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Fokker-Planck equation for Coulomb relaxation and wave-particle diffusion: Spectral solution and
the stability of the Kappa distribution to Coulomb collisions
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The present paper considers the time evolution of a charged test particle of mass m in a constant temperature
heat bath of a second charged particle of mass M. The time dependence of the distribution function of the
test particles is given by a Fokker-Planck equation with a diffusion coefficient for Coulomb collisions as well
as a diffusion coefficient for wave-particle interactions. For the mass ratio m/M → 0, the steady distribution
is a Kappa distribution which has been employed in space physics to fit observed particle energy spectra. The
time dependence of the distribution functions with some initial value is expressed in terms of the eigenvalues and
eigenfunctions of the linear Fokker-Planck operator and also interpreted with the transformation to a Schrödinger
equation. We also consider the explicit time dependence of the distribution function with a discretization of the
Fokker-Planck equation. We study the stability of the Kappa distribution to Coulomb collisions.
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I. INTRODUCTION

The current paper is directed towards the development
of a physical model to identify the processes that maintain
steady nonequilibrium Kappa distributions that are observed
via satellite diagnostics in a large number of space plasma
environments [1–5]. In addition to the Kappa distribution,
there is a very large number of different physical and chemical
systems which are characterized by nonequilibrium distribu-
tions [6–10]. In many such situations, the processes that drive
the system from equilibrium and those that restore the system
to equilibrium can be identified. This aspect of the departure
from equilibrium in space physics and astrophysics and the es-
tablishment of steady Kappa distributions have been discussed
[11–18] with regards to the timescales for the relaxation to
equilibrium for astrophysical plasmas. It is often possible to
quantify the collisional processes leading to nonequilibrium
states in terms of kinetic equations such as the Boltzmann
equation [19], the Fokker-Planck equation [20], the Vlasov
equation [21], or a master equation [22]. These have been
employed for decades by many researchers in different fields
to account for the departure from equilibrium distributions in
diverse systems. Fokker-Planck equations arise as the limiting
form of the Boltzmann equation for binary disparate mass sys-
tems [23], for systems of charged particles which experience
Coulomb collisions [24,25], the continuum representation of
discrete Master equations [26,27], stellar systems [28–31],
for chemically reactive systems [32], and in economics
[33].

Numerous researchers [2,4,34] suggested that the origin of
the Kappa distribution can be rationalized with the nonex-
tensive entropy formalism developed by Tsallis [35–37]. A
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complete bibliography can be found elsewhere [2,38]. The
nonextensive entropy approach to describe nonequilibrium
phenomenon remains controversial as noted by several au-
thors [39–48]. In the kinetic theory applications discussed
here, there is no need to introduce the concept of nonexten-
sive thermodynamics and q-extensive distributions [49]. The
steady nonequilibrium distributions for these systems depend
on Kappa (κ) and the mass ratio m/M and a large number of
different nonequilibrium steady states are calculated for which
the Kappa distribution is found only for a particular choice of
these variables [11,12].

The nonextensive approach by Tsallis is based on the defi-
nition of an entropy functional of the form

S(q) = 1

q − 1

[
1 −

∫
f q(v)dv

]
, (1)

parameterized with q. In the limit q → 1, we have, with
l’Hopital’s rule, that limq→1 S(q) → − ∫

f ln( f )dv which is
the basis for Boltzmann’s H-theorem for a dilute monatomic
gas and the approach to a Maxwellian at equilibrium [50].
For systems with discrete quantum energy levels, the integral
is replaced by a summation and the equilibrium distribution
is generally referred to as the Maxwell-Boltzmann distribu-
tion. The equilibrium distributions are obtained by finding the
extremum of the Boltzmann-Gibbs entropy with the method
of Lagrange multipliers subject to the known values of the
density and average energy [50]. This procedure provides the
well-known equilibrium Maxwell-Boltzmann, Fermi-Dirac,
and Bose-Einstein distributions. This formalism does not pro-
vide any information regarding nonequilibrium distributions.

The Tsallis formalism has been widely adopted in space
physics as a rationale for the many satellite verifications
of particle energy distributions as the Kappa distribution
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[2,4,51,52] given by

fκ (x) = C(κ )

[
1

1 + x2

κ+1

]κ+1

, (2)

where x = v/vth is the reduced particle speed and vth =√
2kTb/m is the thermal speed with k the Boltzmann con-

stant and m the particle mass. The heat bath temperature is
denoted by Tb. The extent of the departure of fκ (x) from
a Maxwellian is determined by the value of κ and fκ (x)
tends to a Maxwellian for κ → ∞. The Kappa distribu-
tion is normalized according to 4π

∫ ∞
0 fk (x)x2dx = 1 so that

C(κ ) = �(κ + 1)/{�(κ − 1
2 )[

√
π (κ + 1)]

3}. It has an asymp-
totic power-law dependence for large speed x, and joins
smoothly with a Maxwellian distribution at low speed.

The basis for the curent paper is the Fokker-Planck equa-
tion for a test particle of mass m in a heat bath of a second
species of mass M as described in Sec. II [11,12]. There are
two collisional processes included, namely Coulomb colli-
sions which drive the system to equilibrium and wave particle
interactions which are responsible for the departure from
equilibrium. The steady distribution is a Kappa distribution
defined by a Pearson ordinary differential equation [11,12];
see Eq. (8).

By contrast to the previous works [11,12] in which the
Chang-Cooper finite difference solution of the Fokker-Planck
equation was used, in this paper we also use a spectral solution
of the Fokker-Planck equation to represent the time evolution
of the distribution function in terms of the eigenvalues and
eigenfunctions of the Fokker-Planck operator. The eigenvalue
spectrum of the Fokker-Planck operator is interpreted in terms
of the potential in the Schrödinger equation corresponding
to the Fokker-Planck equation. This relationship arises ow-
ing to the SUPERSYMETRIC quantum mechanics for potential
functions arising from a Fokker-Planck equation [12,20]. The
numerical evaluation of the eigenvalue spectrum is provided
with the approximation of the eigenfunctions expanded in the
Maxwell polynomials orthogonal with respect to the weight
function w(x) = x2e−x2

[53,54].
The Fokker-Planck equation for Coulomb collisions and

a collision term for wave particle interactions is discussed
in Sec. II with the spectral solution provided in Sec. III.
In Sec. IV, the eigenvalue problem for the Fokker-Planck
equation is interpreted with the solution of the isospectral
Schrödinger equation. In Sec. V, we present the time evolu-
tion of the distribution to equilibrium from an initial Kappa
distribution in the absence of the wave particle interaction and
the speed-dependent relaxation times are evaluated. Analo-
gously the time evolution of the distribution from an initial
Maxwellian to a Kappa distribution in the presence of the
wave particle interaction is also presented and the speed-
dependent relaxation times are evaluated for this process. An
analysis is provided as to the physics of the creation of a
Kappa distribution. A summary of the results is presented in
Sec. VI.

II. FOKKER-PLANCK EQUATION

The Fokker-Planck equation for the relaxation of a charged
test-particle of mass m interacting via Coulomb collisions

with background charged particles of mass M at equilibrium
is given by

∂ f0(v, t ′)
∂t ′ = A1

v2

∂

∂v

[
D1(v)

(
1 + kTb

mv

∂

∂v

)]
f0(v, t ′), (3)

where A1 = (4πNe4Z2Z2
b /mM ) ln � with the diffusion

coefficient

D1(v) = erf

(√
Mv2

2kTb

)
−

√
2Mv2

πkTb
exp

(
−Mv2

2kTb

)
, (4)

as discussed elsewhere [11,12,24,54,55]. Equation (4) arises
from the Coulomb cross section for charged particle collisions
and averaged over the Maxwellian distribution function of the
background ions. The parameters in A1 are the density N of
the background species, the electronic charge e, the atomic
weights of the background species Zb, and the test particle Z ,
respectively. The Coulomb logarithm is ln �. The steady-state
solution of Eq. (3) is clearly a Maxwellian.

The system described by the Fokker-Planck equation
Eq. (3) is perturbed with the introduction of an ener-
gization mechanism. In the space plasma environment, the
energization mechanism could include quasilinear wave-
particle interactions modeled by a diffusion in velocity space
[13,14,56–58] and thus an appropriate Fokker-Planck equa-
tion is given by

∂ f (v, t ′)
∂t ′ = A1

v2

∂

∂v

[
D1(v)

(
1 + kTb

mv

∂

∂v

)]
f (v, t ′)

+ B1

v2

∂

∂v

[
v2D2(v)

∂

∂v
f (v, t ′)

]
, (5)

where B1 gives the strength of the wave-particle interaction as
modeled with the diffusion coefficient D2(v).

With the introduction of the dimensionless time
t = t ′/t0, where t0 = [Nσeff

√
2kTb/M]

−1
with σeff =

[4πNZ2Z2
b e4 ln �]/(2kTb)2 the Fokker-Planck equation,

Eq. (5), can be written in terms of α = 2B1/A1 as a measure
of the strength of the wave-particle interaction that energizes
the particles relative to Coulomb collisions. The main
objective of the present paper is the mechanism for the
establishment of a steady Kappa distribution that arises from
a competition of collisional processes [15,16].

The steady distribution obtained by setting ∂ f /∂t ′ = 0 in
Eq. (5) is given by

dfss(x)

fss(x)
= −

[
2x

1 + αvthx3 D2(vthx)
D̂1(z)

]
dx, (6)

where

D̂1(z) = erf (z) − 2z√
π

e−z2
, (7)

vth = √
2kTb/m, z = √

γ x, and γ = M/m. It is this mass-
dependent dimensionless diffusion coefficient that controls
the Coulomb relaxation to equilibrium and the features of
fss(x). It is clear from Eq. (6) that the steady distribution
is a Maxwellian for α = 0, that is in the absence of wave-
particle interactions. For α �= 0, the steady distribution is a
non-Maxwellian distribution, the features of which also de-
pend on the mass ratio, γ .
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The Coulomb cross section that varies as 1/g4 where g is
the relative velocity of two charged particles in a collision
does not appear explicitly in Eq. (5). The velocity depen-
dence of this steady-state distribution function depends on
both D̂1(z) and D2(vthx). The inverse velocity dependence
of the wave-particle diffusion coefficient D2(v) ∝ 1/v arises
from the analysis of weak turbulence theory; see Eq. (10.31)
in Ref. [57].

It is useful to examine the dependence of D̂1(
√

γ x) versus
x. It is clear that for x → ∞, D̂1(

√
γ x) → 1, and for small x,

lim
z→0

D̂1(z) ≈ 4

3
√

π
γ 3/2x3.

A dimensionless collision frequency ν(x) =
3

4z3
√

π
D1(z)/(4z3) can be defined. It is this strong mass

dependence that controls both the approach to a steady state
and the features of the steady-state distribution that are em-
phasized in the present paper. It is easy to see that in the
limit, γ → ∞, D̂1(z) → 1 and with D2(vthx) = 1/(vthx), the
steady distribution function is then defined by

dfκ (x)

fκ (x)
= − 2x

1 + αx2
dx, (8)

which can be recognized as the Pearson ordinary differential
equation [59,60] that defines the Kappa distribution Eq. (2),
with κ = (1 − α)/α. This result arises owing to the particular
speed dependence of the drift and diffusion coefficients in
the Fokker-Planck equation that gives Eq. (8). For x → 0,
the distribution approaches a Maxwellian and for x → ∞ the
distribution is a power law. Equation (8) does not arise ow-
ing to long-range forces [61], a collisionless weakly coupled
plasma far from equilibrium [2,38], multiplicative noise [35],
nonextensive entropy [4,34,38,49,51,62], or Levy flights [63].

The analyses by Yoon et al. [64] and Kim et al. [65] are
based on the detailed physics of the interaction of electrons
with Whistler-type waves and yield a Kappa distribution de-
fined by Eq. (8) owing to the particular v dependence of the
diffusion coefficients. The establishment of the Kappa distri-
bution is dependent on the specific speed dependence of D1(v)
rather than on the wave spectrum. Equation (48) in Ref. [66]
confirms the approach here and in the previous work [12].

The section that follows presents some numerical results
that further demonstrate the range of nonequilibrium distri-
butions with this simple model for which only a subset are
Kappa distributions. The works by Ma and Summers [13] for
Whistler waves and Hasegawa et al. [14] for a radiation field
use similar Fokker-Planck equations with drift and diffusion
coefficients that yield the same ordinary differential equation,
Eq. (8), for the steady-state distribution Eq. (2). Similarly, the
analysis of anomalous diffusion in an optical lattice by Lutz
[67] gives a Kappa distribution, Eq. (2), with the appropriate
ratio of the drift to diffusion coefficients as in Eq. (3) of
Ref. [67] leading exactly to Eq. (8).

We substitute f (x, t ) = fss(x)g(x, t ) in Eq. (5) and use
F (x) fss + G(x) ∂ fss

∂x = 0, where F (x) = D1(vthx) and G(x) =
D1(vthx)

2x + αvthx2D2(vthx)
2 . Thus we have that

∂g(x, t )

∂t
= −

[
F (x) − G′(x)

x2√γ

∂

∂x
− G(x)

x2√γ

∂2

∂x2

]
g(x, t ). (9)

We define A(x) = F (x)−G′(x)
x2√γ

and B(x) = G(x)
x2√γ

. so that Eq. (5)
can be written as

∂g(x, t )

∂t
= −

[
A(x)

∂

∂x
− B(x)

∂2

∂x2

]
g(x, t ), (10)

where we identify the linear operator, L, as

L = A(x)
∂

∂x
− B(x)

∂

∂x2
, (11)

which is Hermitian owing to the zero-flux boundary condition

x2 fss(x)B(x)
∂g(x)

∂x

∣∣∣∣
∞

0

= 0. (12)

We consider a solution of the Fokker-Planck equation in
terms of the eigenfunctions, φn(x), and eigenvalues, λn, of L
defined by

Lφn(x) = λnφn(x), (13)

where the eigenfunctions are orthogonal with respect to the
weight function w(x) = x2 fss(x), that is,∫ ∞

0
x2 fss(x)φn(x)φm(x) dx = δnm. (14)

The solution of Eq. (13) gives the spectral solution of Eq. (10)
so that the time-dependent distribution function is given by

f (x, t ) =
∞∑

n=0

cn fss(x)φn(x)e−λnt , (15)

where the coefficients

cn =
∫ ∞

0
x2φn(x) f (x, 0) dx, (16)

are determined with the initial distribution f (x, 0). The main
objectives of this analysis are to study the relaxation of the
Kappa distribution to a Maxwellian owing to Coulomb colli-
sions as well as the establishment of a Kappa distribution from
a Maxwellian with the inclusion of the wave-particle diffusion
in Eq. (5).

III. SPECTRAL SOLUTION OF FOKKER-PLANCK
EQUATION

We represent the solution of the the Fokker-Planck
equation, Eq. (10), in terms of the eigenvalues λn and eigen-
functions φn(x) of the Fokker-Planck operator, Eq. (13). We
propose to use this representation of the solutions of the
Fokker-Planck equation to explain the stability against colli-
sion of the Kappa distribution, especially the high-energy tail.

The numerical determination of the eigenvalues and eigen-
functions has been described in a previous publication [53]
(and references therein) and we here provide a brief overview
of the methodology. The Maxwell polynomial basis set,
{Mn(x)}, orthonormal with respect to the weight function
w(x) = x2e−x2

is used to define a nonuniform grid {xi} that
coincides with the points of the Gauss quadrature rule defined
by this nonclassical basis set [53], that is,∫ ∞

0
w(x) f (x)dx ≈

N∑
i=1

wi f (xi ). (17)
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TABLE I. Convergence of the eigenvalues of the Fokker-Planck
operator L, Eq. (18), for γ = 0.02; N is the number of quadrature
grid points.

N λ1 λ4 λ7 λ10

2 0.06517
3 0.05840
4 0.05840
5 0.4663
8 0.2174 1.4509
11 0.2159 0.3897 3.3142
15 0.2159 0.3476 0.5614
20 0.3464 0.4602
25 0.3464 0.4484
30 0.4478
35 0.4478

The quadrature points xi and weights wi are determined with
the diagonalization of the Jacobi matrix defined in terms of the
recurrence coefficients in the three term recurrence relation
for the polynomials [53]. For many applications, the Maxwell
polynomials provide a rapid convergence for such eigenvalue
problems.

The matrix representative of the Fokker-Planck operator
Li j in the physical space of quadrature points {xi} is

Li j = −
N∑

k=1

B(xk )[Dki + h(xk )δi j][Dk j + h(xk )δi j], (18)

where

h(x) = w′(x)

2w(x)
− [x2 fss(x)]′

2x2 fss(x)
, (19)

and the matrix Di j = √
wiw j

∑N−1
n=0 P′

n(xi )Pn(x j ) is the physi-
cal space representation of the derivative operator, that is,

d f̂ (x)

dx

∣∣∣∣
x=xi

=
N∑

j=1

Di j f̂ (x j ), (20)

TABLE II. Convergence of the eigenvalues of the Fokker-Planck
operator L, Eq. (18), for γ = 0.05; N is the number of quadrature
grid points.

N λ1 λ2 λ3 λ4 λ5

2 0.1587
4 0.1392 0.2713 0.6952
6 0.1392 0.2602 0.3777 0.6081 1.772
8 0.2600 0.3629 0.4710 0.8441
10 0.2600 0.3617 0.4484 0.5533
15 0.3617 0.4430 0.5051
20 0.4430 0.5010
25 0.5008
30 0.5005
35 0.4933
40 0.4947
45 0.5005
50 0.5004
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FIG. 1. Potential V (x) of the Schrödinger equation correspond-
ing to the Fokker-Planck equation with the Coulomb collision term
α = 0 and mass ratio γ = 0.02, 0.05, the horizontal lines denote the
eigenvalues.

as discussed in Ref. [53]. The eigenvalues of the Fokker-
Planck operator are approximated with the eigenvalues of the
matrix L in Eq. (18).

The eigenvalues and eigenfunctions are calculated from
the diagonalization of the N-by-N matrix representation of
the Fokker-Planck operator in Eq. (18). For the small mass
ratios and in the absence of the wave-particle interaction, the
spectrum consists of a discrete spectrum and a continuum. We
thus write the evolution of the distribution function as a sum
over the discrete spectrum and an integral over the continuum
states, that is,

f (x, t ) = fss(x)

[
N∑

n=0

cnψn(x)e−λnt

+
∫ ∞

λ∗
c(λ)ψ (λ, x)e−λt dλ

]
, (21)

where λ∗ marks the boundary between the bound states and
the continuum. Although the eigenvalues and eigenfunctions
in the continuum are not convergent versus N , the integral
over the continuum eigenstates in Eq. (21) does converge [54].
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FIG. 2. Eigenfunctions for bound states (top) and for continuum states (bottom) for mass ratio γ = 0.02.

The presence of the continuum eigenstates is best understood
with the transformation of the Fokker-Planck eigenvalue prob-
lem to the Schrödinger equation discussed in Sec. IV.

The convergence of the bound eigenvalues for γ = 0.02 is
shown in Table I. For this mass ratio, the convergence of λ1,
λ4, λ7, and λ10 converge to four significant figures with 4, 15,
25, and 35 quadrature points, respectively. The convergence of
the eigenvalues, λ1 to λ5 for γ = 0.05 is shown in Table II and
6, 10, 15, and 20 quadrature points are required for conver-
gence to four significant figures. The convergence of λ5 is not
monotonic from above as it should be owing to the variational
theorem. This slow convergence is the evidence that this state
is very loosely bound.

The eigenfunctions for the bound and continuum states for
γ = 0.02 are shown in Figs. 2(A) and 2(B), respectively. The
eigenfunction ψ5(x) is presumably in the continuous spectrum
of the Fokker-Planck operator and hence nonconvergent. For
larger mass ratios (γ > 0.3) or with the wave-particle interac-
tion, the spectrum is completely continuous except for λ0 = 0
with ψ0(x) = fss(x).

IV. SPECTRUM OF THE FOKKER-PLANCK OPERATOR
IN TERMS OF THE EQUIVALENT SCHRÖDINGER

EQUATION

The eigenvalue spectrum of the Fokker-Planck oper-
ator can be understood with the transformation of the
Fokker-Planck equation to a Schrödinger equation, Hψn(y) =
λnψn(y), isospectral with the Fokker-Planck equation. This
problem belongs to the class of problems in SUPERSYMMET-
RIC (SUSY) quantum mechanics [53]. With the change of
variable

y(x) =
∫ x

0

1√
B(x′)

dx′, (22)

and the definition

C[y(x)] = 1

2

∫ y A(y′)√
B(y′)

dy′ + 1

4
ln B(y), (23)
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we obtain the time-independent Schrödinger equation

d2ψn

dy2
− [V (y) − λn]ψn = 0, (24)

where the potential V (y) is defined by

V (y) = C′2(y) − C′′(y), (25)

where C′(y) = dC/dy and C′′(y) = d2C(y)/dy2. To compute
the potential, we evaluate C′ and C′′ with Eq. (23), that is,

C′[y(x)] = [2A(x) + B′(x)]/4
√

B(x),

and

C′′[y(x)] = [4A′(x)B(x) + 2B′′(x)B(x) − 2A(x)B′(x) − B′2(x)]/4B(x).

The potential is thus given by

V [y(x)] = 4A2(x) + 5B′2(x) − 8A′(x)B(x) + 12A(x)B′(x) − 4B′′(x)B(x)

16B(x)
. (26)

In the absence of wave-particle interactions, that is, with α = 0 and κ → ∞, the potential in Eq. (26) is given explicitly by [54]

V (x) = D1(vthx)√
γ x

(
1 − 9

16x4

)
− 2

√
πγ

[
1 + γ 2

2
− 3

8x2

]
e−γ 2x2 − γ 5/2x

2πD1(vthx)
e−2γ 2x2

, (27)

with V (0) = −2γ (1 + γ 2/2)/
√

π . It is useful to note two
limiting values of the potential, namely, γ → 0, for which
V (x) = (2γ /

√
π )(x2 − 3) and the spectrum is discrete. For
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8

FIG. 3. Potential γ 1/2V (x) of the Schrödinger equation corre-
sponding to the Fokker-Planck equation; (A) α = 0 and mass ratios
γ = (a) 0.05, (b) 0.1, (c) 0.3, (d) 0.6, (e) 0.9, and (f) 2. (B) (a) α =
1/20, κ = 19, (b) α = 1/10, κ = 9, (c) α = 1/6, κ = 5, (d) α =
1/4, κ = 3, and (e) α = 2/5, κ = 3/2, and mass ratios γ → ∞.

γ → ∞, then V (x) ∼ (1 − 9/16x4)/(
√

γ x). With the inclu-
sion of wave-particle interactions, α �= 0 and γ → ∞, the
potential in Eq. (26) is of the form

V (x) = −9α2x4 + 14αx2 − 16x4 + 9

32
√

γ (αx7 + x5)
. (28)

The potential functions for the Schrödinger equation
corresponding to the Fokker-Planck equation for Coulomb
collisions are shown in Fig. 1 for γ = 0.02 and γ = 0.05.
The horizontal lines show the energy levels for each potential
and there appears to be six bound states for γ = 0.05 and
14 bound states for γ = 0.02. Thus, we can better interpret
the convergence of the eigenvalues versus the number N of
quadrature points in the representation of the Fokker-Planck
operator L shown in Tables I and II. As can be seen from
the tables, the convergence of the eigenvalues is rapid except
for the states near the top of the potential barriers such as
for λ1 in Table I and λ5 in Table II. For γ = 0.02, the bound
eigenfunctions ψ4(x) and ψ6(x) are shown in Fig. 2 together
with the eigenfunctions ψ14(x) and ψ16(x) which are clearly
in the continuum.

It is useful to note the behavior of the potential function
versus κ = (1 − α)/α and the mass ratio γ . The potential
for α = 0 (κ → ∞) and different values of γ is shown in
Fig. 3(A). As γ → ∞, the maximum of the potential ap-
proaches the origin and V (0) decreases rapidly. In this case,
the spectrum is completely continuous, except for λ = 0. The
potential for finite κ is shown in Fig. 3(B). The singularity at
x = 0 arises from V (x) ∼ 1/x3 for small x. With different κ ,
the potentials have the same maximum and for larger κ exhibit
a larger Vmax. For these potential parameters, the spectrum is
continuous.

Mathematical treatments of the spectrum of the Fokker-
Planck operator for Coulomb collisions [68–70] suggest that
the only bound state is the ground state with λ0 = 0. The
other “states” can “tunnel” through the potential barrier and
hence have finite lifetimes. Our view is that the convergent
eigenvalues are discrete eigenvalues. The diagonalization of
L also yields additional eigenvalues that do not converge
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FIG. 4. Time dependence of the distribution from an initial kappa (κ = 4) distribution (upper dashed curve) to the steady Maxwellian
distribution (lower dashed curve) with the Coulomb collision Fokker-Planck equation for mass ratios γ = M/m as shown; distributions shown
are for reduced times equal to (A) 10, 20, 30, 40 and 50; (B) 6, 12, 18, 24, and 30; (C), (D) and (E) same as panel (B); (F) same as panel (A).

that we consider as continuum eigenstates. The mathematical
treatments cited also indicate an asymptotic dependence of
the distribution of the form exp(−atb) which is not strictly
exponential. This is discussed further in the next section.

V. ANALYSIS OF THE TIME-DEPENDENT DISTRIBUTION
FUNCTIONS

One of our main objectives is to study the filling and
emptying of the heavy tail of the Kappa distribution.
We first examine the relaxation of the Kappa distribution
to a Maxwellian in the time-dependent solution of the
Fokker-Planck equation in the absence of the wave-particle

interaction. We consider the relaxation of the distribution
function at a specific speed point xi given by the eigenfunction
expansion of the form

f (xi, t ) =
k∑

n=0

cn fss(xi )ψn(xi )e
−λnt

+
∫ ∞

λ∗
c(λ) fss(xi )ψ (λ, xi )e

−λt dλ (29)

with contributions from the discrete as well as the continuous
spectrum of the Fokker-Planck operator. A crude approxima-
tion of Eq. (29) is to consider the relaxation as represented by
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FIG. 5. Time dependence of the distribution from an initial Maxwellian (lower dashed curve) to the steady Kappa distribution (upper
dashed curve) owing to Coulomb collisions and wave-particle interactions in the Fokker-Planck equation; γ = 200 and κ = (1 − α)/α as
shown; reduced times are (A) t = 1.6, 3.2, 4.8, 6.4 and 8; (B), (C), and (D) successive reduced times are the same as panel (A).

a single relaxation time τi for each speed point defined as

f (xi, t ) = fss(xi ) + e−t/τi

[
k∑

n=1

cn fss(xi )ψn(xi )

+
∫ ∞

λ∗
c(λ) fss(xi )ψ (λ, xi )dλ

]
. (30)

With the initial condition, we have that

f (xi, 0) − fss(xi ) =
k∑

n=1

cn fss(xi )ψn(xi )

+
∫ ∞

λ∗
c(λ) fss(xi )ψ (λ, xi )dλ, (31)

and thus the simple exponential decay

f (xi, t ) − fss(xi ) = e−t/τi [ f (xi, 0) − fss(xi )], (32)

which is a gross approximation. We use the approximation
Eq. (32) to define a single relaxation time τ for the time-
dependent distribution.

The representation of the distribution function in terms
of the eigenfunctions of the Fokker-Planck equation, as in
Eq. (29), can lead to poor convergence especially for short
times. Therefore, to determine the time-dependent distribu-
tions and in particular the speed-dependent relaxation time
Eq. (32), we use instead the stable Chang-Cooper finite dif-
ference method of solution of the Fokker-Planck equation

[12,71,72]. We use a uniform grid in the interval x ∈ [0,6]
with 600 grid points.

In Fig. 4, we show the relaxation of an initial Kappa
distribution (κ = 4), Eq. (2), (upper dashed curve) to a
Maxwellian distribution (lower dashed curve) for various
mass ratios. The first observation is that the relaxation for
γ = 0.02 in Fig. 4(A) is slower than the relaxation for γ =
0.05 in Fig. 4(B) consistent with the eigenvalues in Tables I
and II. For Figs. 4(C) to 4(F), the high-energy tail of
the initial Kappa distribution approaches the equilibrium
Maxwellian on a longer timescale with increasing mass ra-
tio. For these mass ratios, the eigenvalue spectrum of the
Fokker-Planck operator is completely continuous. This is a
classic relaxation to an equilibrium Maxwellian distribution
from an initial nonequilibrium Kappa distribution function
owing to Coulomb collisions. The relaxation from an initial
Maxwellian or Gaussian distribution was considered in a pre-
vious paper [73] and the role of the continuous portion of the
spectrum of the Fokker-Planck equation was also discussed.
The appropriate entropy functional to describe these relax-
ation processes is the Kullbach-Leibler entropy [11,12].

In Fig. 5, we show the time-dependent approach to a steady
Kappa distribution with κ = 2, 4, 6, and 8 (upper dashed
curve) from an initial Maxwellian distribution (lower dashed
curve) obtained with the solution of the Fokker-Planck equa-
tion, Eq. (5), with the inclusion of the wave-particle diffusion
term. The mass ratio is chosen sufficiently large (γ = 200) so
that the spectrum of the Fokker-Planck operator is completely
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FIG. 6. (A) Variation of the ratio of the temperature T (t )/Tb cor-
responding to distribution function in Fig. 4 with Coulomb collision
Fokker-Planck equation; the curves (a)–(f) correspond to (A)–(F) in
Fig. 4. (B) Variation of the ratio of the temperature T (t )/Tb corre-
sponding to distribution function in Fig. 5 with Coulomb collision
and Wave-particle interaction Fokker-Planck equation; the curves
(a)–(d) correspond to the (A)–(D) in Fig. 5.

continuous, except for λ0 = 0. As can be seen from the figure,
the distribution function approaches the Kappa distribution on
a shorter timescale with increasing κ . As for the distributions
in Fig. 4, the appropriate entropy functional to describe this
time-dependent approach to the steady Kappa distribution is
the Kullbach-Leibler entropy.

The cooling of the distributions in Fig. 4 is shown in
Fig. 6(A) whereas the heating of the distributions in Fig. 5
is shown in Figs. 6(B). The relaxation timescales for the
approach to a steady state in Figs. 4 and 5 are more clearly
illustrated in Fig. 6. These results demonstrate the nonequilib-
rium statistical mechanical behavior of such systems. In view
of the linearity of the governing Fokker-Planck equations, this
relaxation appears to demonstrate an exponential approach to
equilibrium. However, there have been recent analyses that
suggest that owing to the continuous spectrum the approach
to equilibrium is not strictly exponential [68–70].

Figure 7 shows the results of an analysis of the relaxation
shown in Fig. 4 for the relaxation from an initial Kappa distri-
bution with κ = 4 to a Maxwellian distribution for x0 equal to

Figs. 7(a) 0.8, 7(b) 1.6, 7(c) 2.4, and 7(d) 3.2 for each of six
mass ratios γ . We consider the curves as approximately linear
for sufficiently large times t , consistent with Eq. (32) and we
consider a speed-independent relaxation time τ . The long time
behavior is fit to an exponential so as to extract an approximate
relaxation time. These relaxation times are extracted from the
data in Fig. 7 for time intervals �t equal to Figs. 7(A) 90–160,
7(B) 50–120, 7(C) 45–60, 7(D) 60–80, 7(E) 60–100, and 7(F)
90–120. The relaxation times τ extracted in this way are equal
to Figs. 7(A) 17, 7(B) 7.1, 7(C) 2.7, 7(D) 3.7, 7(E) 5.1, and
7(F) 7.3. The λ1 values in Tables I and II for γ = 0.02 and
0.05 are λ1 = 0.0584 and λ1 = 0.1392 and thus we confirm
the relationship between the relaxation times extracted in this
way with the discrete eigenvalues of the Fokker-Planck opera-
tor. We find that λ1τA = 0.993 for γ = 0.02 and λ1τB = 0.988
for γ = 0.05 giving good agreement between the eigenvalues
and the computed relaxation times. For the other mass ratios,
the eigenvalue spectrum is continuous and the relationship
between the computed relaxation times from Fig. 7 and the
eigenvalues is not apparent.

Analogously, Fig. 8 shows the results of the analysis of the
relaxation shown in Fig. 5 for the relaxation of a Maxwellian
distribution to a Kappa distribution, for γ = 200 and κ equal
to 2, 4, 6, and 8. As done for Fig. 7, we consider the curves as
approximately linear for sufficiently large times t consistent
with Eq. (32) for x0 equal to Figs. 8(a) 0.8, 8(b) 1.6, 8(c) 2.4,
and 8(d) 3.2. The curves labeled (c) in Figs. 8(A) and 8(B)
exhibit a kind of “singularity” for which f (x, t ) = fss(x0)
owing to the approximate nature of Eq. (32). The relaxation
times are extracted from the data in Fig. 8 for time intervals �t
equal to Figs. 8(A) 80–120, 8(B) 120–160, 8(C) 140–220, and
8(D) 150–180. For the different values of κ in the figure, we
find that τ is equal to Figs. 8(A) 31, 8(B) 30, 8(C) 25, and 8(D)
23. These results demonstrate large relaxation times for the
larger speed points, consistent with the large γ = 200 chosen.
The nature of the relaxation to equilibrium or to a steady
nonequilibrium distribution for large mass ratios for which the
spectrum of the Fokker-Planck operator is continuous involves
a nontrivial mathematical problem [68–70].

VI. SUMMARY: PHYSICAL BASIS FOR THE FORMATION
OF KAPPA DISTRIBUTIONS

In the absence of the wave-particle diffusion term in the
Fokker-Planck equation, Eq. (5), that is for B1 = 0, the steady
distribution for Coulomb collisions is clearly a Maxwellian
for arbitrary D1(v). This Fokker-Planck equation satisfies de-
tailed balance at equilibrium. Since this is a two component
system with one component acting as a constant temperature
heat bath, the time-dependent approach to equilibrium of the
test particle system is to the Maxwellian distribution of the
heat bath. The Kullback-Leibler entropy [11,12]

�KL(t ) = −4π

∫ ∞

0
f (v, t ) ln

[
f (v, t )

f (Max)(v)

]
v2dv, (33)

increases monotonically with time until the distribution func-
tion attains the Maxwellian distribution of the background
particles [11,12]. With the inclusion of the wave-particle dif-
fusion term in Eq. (5) with B1 �= 0 the steady distribution is
given by Eq. (6) which is the form of a Pearson differential
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FIG. 7. Relaxation from a Kappa distribution (κ = 4) to a Maxwellian calculated with the Coulomb collision Fokker-Planck equation for
speed points x0 equal to (a) 0.8, (b)1.6, (c) 2.4, (d) 3.2, and γ as shown.

equation [59,60] and yields a nonequilibrium distribution
function. This distribution is not necessarily a Kappa distri-
bution and depends on the speed dependence of D2(v). This
result provides a large class of nonequilibrium distributions
[12] as based on the dynamical information in the two diffu-
sion coefficients; see Eq. (6).

We presented a detailed analysis of the statistical me-
chanics of the formation of Kappa distributions as based on

dynamical information. This approach is as well founded in
nonequilibrium statistical mechanics as are other treatments
of the departure from equilibrium in shock tubes [6], plasma
sheaths [25], atmospheric science [7], and numerous other
physical systems. In particular, the wave-particle diffusion
term can be considered analogous to a reactive term as treated
with the Boltzmann equation for chemical reactions [8,9]. If
this term is evaluated with a Maxwellian distribution as a
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for γ = 200 at speed points x0 equal to (a) 0.8, (b) 1.6, (c) 2.4, and (d) 3.2 and for κ as shown.

first-order estimate, the loss of particles in velocity space is
very large for slow moving electrons and as a consequence
the “gas” is heated analogous to the heating of electrons
that accompanies electron attachment in electronegative gases
[10]. We presented a detailed analysis of the spectrum of the
Fokker-Planck equation in relation to the states in a related
Schrödinger equation. The time-dependent evolution of this
system was analyzed in terms of this spectral analysis.
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