds to an auxiliary potential, while the
second term of Eq. (60) is a deformed entropy functional,

S[P[κ]] =
∫

s[κ][P[κ](x, t )]d[κ]x, (62)

with the usual convex conditions s[κ][0] = s[κ][1] = 0 and
d2s[κ]/dP2

[κ] � 0. The time derivative of Eq. (60) is

dF
dt

=
∫ [

ϑ[κ](x) − θ
ds[κ]

dP[κ]

]
∂P[κ]

∂t
d[κ]x

=
∫ [

ϑ[κ](x) − θ
ds[κ]

dP[κ]

]
×D[κ]

[
−A(x)P[κ] + �

2
D[κ]P[κ]

]
d[κ]x

= −
∫

P[κ]

[
D[κ]ϑ[κ](x) − θ

d2s[κ]

dP2
[κ]

D[κ]P[κ]

]
×
[
−A(x) + �

2

D[κ]P[κ]

P[κ]

]
d[κ]x. (63)

The definition of θ = �
2 ,D[κ]ϑ[κ](x) = −A(x), and

d2s[κ]/dP2
[κ] = −1/P[κ] imply

dF
dt

� 0, ∀t � 0. (64)

The Boltzmann-Gibbs entropy density for a deformed prob-
ability space is s[κ][P[κ]] = −P[κ] lnP[κ], with ϑ[κ](x) =
− ∫

A(x)d[κ]x. The general entropy of the system is given by
the integral

S = −
∫

P[κ](x, t ) lnP[κ](x, t )d[κ]x. (65)

The meaning of S can be examined by transforming back the
variables with Eq. (55):

S = −
∫

P(x, t ) ln[P(x, t )/κ (x)]dx

= SBG + 〈ln[κ (x)]〉. (66)

The general entropy S for an inhomogeneous medium is
the sum of two terms: the Boltzmann-Gibbs entropy SBG =
− ∫

P(x, t ) ln P(x, t )dx associated with the distribution of

particles, and a residual contribution resulting from the in-
homogeneity of the medium Smedium = ∫

P(x, t ) ln[κ (x)]dx.
The quantity S in Eq. (66) looks like the Kullback-
Leibler divergence,2 or relative entropy [59] SKL(P, P0) =
− ∫

P(x, t ) ln [P(x, t )/P0(x, t )]dx, with the reference distribu-
tion P0(x, t ) replaced by κ (x).

IV. DEFORMED q-FOKKER-PLANCK EQUATION

In this section we focus on a particular generalization of the
FPE associated to the q-derivative given by Eq. (19). As pre-
viously mentioned, the q-derivative originates from the q-sum
of the q-algebra a ⊕ b = a + b + (1 − q)ab and it is related
to the quantum approach of the generalized displacement op-
erator [34,35] Tq(a)|x〉 = |x + a + γqxa〉 [γq ∝ 1 − q], thus
giving place to a deformed q-Schrödinger equation in terms of
the linear q-derivative (20) Dq and with a position-dependent
mass inherited by the q-algebra. As we shall see in Sec. VI B,
the linear deformed q-derivative provides a simple choice for
the deformation, or equivalently for the variable temperature
profile in the van Kampen’s sense, that allows to obtain the in-
verse γ distribution for the superstatistical probability density
f (β ) in the overdamped limit, employed in Ref. [51] to model
wind velocity fluctuations. For this purpose, we consider a
medium with a diffusion coefficient depending on the position
x of the form

D(x) = D0(1 + γqx)2, (67)

which corresponds, according to Eq. (59a), to a deformation

κ (x) = 1

1 + γqx
(68)

and a dumping coefficient λ(x) = λ0(1 + γqx). Using the de-
formed PDF Eq. (55) and the q-derivative [Eq. (19)], the
deformed q-Fokker-Planck Eq. (56) can be recast as

∂Pq(x, t )

∂t
= −Dq[A(x)Pq(x, t )] + �

2
D2

qPq(x, t ) (69)

provided the deformed normalization condition∫
Pq(x, t )dqx = 1. It is clear that the deformed q-FPE is

simply the standard one [compare with Eq. (6)] but replacing
the usual derivative d/dx and the PDF P(x, t ) by their
deformed versions Dq and Pq(x, t ). This remark indicates
that, when the diffusion coefficient depends on the position,
it is possible to express the inhomogeneous FPE as the
standard one having a constant diffusion coefficient, with
the inhomogeneity contained in the deformed derivatives. In
the next subsections we analyze the effect of the deformation
on the solutions of Eq. (69) and their physical consequences
on the diffusion processes.

A. Stationary solution

To obtain the stationary solution of the deformed q-FPE
(69), we rewrite it as

∂Pq

∂t
= −DqJq(x, t ), (70)

2Only if κ (x) is normalized.
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where Jq(x, t ) is a deformed q-probability current density

Jq(x, t ) = A(x)Pq(x, t ) − �

2
DqPq(x, t ). (71)

Using the deformed q-integral (see Ref. [28]),

∂

∂t

∫ x f

xi

Pq(x, t )dqx = Jq(x f , t ) − Jq(xi, t ). (72)

According to the deformed q-normalization condition, the
conservation of the total deformed probability is guar-
anteed only if Jq(x f , t ) = Jq(xi, t ). The stationary solu-
tion (∂P (st)

q /∂t = 0), with reflecting boundary conditions
(Jq(x, t ) = 0, ∀x), satisfies

A(x)P (st)
q (x) = �

2
DqP (st)

q (x), (73)

leading to

P (st)
q (x) = Cq exp

[
2

�

∫ x

0
A(x′)dqx′

]
, (74)

where Cq is a normalization constant.

B. General solution

The general solution for the deformed q-FPE can be
obtained by the method of separation of variables [60].
In this direction, let us consider the deformed q-FPE (69)
expressed as

∂Pq(x, t )

∂t
= L̂qPq(x, t ) (75)

where L̂q is a deformed Fokker-Planck operator whose ac-
tion over a function f (x) is L̂q f (x) = −Dq[A(x) f (x)] +
1
2�D2

q f (x). The general solution of the deformed q-FPE can
be expanded in a power series of the eigenfunctions φq,n(x)
with the coefficients cn and the eigenvalues �n of L̂q, i.e.,

Pq(x, t ) =
∑

n

cnφq,n(x)et�nt . (76)

By the boundary conditions in x = xi and x = x f , it follows∫ x f

xi

L̂qφq,n(x)dqx = �n

∫ x f

xi

φq,n(x)dqx = 0, (77)

with xi, x f ∈ (−1/γq,∞). Next step is to employ an associ-
ated Schrödinger equation for obtaining the explicit formula
of the general solution of the deformed q-FPE. To accomplish
this, we use the operator K̂q defined by

K̂qψq,n(x) = L̂q[ψq,0(x)φq,n(x)]

ψq,0(x)
, (78)

where ψq,n(x) = φq,n(x)/ψq,0(x) with ψq,0(x) =
√
P (st)

q (x). It
is straightforward to show that K̂qψq,n(x) = �nψq,n(x), and
then, from the relation Dq[ln ψq,0(x)] = A(x)/� and using the
operator L̂q, we obtain

K̂qψq(x) = �

2
D2

qψq(x) − 1

2

{
1

�
[A(x)]2 + DqA(x)

}
ψq(x).

(79)

The operator (−K̂q) is the deformed Hamiltonian operator
[34]

Ĥq = − h̄2

2m0
D2

q + Vef(x̂), (80)

which is associated to a quantum system having a position-
dependent mass given by Eq. (22) and subject to an effective
potential of the form

Vef(x) = 1

2

{
1

�
[A(x)]2 + DqA(x)

}
. (81)

Hence, by comparison with the solutions of Eq. (80), the
general solution of the deformed q-FPE results

Pq(x, t ) = ψq,0(x)
∑

n

cnψq,n(x)et�n . (82)

V. APPLICATIONS OF THE DEFORMED
q-FOKKER-PLANCK EQUATION

We illustrate the deformed q-FPE with two examples of
potentials: the infinite square well and the confining potential
with linear drift coefficient.

A. Infinite square well potential

Consider the deformed q-FPE for an infinite square well
potential, where A(x) = 0 for |x| � L/2 and A(x) = ∞ other-
wise. Using Eq. (74) we obtain P (st)

q (x) = Cq for the stationary

solution and from the normalization 1/Cq = ∫ L/2
−L/2 dqx we

have

P (st)
q (x) = γq

ln
( 1+γqL/2

1−γqL/2

) = 1

Lq
, (83)

where Lq is a deformed characteristic length. The eigenfunc-
tions of the associated FPE operator satisfy

D2
qφ(x) = −k2φ(x), (84)

with k2 = −2�/�. The confinement of the particle imposes
J (± L

2 ) = 0, so Dqφ(±L/2) = 0, and thus, the solution of
Eq. (84) is

φq,n(x) = 1

Lq
cos

[
kq,n

γq
ln

(
1 + γqx

1 + 1
2γqL

)]
, (85)

where kq,n = nπ/Lq, n is a positive integer, and the constant
1/Lq has been chosen such that φ0(x) = P (st)

q (x). The general
solution for t = 0 is

Pq(x, 0) =
∑

n

cn cos

[
kq,n

γq
ln

(
1 + γqx

1 + 1
2γqL

)]
. (86)

The coefficients of the above expansion are obtained from the
following q-integrals

c0 =
∫ L/2

−L/2
Pq(x, 0)dqx, (87)

cn = 2
∫ L/2

−L/2
Pq(x, 0)φn(x)dqx, (n �= 0). (88)

As usual, assuming a delta function for the initial condition
P(x, 0) = Pq(x, 0)/(1 + γqx) = δ(x), we obtain c0 = 1/Lq
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FIG. 1. 2D (upper line) and 3D (bottom line) representations of the solutions P(x, t ) of the inhomogeneous FPE for free particle with
parameters γql0 = 0 (usual case), 0.2 and 0.4. An asymmetry with respect to x = 0 increases with γql0. The divergence of Eq. (22) for
x → xd = −1/γq implies a diffusion limited to the interval x < xd . Notice that the space and time axis of the 3D plots are inverted (increase
from right to left), for a better visualization.

and cn = 2/Lq cos[kq,nγ
−1
q ln(1 + γqL/2)] for n �= 0. Thus,

we have

Pq(x, t ) = 1

Lq

{
1 + 2

∞∑
n=1

(
cos

[
kq,n

γq
ln
(

1 + γqL

2

)]

× cos

[
kq,n

γq
ln

(
1 + γqx

1 + 1
2γqL

)]
e−t�k2

q,n/2

)}
, (89)

with x > −1/γq (here we are assuming 1 + γqL/2 > 0). Con-
sistently, when γq → 0 the standard case is recovered:

P(x, t ) = 1

L

[
1 + 2

∞∑
n=1

e−t�k2
n/2 cos(knx)

]
, (90)

with kn = k1,n = nπ/L. In the limit of a large well, L → ∞,
the general solution [Eq. (89)] takes the form

Pq(x, t ) = 2

π
lim

L→∞

∫ ∞

0

{
cos

[
k

γq
ln
(

1 + γqL

2

)]
× cos

[
k

γq
ln

(
1 + γqx

1 + 1
2γqL

)]
e−�k2t/2

}
dk

= 1√
2π�t

{
exp

[
− ln2(1 + γqx)

(2�t )γ 2
q

]

+ lim
L→∞

exp

[
− 1

(2�t )γ 2
q

ln2

(
1 + γqx

1 + γqL
2

)]}
. (91)

The second term vanishes, then

Pq(x, t ) = 1√
2π�t

exp

[
− ln2(1 + γqx)

(2�t )γ 2
q

]
. (92)

Recalling the deformed space

xq(x) = ln(1 + γqx)

γq
, (93)

and σ 2(t ) = �t , Eq. (92) can be recast as

Pq(x, t ) = 1√
2πσ 2(t )

exp

[
− x2

q (x)

2σ 2(t )

]
, (94)

which corresponds to a deformed solution of the free particle
case. The standard stationary solution [Eq. (10)] is recovered
at q → 1. Figures 1 and 2 illustrate the solution [Eq. (92)]
for some representative values of the dimensionless param-
eter γql0. As a consequence of the particular form of m(x)
[Eq. (22)], the diffusion is asymmetrical and the PDF is

FIG. 2. 3D representation of P(x, t ) for γql0 = 102 showing that
diffusion is stopped at x = 0 for sufficiently high values of γql0

(illustrated with xd = −10−2 ) for a better visualization.
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FIG. 3. Plot of 〈(�x)2(t )〉 = 〈x2(t )〉 − 〈x(t )〉2 as a function of
time for a free particle. Normal diffusion behavior, 〈(�x)2〉 ≈ �t ,
is observed for t/τ � 1, ∀γql0, and exponential hyperdiffusion,
〈(�x)2〉 ∝ e2t/τ , for t/τ � 1.

concentrated in a zone near to the mass asymptote xd =
−1/γq, where the particle tends to have an infinite mass.
By contrast, in the region x � −xd the PDF rapidly tends to
zero as time evolves. Moreover, as γql0 increase, the particle
becomes more localized at x = 0 because the region where the
PDF can diffuse becomes small, as shown in Fig. 2.

The transformation x → xq in Eq. (92) leads the nth mo-
ment of the distribution

〈xn(t )〉 =
∫ ∞

−∞
xnP(x, t )dx =

∫ ∞

−∞
xnPq(x, t )dqx (95)

into

〈xn(t )〉 =
∫ ∞

−∞

1√
2π�t

xn

1 + γqx
exp

[
− ln2(1 + γqx)

(2�t )γ 2
q

]
dx

=
∫ ∞

−∞

1√
2π�t

(
eγqxq − 1

γq

)n

e−x2
q/(2�t )dxq.

The first and second moments are

〈x(t )〉 = e(�t )γ 2
q /2 − 1

γq
, (96a)

〈x2(t )〉 = e2(�t )γ 2
q − 2e(�t )γ 2

q /2 + 1

γ 2
q

. (96b)

Figure 3 shows 〈(�x)2(t )〉 as a function of time for some
values of γql0. The spreading is hyperdiffusive, i.e., faster than
the superballistic power-law diffusion, and exponentially in-
creases for t/τ � 1, with a characteristic time τ = 1/(γ 2

q �).
The normal diffusion is recovered for γq → 0, corresponding
to an infinite characteristic time τ .

B. Confining potential with linear drift coefficient

The deformed q-FPE for A(x) = −αx is

∂Pq(x, t )

∂t
= αDq[xPq(x, t )] + �

2
D2

qPq(x, t ). (97)

In this case the associated effective potential [Eq. (81)] is
given by

Vef(x) = α2

2�
x2 − αγq

2
x − α

2
. (98)

The eigenfunctions ψq(x) for the operator K̂q [see Eq. (79)]
can be obtained from a comparison with the solutions of
the deformed time-independent q-Schrödinger equation for
a harmonic oscillator with frequency ω0 (for the usual case
q = 1) and electric charge e in a uniform electric field �E = E x̂
[40]:

− h̄2

2m0
D2

qψq +
(

1

2
m0ω

2
0x2 − eEx + V0

)
ψq(x) = Eψq(x),

(99)

where V0 is a constant. The solutions of Eq. (99) in absence
of an electric field has been studied [35,38], the eigenfunc-
tions and energies are obtained by means of a canonical point
transformation that maps the system into a Morse oscillator.
A similar transformation can be used for �E �= 0. From the
change of variables χ (s) = ψq[x(s)] with s(x) = γ −1

q ln[(1 +
γqx)/(1 + γqx0)] and x0 = eE/(m0ω

2
0 ), it follows

− h̄2

2m0

d2χ (s)

ds2
+ m0�

2
q

2γ 2
q

(eγqs − 1)2χ (s) = Ẽχ (s). (100)

This equation corresponds to a quantum Morse oscilla-
tor with frequency of small oscillations �q = ω0(1 + γqx0)
around the equilibrium position and energy Ẽ = E − V0 +
e2E2/(2m0ω

2
0 ). Consequently, the eigenfunctions of Eq. (99)

are

ψq,n(x) = χn(s(x)) = Ane−z(x)/2[z(x)]ν/2L(ν)
n [z(x)], (101)

where z(x) = 2d (1 + γqx), d = m0ω0/(h̄γ 2
q ), ν = 2d (1 +

γqx0) − 1 − 2n > 0, A2
n = νγqn!/(ν + n)!, and L(ν)

n (z) are the
associated Laguerre polynomials. The energy eigenvalues of
the Eq. (99) are

En = V0 − e2E2

2m0ω
2
0

+ h̄ω0

(
1 + γqeE

m0ω
2
0

)(
n + 1

2

)

− h̄2γ 2
q

2m0

(
n + 1

2

)2

. (102)

The number of bound states of the deformed oscillator is Nb =
�d (1 + γqx0) − 1/2�, �u� denoting the floor function, which
tends to increase (decrease) for γqx0 > 0 (γqx0 < 0) in the
presence of an external electric field. The relations h̄2/m0 =
�, m0ω

2
0 = α2/�, eE = αγq/2, and V0 = −α/2, lead to

ψq,n(x) = Ane−η(1+γqx)[2η(1 + γqx)]η−n

× L(2η−2n)
n [2η(1 + γqx)], (103)

where η = α/(�γ 2
q ) and A2

n = 2(η − n)γqn!/(2η − n)!. The

eigenvalues of K̂q are

�n = −En = −αn

(
1 − �γ 2

q

2α
n

)
, (104)

with �n < 0 for all n ∈ N, except �0 = 0. The eigen-
functions of Eq. (103) are orthogonalized through the
deformed inner product

∫ +∞
−∞ ψq,n(x)ψq,n′ (x)dqx = δn,n′ . The

coefficients cn of (82) with the initial condition P(x, 0) =
Pq(x, 0)/(1 + γqx) = δ(x) are cn = ψq,n(0)/ψq,0(0), so the
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FIG. 4. FPE for an inhomogeneous media with a linear potential.
(a) Stationary solution for different values of σ0γq. Similarly to
the free particle (see Fig. 1), asymmetry in the PDF is observed.
(b) Entropy S of the system (black line), the contribution of the
entropy of the particles SBG (blue dashed line), and the contribution
of the medium, −〈ln(1 + γqx)〉, (red dash-dot line), (see Eq. (66)), as
a function of the inhomogeneity of the medium, controlled by γqσ0.

general solution of Eq. (97) results

Pq(x, t ) = ψq,0(x)

ψq,0(0)

∑
n

ψq,n(x)ψq,n(0)e−t�n . (105)

The summation in Eq. (105) has the form of a quantum prop-
agator for the Morse oscillator [61], from which we obtain its
stationary solution

P (st)
q (x) =

γq
[

1
σ 2

0 γ 2
q

(1 + γqx)e−(1+γqx)
] 1

σ2
0 γ 2

q(
1

σ 2
0 γ 2

q

)
!

, (106)

with �/(2α) = σ 2
0 . The transformations γq → −γq, x → −x,

and xd → −xd are equivalent, due to the asymmetry of the dif-
fusion (see Fig. 1), which tends to concentrate the probability
density around x = xd . Alternatively, the stationary solution
can be obtained from Eq. (74) using A(x) = −αx.

Figure 4(a) shows some plots of the stationary solution
P(st)(x) = P (st)

q (x)/(1 + γqx) for some values of σ0γq. For
|γq| → 1 the PDF [Eq. (106)] diverges at xd = −1/γq. Fig-
ure 4(b) shows the deformed entropy [Eq. (66)] as a function
of γq for the stationary PDF along with the entropic contribu-
tions of the particles and the medium, obtained by numerical
integration. Localization of particles at xd for γqσ0 → 1
implies SBG = − ∫

P ln(σ̄P)dx → 0 with σ̄ = e = constant.
The greater the value of the parameter γq, the greater (smaller)

is the entropic contribution of the medium (particles) on the
total entropy.

VI. DISCUSSION AND COMPARISON WITH
THE LITERATURE

Here follows a discussion of the formalism presented in the
light of some literature of inhomogeneous diffusion: the van
Kampen’s approach [47–49] and the superstatistics [50,51].
Also, we include two possible fluctuation theorems along with
an application of the deformed FPE to anomalous diffusion in
optical lattices [52,53].

A. Consistency with van Kampen’s approach

Our aim is to show that the van Kampen’s description
of Sec. II B can be expressed in terms of the deformed
Fokker-Planck Eq. (56) by means of a suitable choice of the
deformation κ (x) for case in which the functional form of the
temperature T and the mobility of the particle μ are the same:

T (x)

T0
= μ(x)

μ0
= 1

κ (x)
, (107)

with T0 and μ0 their corresponding values in the case of con-
stant temperature and mobility. By simple inspection between
the Eqs. (55), (56), and (11), and the deformation κ (x) ≡ h(u)
in Eq. (34) D[κ] = 1

κ (x)
d
dx , Eq. (11) can be rewritten as

∂P[κ](x, t )

∂t
= D[κ][μ0V

′(x)P[κ](x, t )] + μ0T0D2
[κ]P[κ](x, t )

(108)
that is the deformed FPE (56) with the identification of the
potential drift A(x) and the constant � as

A(x) = −μ0V
′(x),

�/2 = μ0T0. (109)

We remark some consequences regarding the connection be-
tween the van Kampen’s diffusion Eq. (11) and the deformed
FPE (56). The first one is that the choice [Eq. (107)] implies

β(x) = 1

kBT (x)
= β0

√
m(x)

m0
, (110)

with β(x) = β0 corresponding to the constant temperature
case, thus linking the inverse of the temperature with the
position-dependent mass.

Second remark, the entropic density s[κ](P) = −P
κ

ln ( P
κ

)

satisfies d2s[κ]

dP2 = − 1
κP < 0 and since the deformed station-

ary solution P (st)(x) = κ (x)P(st)(x) maximizes S then P(st)(x)
(Sec. V B) also maximizes

S = SBG − 〈ln[T (x)/T0]〉. (111)

Equation (111) represents an entropy functional for the
existence of the deformed H-theorem (Sec. III C) in an in-
homogeneous medium with a position-dependent temperature
T (x). The first term of Eq. (111) has a microscopic nature (the
probability density function), while its second term depends
on a macroscopic variable. This would be considered as an
inconsistency within the usual statistical mechanics frame-
work, but within the superstatistics context, the second term
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is an average over a continuous of canonical ensembles of
temperatures T (x). The confining potential with linear drift of
Sec. V B exemplifies this point. In the context of the van Kam-
pen’s Eq. (11) this case corresponds to an inhomogeneous
media with a linear temperature profile given by Eqs. (68)
and (107) and a external force −V ′(x) = − α

μ0
x (A(x) = −αx)

with α,μ0 � 0. Figure 4(b) shows the increase of the entropy
S with the growth rate of the temperature 1

T0

dT
dx = γq, SBG,

decreases, but the contribution of the medium sufficiently
compensates, and S increases with the inhomogeneity of the
temperature.

Finally, if T (x)/μ(x) �= constant, Eq. (11) can be ex-
pressed by means of deformed derivatives. In fact, using that
P[1/μ](x, t ) = P(x, t )μ(x)/μ0, P[1/T ](x, t ) = P(x, t )T (x)/T0

and D[1/μ] = μ(x)
μ0

d
dx , D[1/T ] = T (x)

T0

d
dx , the van Kampen’s dif-

fusion Eq. (11) is written as

∂P[1/μ](x, t )

∂t
= D[1/μ][μ0V

′(x)P[1/μ](x, t )]

+μ0T0D2
[1/μ][P[1/T ](x, t )]. (112)

The general solution of this equation is beyond the scope of
the this work.

B. Superstatistics and position-dependent mass
Langevin equations

A deep connection between the position-dependent
Langevin Eq. (46) and the superstatistics version [Eq. (13a)]
can be given by considering λ(x) = λ0 and multiply the left
and right sides of Eq. (46) by ẋ, then we obtain

d

dt

(
1

2
m(x)ẋ2

)
= −m(x)λ0ẋ2 + (F (x) + R(t ))ẋ. (113)

By means of the change of variable

x[κ](x) =
∫ x

√
m(x′)

m0
dx′, (114)

Eq. (113) can be rewritten as

dv[κ]

dt
= −λ0v[κ] + F (x[κ] )

m0
+
√

2λ0

m0β(x[κ] )
ξ (t ), (115a)

dx[κ]

dt
= v[κ], (115b)

with

F (x[κ] ) = F [x(x[κ] )]
√

m0

m[x(x[κ] )]
= −dV [x(x[κ] )]

dx[κ]
, (116a)

β(x[κ] ) = β0
m[x(x[κ] )]

m0
= β0κ

2[x(x[κ] )], (116b)

ξ (t ) =
√

m0β0

2λ0
R(t ), (116c)

where β0 denotes the standard case β(x[κ] ) = constant. The
set of Eqs. (115) is formally identical to Eqs. (13), thus giv-
ing a demonstration by first principles of the superstatistics
Langevin equation in terms of a position-dependent mass
particle.

The stationary solutions of the superstatistics [Eq. (15)]
and of the deformed FPE (54) along with the relationship
β(x) = 1/κ (x) from Eq. (110) indicate they are the same
distribution. Moreover, from the deformed stationary solution
of the confining potential [Eq. (106)], the Eq. (55) and by the
same procedure for obtaining the velocity distribution ([51],
Eq. (16)) in the overdamped limit, we obtain the distribution
f (βq) for the deformation βq(x) = 1

1+γqx

f (βq) = β−α−1
q

�(α)
exp

(
− θ

βq

)
, α = θ = 1

σ 2
0 γ 2

q

, (117)

which is the inverse γ distribution of the example β(x) =
1

|x|+a of Ref. [51] in the limit a → 0. Also, from βq(x) other

candidate for the force 2
�

A(x) can be obtained by means of
Eq. (18) of Ref. [51].

Position-dependent mass and superstatistical Langevin
equations (in x and y spaces, respectively) Eqs. (46) and
(115a), are equivalent, maintaining the position and the veloc-
ity at the same status level, from which results the overdamped
PDM Langevin Eq. (47) [or equivalently Eq. (48)], in x for
λ(x) � τ−1. Analogously, the van Kampen’s FPE (11) is not
equivalent to the superstatistical Langevin Eq. (13a), since the
overdamped limit has not been taken in the latter.

C. Work fluctuation theorems for
position-dependent

mass particle

We outline two possible fluctuation theorems (FT) [62,63]
in a position-dependent mass scenario by reviewing some
works on fluctuation theorems for a dragged Brownian par-
ticle [64,65]. For simplicity we restrict our discussion to the
deformation [Eq. (68)]. To apply the FT theorem [65] and
inspired by the experiment of Wang et al. [64], we consider
a one-dimensional Brownian particle of constant mass m0 in
a medium of friction λ0 and temperature T0 in the deformed
frame xq [Eq. (93)], and subject to a force F [xq, x∗

q (t )] =
−k[xq − x∗

q (t )], with an arbitrary time-dependent position
x∗(t ). Let us denote Wτ and W τ the works done on the system
during a time τ , with τ the timescale of the fluctuations in the
spaces x and xq respectively. By means of the transformation
Eq. (93) it is immediate to show that the overdamped position-
dependent mass Langevin Eq. (47) is equivalent to

ẋq = −xq − x∗
q (t )

τr
+ ξ (t ), (118)

with τr = λ0/k the relaxation time, 〈ξ (t )〉 = 0 and
〈ξ (t )ξ (t ′)〉 = 2kBT0λ0δ(t − t ′) and a force F [x, x∗(t )] =
(1/γq) ln{(1 + γqx)/[1 + γqx∗(t )]}. Under these conditions,
from Eq. (118) the work FT of the Eq. (31) of Ref. [65] in the
space xq follows

P(W τ )

P(−W τ )
= eW τ , (119)

with P(W τ ) the probability distribution of W τ , constructed by
measuring W τ over time intervals τ [64]. By the definition of
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Eq. (5) of Ref. [65],

W τ = β0

∫ τ

0
dt v∗

q (t ) {−k[xq(t ) − x∗
q (t )]}

= β0

∫ τ

0
dt

v∗(t )

1 + γqx∗(t )
F [x(t ), x∗(t )]

= 〈Wτ 〉q, (120)

with vq = v/(1 + γqx). The probability of the work
done must be the same on both spaces x and xq,
so P(Wτ )dWτ = P(W τ )dW τ , from which follows
P(W τ )/P(−W τ ) = P(Wτ )/P(−Wτ ). Then, from Eq. (120)
we recast the work FT [Eq. (119)] in standard space x,

P(Wτ )

P(−Wτ )
= e〈Wτ 〉q , (121)

that constitutes a first version of the work FT [65] with Wτ

averaged by the deformation [Eq. (68)]. We can provide a
second (stationary state) version of the work FT, now by
measuring the ratio P(Wτ )/P(−Wτ ) over single trajectories in
a stationary state of the type [Eq. (15)], that is, by dividing a
stationary trajectory of total time t in a sequence of M � 1
time intervals with duration τ (ti+1 − ti = τ ) and initial times
t1, . . . , tM [65]. This corresponds to the stationary state fluctu-
ation theorem (SSFT) [65], as a case of the FT in the long term
regime t � τ . For the constant velocity case, v∗(t ) = v0 of
x∗(t ) [64,65], it follows the timescale τL = 1/(γqv0), during
which the deformation [Eq. (68)] varies. The timescales order-
ing τ < τL � t implies the factor 1/[1 + γqx∗(t )] in Eq. (120)
is approximately constant, so from Eq. (121) we obtain

P(Wτ )

P(−Wτ )
= eβ[x∗(t0 )]Wτ , (122a)

β(x∗(t0)) = β0/[1 + γqx∗(t0)], (122b)

with t0 ∈ (0, τ ), that can be considered a manifestation
of the superstatistics work FT of Ref. [63] linked with
position-dependent mass systems, where we have used the
identification Eq. (110). Employing Eq. (122) we can derive
an expression for the expectation of the ratio P(Wτ )/P(−Wτ )
for the inverse γ distribution [Eq. (117)] of the confining
potential case. Over a stationary trajectory in the long term
regime, by averaging Eq. (122) with Eq. (117) we obtain〈

P(−Wτ )

P(Wτ )

〉
= 2

�(α)
(αWτ )α/2Kα (2

√
αWτ ), (123)

with α = 1/(σ 2
0 γ 2

q ) and Kν (x) is the modified Bessel func-
tion of the second kind. The average of the probability ratio
[Eq. (123)] asymptotically decays as a power law W −α/2

τ for
small values of Wτ , while for large Wτ , it decays exponentially
as if there were no β fluctuations. We could extrapolate the va-
lidity of the FT for a Morse potential force, that is, by making
the substitution −(1/γq)[exp(γq(xq − x∗

q )) − 1] → (xq − x∗
q )

in Eq. (118) with a relaxation time τr = λ0γq/D and D the
dissociation constant of the Morse potential.3 In the long term
regime, the confining potential decays as a power law or as an

3Not to be confused with the diffusion coefficient, which appears
in others parts of this paper.

exponential, for small or large Wτ , respectively. This behavior
follows from Eq. (123), along the same steps that lead to
Eq. (122). A possible test for Eq. (123) is the experiment re-
ferred to in Ref. [64] in the long term regime with temperature
and mobility profiles given by Eqs. (68) and (107), together
with the condition τL = 1/(γqv0) > τ .

D. Anomalous diffusion in optical lattices

Another important case of inhomogeneous diffusion has
been investigated in optical lattices [53], whose relevance
against others counterparts lies in the fact that its optical pe-
riodic potential is completely known, thus allowing to control
it in a precise way. In this regard, an intermediate atomic
transport regime can be identified, between diffusive motion
and ballistic motion, in which anomalous diffusion occurs
and the dynamics is adequately described by nonextensive
statistics [52,53]. In this regime, the atom–laser interaction in
the optical lattice is governed by a quantum master equation
whose spatial averaging gives the Rayleigh equation for the
Wigner function W (p, t ),

∂W (p, t )

∂t
= − ∂

∂ p
[K (p)W (p, t )] + ∂

∂ p

[
D(p)

∂W (p, t )

∂ p

]
,

(124)

where the functions K (p) and D(p) are the drift (cooling
force, the Sisyphus effect) and diffusion (stochastic momen-
tum fluctuations of p) coefficients. Our purpose is to show
that Rayleigh Eq. (124) can also be expressed as a particular
deformed FPE (56) for the stationary case ∂W (p,t )

∂t = 0. Notic-
ing that the diffusion coefficient D(p) defines the deformed
derivative [see Eq. (34) with h(u) ≡ 1/D(p)] D1/D = D(p)

D0

∂
∂ p

(with D0 corresponding to fluctuations of photon emissions
[53]) and by making W (p, t ) = W (x, p)D(p), then W (p, t )
can be interpreted as a deformed version of W (x, p), i.e.,
W (p, t ) = W [1/D](x, p) (according to Eq. (55)). Thus, we re-
cast Eq. (124) for the stationary case as

0 = −D[1/D][K (p)W [1/D](p)] + D0D2
[1/D]W [1/D](p), (125)

which is entirely expressed in the deformed space d[1/D] p =
D0

D(p) d p with constant diffusion coefficient D0. Moreover, it
follows from Eq. (58) its stationary solution,

W (st)(p) = W (st)
[1/D](p)

= C exp

(
1

D0

∫ p

K (p′)d[1/D] p′
)

= C
[
1 − β(1 − q)p2

]1/(1−q)
, (126)

which is the Tsallis distribution (Eq. (5) of Ref. [53]), with
K (p)/D(p) = 2βp

1−β(1−q)(p)2 .

VII. CONCLUSIONS

Quantum and classical formalisms properly deformed to
account for systems with position-dependent effective mass
recently addressed in the literature [34,35,37–40] have been
studied for which derivative operators are replaced by their
deformed forms. Table I displays the whole picture, exhibit-
ing deformed versions of Fokker-Planck and Schrödinger
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TABLE I. Linear and nonlinear deformed Fokker-Planck and Schrödinger equations.

Deformed derivative Deformed Fokker-Planck equation Deformed Schrödinger equation

Linear Dq f (u) = [1 + (1 − q)u] df
du

∂Pq (x,t )
∂t = −Dq,x[A(x)Pq(x, t )]

+ �

2 D2
q,xPq(x, t )

ih̄ ∂
q (x,t )
∂t = − h̄2

2m0
D2

q,x
q(x, t )
+V (x)
q(x, t )

(Eq. (19)) (Eq. (69), proposed in this work) (Eq. (23), proposed in Ref. [34])

Nonlinear D̃q f (u) = [ f (u)]1−q df

du
D̃q,t Pq(x, t ) = −D̃q,x[A(x)Pq(x, t )]

+ �

2 D̃
2
q,xPq(x, t )

ih̄D̃q,t�q(x, t ) = − h̄2

2m0
D̃2

q,x�q(x, t )

+V (x)�q(x, t )
(Eq. (24)) (Eq. (31), proposed in Ref. [4]) (Eq. (33), proposed in Ref. [54])

equations, and the gap fulfilled by the present work. The
linearity and the nonlinearity of the equations are rephrased
by linear and nonlinear versions of deformed derivatives. We
summarize our contributions as follows.

(i) Two deformed derivatives have been generalized into
a unified framework within an arbitrary deformation space
h(x), Eqs. (34) and (35). This scenario allows to obtain a
linear deformed Fokker-Planck equation that is equivalent to
the corresponding FPE in an inhomogeneous media with a
position-dependent mass along with dumping and diffusion
coefficients as a function of the employed deformation.

(ii) The deformation carries pieces of information about
the inhomogeneity of the medium, as a consequence of the
equivalence between the FPE in an inhomogeneous medium
with position-dependent mass and a deformed FPE in a ho-
mogeneous medium with constant mass.

(iii) There is a connection between the molecular and
the macroscopic (diffusion) deformed descriptions, given by
the Langevin Eq. (48) and the Fokker-Planck Eq. (69), re-
spectively. Within the macroscopical approach, the diffusion
equation (FPE) is written in terms of a deformed linear
derivative, while the microscopical approach, the equations
of motion (Langevin), uses the corresponding dual de-
formed nonlinear derivative. This is in complete analogy with
the interplay, reported previously in Refs. [37,38], between
the deformed versions of the Schrödinger equation and of the
Newton’s law obtained in the classical limit.

(iv) The deformed FPE (56) and the position-dependent
mass Langevin Eq. (47) result equivalent to the nonlin-
ear Langevin Eq. (44b), thus guaranteeing the existence of
a well-defined stationary solution, which satisfies the de-
formed H-theorem of Sec. V B, and showing a connection
between the standard inhomogeneous diffusion and the one
that emerges from a position-dependent mass system.

(v) The entropy of the system [Eq. (66)] is written as the
sum of contributions, one from the particles and one from
the medium, with the latter increasing with deformation, as
illustrated for the case of the confining potential (Fig. 4).

In the context of the van Kampen’s diffusion Eq. (11) the
entropy contribution of the medium is given in terms of the
position-dependent temperature [Eq. (111)]. For the case of
the confining potential and the deformation [Eq. (68)], the
temperature results linear and with the same inverse γ dis-
tribution for f (β ) as in Ref. [51].

(vi) The solution of the deformed linear FPE for a confining
potential can be obtained from an analogy with the corre-
sponding deformed linear Schrödinger equation (Sec. IV B).

(vii) Exponential hyper-diffusion is found for times longer
than the characteristic time, according to the position-
dependent mass, and, consequently, to the deformation
parameter, Eq. (96b).

(viii) Instances addressed in Sec. VI point out the potential
use of the deformed FPE in different contexts. Consistency
with the van Kampen’s inhomogenous diffusion has been
established for the case in which the temperature and the mo-
bility are proportional, while the position-dependent Langevin
Eq. (46) in a deformed space and the superstatistics version of
the Langevin Eq. (13a) are equivalent. Two possible realiza-
tions of the work fluctuation theorem has been linked with
the diffusion of a position-dependent mass particle, one of
them by averaging the work with the deformation [Eq. (68)]
while the other was obtained in terms of the superstatistics
approach in the long term regime. For the latter we have
proposed a modification of the experiment of Wang et al.
[64] by suggesting to employ a temperature and mobility
profiles T (x)/T0 = μ(x)/μ0 = (1 + γqx), in order test power
law and exponential decays in the expectation value of the
probability work ratio [Eq. (123)] for small and large val-
ues of the work Wτ respectively. In the general case the
van Kampen’s Eq. (11) can be expressed by Eq. (112) in
terms of a mixture of deformations given by the tempera-
ture and the mobility. The van Kampen’s FPE along with
the superstatistics FPE and the deformed FPE have the same
stationary solution and satisfy the relationships given by
the Table II. Regarding the anomalous diffusion in opti-
cal lattices, the Rayleigh equation for the stationary Wigner

TABLE II. Structure of the inhomogeneous diffusion of the van Kampen’s approach, the superstatistics FPE and the deformed FPE in the
position-dependent mass context.

Deformed FPE (56) with Eq. (107) ↔ van Kampen FPE (11)
PDM Langevin Eq. (46) in y(x) [Eq. (114)] ↔ Superstatistics Langevin Eq. (13a) in y(x) [Eq. (114)]
Deformed FPE (56) � Superstatistics FPE (14)
Superstatistics FPE (14) with T (x) = 1/β(x) and μ(x) = μ0 ↔ van Kampen FPE (11)
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function [53] can be expressed as a deformed FPE in a
deformed momentum space p[1/D], with D(p) the diffusion
coefficient.

There is an equivalence between the deformed space of
the position-dependent mass system, the heterogeneity of the
environment and the superstatistics, which could potentially
be used to study problems in these areas.

Table I uses the two deformed derivatives (one linear
and one nonlinear) for which the q-exponential is the eigen-
function. To complete the scheme, it is still missing the
development of deformed versions of FPE and Schödinger
equation using their dual derivatives, i.e., those whose the
deformed derivative of the q-logarithm of u is 1/u: D̃q f (u)
[Eq. (20)] and Dq f (u) [Eq. (25)].

The linear deformation of the FPE addressed in this paper
does not formally departs from Boltzmann-Gibbs statistical
mechanics, within the deformed space [see Eqs. (65) and
(66)]. It is interesting to explore the consequences of nonlinear

deformations to identify which case leads to a nonexten-
sive statistical mechanics scenario described by Sq entropy.
Besides, other deformed algebras could be employed, for in-
stance within the context of relativistic statistical mechanics
[66] as well as those from entropic information generaliza-
tions [52,67], thus leading to different deformations of the
FPE.
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