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The problem of inferring pairwise and higher-order interactions in complex systems involving large numbers
of interacting variables, from observational data, is fundamental to many fields. Known to the statistical physics
community as the inverse problem, it has become accessible in recent years due to real and simulated big
data being generated. Current approaches to the inverse problem rely on parametric assumptions, physical
approximations, e.g., mean-field theory, and ignoring higher-order interactions which may lead to biased or
incorrect estimates. We bypass these shortcomings using a cross-disciplinary approach and demonstrate that
none of these assumptions and approximations are necessary: We introduce a universal, model-independent,
and fundamentally unbiased estimator of all-order symmetric interactions, via the nonparametric framework of
targeted learning, a subfield of mathematical statistics. Due to its universality, our definition is readily applicable
to any system at equilibrium with binary and categorical variables, be it magnetic spins, nodes in a neural
network, or protein networks in biology. Our approach is targeted, not requiring fitting unnecessary parameters.
Instead, it expends all data on estimating interactions, hence substantially increasing accuracy. We demonstrate
the generality of our technique both analytically and numerically on (i) the two-dimensional Ising model, (ii)
an Ising-type model with four-point interactions, (iii) the restricted Boltzmann machine, and (iv) simulated
individual-level human DNA variants and representative traits. The latter demonstrates the applicability of this
approach to discover epistatic interactions causal of disease in population biomedicine.
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I. INTRODUCTION

Starting from microscopic laws of Nature, the aim of statis-
tical physics is to provide a macroscopic description of Nature
by deriving observable quantities from the underlying laws.
In the inverse problem, the starting point is observations for
which the underlying microscopic properties, such as inter-
actions within the constituents of the system of interest, are
unknown and to be inferred. Taking the Ising model of binary
magnetic spins as an example, the goal of the forward problem
is to obtain observables such as magnetization, energy, and
correlation, given the Hamiltonian with its parameters. Con-
versely, the goal of the inverse problem is to derive unknown
interactions within spins directly from data.

In recent years, the inverse problems are often motivated
by challenges in “big data” biology due to modern high-
throughput sequencing experiments and large-scale patient
databases. There is a rich literature for inverse problems with
the aim of inferring model parameters describing a system,
e.g., via a Hamiltonian, from observational data (see, e.g.,
[1] and the references therein). Most of these methods rely
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on making assumptions about the parametric form of the
Hamiltonian, which may not accurately reflect the true dis-
tribution of the data. For instance, a misspecified parametric
form often results in biases in the estimation of the quantities
of interest when sample sizes grow without the variance in
the estimation decreasing sufficiently fast. Furthermore, in
most real-world settings such as interactions in biomedical
data, there is no heuristic, let alone a theory, suggesting that
the effects of higher-order interactions are negligible and can
be ignored without consequence. Most methods in the liter-
ature simply truncate the problem by allowing for at most
pairwise interactions [1–5]. This in turn results in biased esti-
mates, even for two-point interactions.

The aim of this work is to introduce a universal, unbi-
ased, and targeted framework in which symmetric two-point
and higher-order interactions can be estimated from any dis-
crete data set. We propose a model-independent definition
of n-point interaction among binary and categorical random
variables. In contrast to earlier approaches to the inverse prob-
lems in the literature, our definition is fully nonparametric:
we make no assumptions on the parametric form of the joint
or marginal probability distributions of the random variables.
Moreover, in contrast to other approaches, which consider
pairwise interactions only, ours can access higher-order in-
teractions [1–5]. We note that the nonparametric approach
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in Ref. [6], although pairwise, does incorporate dynamical
interactions. From a theoretical perspective, our definition
benefits from the following three properties: (i) it is unbiased
by construction and hence converges to the ground truth in the
infinite data limit, (ii) it provides a natural, model-independent
interpretation of higher-order interactions, and (iii) it reduces
to well-known intuitive notions of interaction in parametric
statistical physics models described by a Hamiltonian. From
a computational point of view, our definition of n-point in-
teraction may be directly estimated from observational data
by simply taking suitable combinations of expectation values.
The variance on the resulting estimate solely depends on how
deeply relevant states are sampled, and it can be substantially
improved when (conditional) independence between variables
is known or derived. In most practical situations where the
Markovian condition is assumed, e.g., for causal identifiability
[7], (conditional) independence may be derived using causal
structure learning algorithms such as [8–10].

Our nonparametric definition of n-point interactions
among binary random variables fits in the targeted learn-
ing framework of [11], a subfield of mathematical statistics.
Targeted learning is a probabilistic framework to estimate
(causal) quantities of interest directly from a data set O, with-
out the need to successfully estimate the true (but unknown,
and often unknowable) joint probability distribution p0 that
generated O, or to expend data on estimating parameters θ

of a potentially misspecified parametric model pθ . Crucially,
the framework requires a model-independent definition of the
(causal) quantity of interest α, known as the target parame-
ter, as a functional of any candidate probability distribution
p, not in terms of a parameter of a parametric ansatz. This
eliminates bias due to the choice of model while safeguarding
the interpretation of α as a meaningful statistical quantity
revealing true knowledge about the ground truth p0. Once the
target parameter is established, all statistical power is used for
its estimation. The targeted learning framework has already
been successfully applied in biomedicine and epidemiological
studies [11].

This paper is structured as follows. We discuss the non-
parametric formulation of interactions using the targeted
learning framework in Sec. II, for the case of binary and
categorical variables. We propose two definitions of interac-
tion, namely, additive and multiplicative, and illustrate their
relation. For a given data set and application, one choice may
be more intuitive than the other, but the information they hold
is equivalent. The additive formulation in Sec. II B applies to
scenarios where the subject expert takes one of the variables
in the system as the “outcome” variable and is interested in
estimating the effect of the interaction among other variables
on this outcome. The multiplicative formulation in Sec. II C
treats the variables on the same footing, and instead consid-
ers their effect (via interactions) on the energy function, and
hence the joint probability distribution. The former is more
used in biomedical applications when a treatment-outcome
relationship is set out at the beginning, whereas the latter
is more relevant for statistical physics and, e.g., molecular
networks in biology.

Next, we provide a general formula for extracting n-point
interactions and their interpretation directly from data. We
conclude Sec. II by discussing how establishing conditional

independence among variables, e.g., via the nonparametric χ -
squared test or more sophisticated state-of-the-art algorithms
such as [8,9], leads to improved estimates of the n-point inter-
action.

As a first result, we provide a concrete biological example
in Sec. III, based on interactions among DNA variants (epista-
sis) contributing to trait or disease, with data generated using
a linear model. We demonstrate analytically and numerically
that the targeted learning estimator obtains the correct ground
truth interaction, even though it is entirely agnostic to both
the data generating process and its linearity. This simplified
example is used to guide the reader through the theoretical
concepts introduced in Sec. II.

To demonstrate universal applicability of our estimator, in
Sec. IV B, we consider a more complex Hamiltonian, namely,
that of the restricted Boltzmann machine (RBM), and ana-
lytically obtain its all-order couplings without the need for
an asymptotic expansion and resummation as originally em-
ployed in [12]. In Sec. IV C, we consider the two-dimensional
(2D) Ising model and show how the same estimator is able to
predict two-point interactions among nearest and non-nearest
neighbor spin pairs, at various temperatures and lattice sizes.
Moreover, it correctly predicts that three- and four-point in-
teractions vanish. We compare our estimations to predictions
from an RBM, on data generated from the 2D Ising model. We
limit our comparisons to the RBM as, unlike other parametric
methods, it does not truncate higher-order interactions and
hence does not bias lower-order interactions.

Finally, in Sec. V, we generate data from a Hamiltonian
with self-, two-, three-, and four-point interactions and show
that our targeted learning estimator accurately predicts higher-
order interactions. We present numerical results at various
temperatures. This indicates that the targeted learning (TL)
estimator can be applied to obtain higher-order interactions in
the case of biological networks, such as biomarker and gene
expression networks. For instance, this method is applicable
to modern biomedical data sets, such as large-scale patient
databases, e.g., UKBiobank, containing half a million patient
samples [13], or high-throughput sequencing experiments,
e.g., the 1.3 × 106 single-cell experiment by 10X genomics
[14] and the Human Cell Atlas project, so far containing
4.5 × 106 cells [15].

II. NONPARAMETRIC FORMULATION OF INTERACTION

A. Targeted learning

Let O be a data set of n observations Oi generated by
an experiment with random variable O, and let p0 denote
its probability distribution O ∼ p0. The fundamental goal in
probabilistic modeling is to obtain an estimate p̄ of p0 given
the data O. With p̄ in hand, a relevant quantity α concerning
the data set O can then be estimated, such as a moment, an
interaction coefficient, or a (causal) effect.

In typical situations, however, given the data O the ground
truth p0 is completely out of reach due to, e.g., a small sample
size n as compared to the dimensionality of the data. To
remedy this, a parametric form pθ of p̄ may be proposed, and
the data may be used to fit unknown parameters θ , but this
often leads to an incorrect ansatz for the parametric model due
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to bias. Alternatively, one may use model selection based on
the data O, but will subsequently suffer from overconfidence
in reporting the estimate ᾱ of the quantity of interest α.

Targeted learning [11] is a probabilistic framework to esti-
mate (causal) quantities of interest directly, without the need
to successfully estimate p0 or to expend data on estimating
parameters θ of a (misspecified) parametric model pθ . As
such, it avoids the above pitfalls of the estimation problem.
Targeted learning consists of the following steps:

(1) Define the statistical model M: this is the, in general
infinite dimensional, space of candidate probability distribu-
tions,

M = {p | p a probability compatible with O},
based on the data O. By compatibility, we mean that the
statistical model accommodates for a priori knowledge re-
garding the data and how it is generated. For example, if O is
generated by n binary random variables, then M only contains
p = p(T1, . . . , Tn) with Ti binary variables. Similarly, if the
expectation value E(Ti ) of a variable is known to be positive,
or if one or more variables are known to be (conditionally)
independent, this true knowledge can be incorporated. Finally,
the statistical model contains the true probability distribution
p0 ∈ M by definition.

(2) Define the target mapping � : M → Rd that ex-
presses the quantity of interest α as a function of the
distribution p. In particular, α0 = �(p0) is the ground truth for
α. For example, � could be a (conditional) expectation value
over some or all of the variables. As another example, sup-
pose that O is generated by a random variable O = (Y, T,W )
where Y is a continuous outcome, T is a binary random
variable which we will call treatment, and W is a covariate.
The treatment effect

�(p) = EW [E(Y | T = 1,W ) − E(Y | T = 0,W )]

is another example of a target parameter, often used in epi-
demiological studies to estimate the causal effect of a drug
or treatment T on health outcome Y while correcting for
confounding effects due to the covariate W .

(3) Apply statistical methods to obtain an estimate ᾱ of
the target parameter. We indicate a method for obtaining
improved estimates of n-point interaction in Sec. II F, but
otherwise refer the reader to [11].

There are a number of important remarks to be made
regarding the targeted learning paradigm. First of all, the
definition of the quantity of interest α and its subsequent esti-
mation are two separate steps. On the one hand, the quantity
of interest is no longer a parameter in a potentially misspec-
ified parametric model pθ , but is associated to a candidate
probability distribution p via the map � as �(p); thus, the
quantity of interest needs to be expressed nonparametrically
as a function of p forcing one to reevaluate the interest of said
quantity. On the other hand, the method of estimation may be
chosen independently from either model or target parameter.
Second, by expressing the quantity of interest α as a target
parameter �(p) one avoids introducing bias by making an
incorrect parametric ansatz pθ while safeguarding the inter-
pretation of α as a meaningful statistical quantity revealing
true knowledge about the ground truth p0. And, third, due to
bias every misspecified parametric model will not converge to

the ground truth as sample size increases and variance shrinks.
Thus, a nonparametric definition of a quantity of interest is
essential to make full use of big data.

In this paper, we apply the framework of targeted learning
to our quantity of interest, n-point interaction, and illustrate
its application on data generated from various models.

B. Additive interaction

Consider a random variable O = (Y, T1, . . . , Tr,W ) where
Y is a discrete or continuous outcome, the Ti are binary ran-
dom variables causally leading to the outcome Y , and W is a
covariate. In this section, we wish to causally infer the effect
of the interaction of the treatment variables Ti on the outcome
Y , for simplicity having already corrected for confounding ef-
fects W . In other words, we implicitly take expectation values
over strata of the covariate W . For example, we abbreviate

E(Y | T1 = 1) = EW [E(Y | T1 = 1,W )], (1)

where E denotes the expectation value over Y | T1 = 1, and
EW denotes the expectation value over W . Note, however, that
all definitions and results hold in the more general case of a
fixed value W = w of the covariate.

First of all, we define the statistical model, incorporating
all a priori knowledge, as in Sec. II A:

M = {p(Y, T1, T2, . . . , Tr,W ) | Y continuous, Ti binary,

W a covariate}.
Before defining the target parameter, we introduce some no-
tation that will be used throughout the paper. If a subset
Ti1 , . . . , Tin of the variables T1, . . . , Tr is specified, then we
write T for all of the remaining variables. For example, E(T1 |
T3 = 1, T = 0) denotes the conditional expectation value of
T1, given T3 = 1 and T = 0, meaning T2 = T4 = T5 = · · · =
Tr = 0. We abbreviate (Ti, Tj ) = (a, b) to Ti j = (a, b).

In biomedicine and epidemiological studies, a particular
quantity of interest to be estimated is the causal effect of a
treatment on an outcome, the average treatment effect, e.g.,
the effect of a drug on health. We express our additive notion
of interaction with notation compatible with the existing liter-
ature [7,11,16]. The average treatment effect (ATE) of Ti on Y
is given by

ATETi (Y ) = E(Y | Ti = 1) − E(Y | Ti = 0). (2)

This expression is the first order derivative with respect to Ti

evaluated at Ti = 0 of the function Ti �→ E(Y | Ti ). Indeed, for
a function f of a binary variable T we have ∂T f = f (1) −
f (0).

Next, given two binary variables Ti, Tj encoding two dif-
ferent treatments, we obtain the ATE of treatment Ti on Y
and the ATE of treatment Tj on Y . A natural question is as
follows: How do these treatments interact? In words, how
does applying treatment Ti affect the effect of treatment Tj

on Y , and vice versa? In order to isolate the effects of Ti and
Tj on Y , the other treatments are not applied, i.e., we condi-
tion on T = 0. We now define the first target mapping �a

i, j ,
which is our nonparametric additive formulation of two-point
interaction between binary random variables. The additive
interaction Ia

i, j between the binary variables Ti and Tj is given
by the difference of the effect of changing Ti : 0 → 1 on Y
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given Tj = 1, and the effect of changing Ti : 0 → 1 on Y given
Tj = 0, i.e.,

M � p �→ �a
i, j (p) := Ia

i, j = [E(Y | Ti j = (1, 1), T = 0)

−E(Y | Ti j = (0, 1), T = 0)]

−[E(Y | Ti j = (1, 0), T = 0)

−E(Y | Ti j = (0, 0), T = 0)]. (3)

Note that interaction is a difference of ATEs, i.e., Ia
i, j =

ATETi (Y | Tj = 1, T = 0) − ATETi (Y | Tj = 0, T = 0).
Thus, the interaction Ia

i, j is the change of effect of Ti on Y
when changing Tj , conditioned on T = 0. This change of
effect may be expressed as the (symmetric) double derivative
with respect to Ti and Tj , and so Ia

1,2 is also the change of
effect of Tj on Y when changing Ti. Formally, this reads as

Ia
i, j = Ia

j,i, (4)

as one readily deduces from Eq. (3). Indeed, given a function
f : {0, 1}2 → R of two binary variables x and y, ∂x∂y f =
∂y∂x f .

Although numerically, the effect of Ti on the effect of Tj

on Y is the same as the effect of Tj on the effect of Ti on Y ,
only one direction might admit a sensible interpretation. This
is similar to the causal interpretation of the set of equations
Y = mX + b or X = m′Y + b′ that is provided by a directed
acyclic graph (DAG) [7] and is not captured by the equation
alone. In contrast, note that the sign of the interaction is
uniquely determined since a direction is specified: it is the
effect on Y of changing Ti from 0 to 1, not from 1 to 0, that
we compare to the effect on Y of changing Tj from 0 to 1.
Both the symmetry and the sign of Ia

i, j are illustrated in the
following diagram:

(1, 1) A (1, 0)

A A

(0, 1) A (0, 0) (5)

We introduce the shorthand A(ti, t j ) = E(Y | Ti j =
(ti, t j ), T = 0) where ti, t j ∈ {0, 1}. In the diagram, vertex
(ti, t j ) represents the expected outcome A(ti, t j ). An arrow
represents the average treatment effect of the variable of
which the value changes, where the sign is dictated by “target
minus source.” For example, the left vertical arrow encodes
the average treatment effect of Ti : 0 → 1 on Y given Tj = 1,
i.e.,

A(1, 1) − A(0, 1) = ATETi (Y | Tj = 1, T = 0). (6)

Finally, either dotted arrow encodes the interaction between
the effects of Ti and Tj on the outcome Y , together with its
inherent symmetry. Indeed, via the sign convention “target

minus source,” the diagram yields relations

Ia
i, j = ATETi (Y | Tj = 1, T = 0) − ATETi (Y | Tj = 0, T = 0),

Ia
j,i = ATETj (Y | Ti = 1, T = 0) − ATETj (Y | Ti = 0, T = 0),

where the first line is encoded by the horizontal arrow and the
second line by the vertical arrow.

Next, we define the additive n-point interaction on the
outcome Y . Whereas the two-point interaction is a difference
of two ATEs, hence a sum of 22 = 4 expectation values,
the three-point interaction involves 23 = 8 such terms and,
more generally, the n-point interaction involves 2n terms. We
introduce notation in order to state the formula of a general
n-point interaction.

Consider a subset K = {i1, . . . , i�(K )} ⊂ {1, . . . , r} of the
indices for the treatment variables T1, . . . , Tr in the random
variable O. Here, in general, given a further subset J ⊂ K we
denote its number of elements by �(J ). We write e(�(K ))

J for the
�(K )-tuple of elements,

e(�(K ))
J = (

ei1 , . . . , ei�(K )

)
, (7)

where ei j equals 1 if i j ∈ J and 0 if i j 	∈ J . For example, if
J = {2, 7} ⊂ {1, 2, 4, 5, 7} = K , then

e(�(K ))
J = e(5)

J = (0, 1, 0, 0, 1). (8)

Finally, we write TK = (Ti1 , . . . , Ti�(K ) ) where i j ∈ K for all
1 � j � �(K ). Continuing the previous example, we have
�(K ) = 5 and �(J ) = 2. The five-point interaction between
the variables TK = (T1, T2, T4, T5, T7) is a sum of 25 = 32
terms, and it will involve the expectation value

E
(
Y |TK = e(5)

J , T = 0
)
,

E(Y |(T1, T2, T4, T5, T7) = (0, 1, 0, 0, 1), T = 0). (9)

The next target mapping, �a
i1,...,in , is our nonparametric addi-

tive formulation of n-point interaction.
Definition 1. Let K = {i1, . . . , in} ⊂ {1, . . . , r} be a subset

of indices. The additive n-point interaction among the effects
of the binary treatments TK = (Ti1 , . . . , Tin ) on the outcome Y
is

M � p �→ �a
i1,...,in (p) := Ia

i1,...,in

=
n∑

j=0

(−1)n− j

( ∑
J⊂K :�(J )= j

E
(
Y | TK = e(n)

J , T = 0
))

, (10)

where the internal sum runs over all subsets J ⊂ K of length
�(J ) = j.

This is the nth order Boolean derivative of the function
(T1, . . . , Tn) �→ E(Y | T1, . . . , Tn). As an example, consider
the three-point interaction Ia

1,2,3 among the effects of the bi-
nary random variables T1, T2, T3 on the outcome Y . Then,
TK = (T1, T2, T3) with K = {1, 2, 3}, and Ia

1,2,3 consists of
23 = 8 terms. Explicitly, the interaction reads as

Ia
1,2,3 = E(Y |TK = (1, 1, 1), T = 0) − E(Y |TK = (1, 1, 0), T = 0)

−E(Y |TK = (1, 0, 1), T = 0) − E(Y |TK = (0, 1, 1), T = 0)

+E(Y |TK = (1, 0, 0), T = 0) + E(Y |TK = (0, 1, 0), T = 0)

+E(Y |TK = (0, 0, 1), T = 0) − E(Y |TK = (0, 0, 0), T = 0).
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Note that the four terms with a “+” are those for which an odd
number of variables satisfies Ti = 1, whereas the four terms
with a “−” are those for which an even number of variables
satisfies Ti = 1. This is the other way around for two-point
interactions [see Eq. (3)] and depends on the parity of the
number n in general as follows from Eq. (10).

For a diagrammatic relation between the three-point inter-
action and the two-point interactions from which it is built,
as in Eq. (5), together with an interpretation of n-point in-
teraction in general, we refer the reader to Sec. II E. Finally,
we show in Corollary 2 that Ia

i1,...,in is symmetric under any
permutation of its indices i1, . . . , in.

Our additive notion of n-point interaction among binary
random variables readily generalizes to the setting of cate-
gorical variables. Recall that a categorical random variable
X distinguishes k + 1 categories, typically labeled by integers
0, 1, . . . , k, where the probability of being in category i equals
p(X = i) = pi and the pi ∈ [0, 1] sum to 1. If k = 1, then
X is a binary random variable. The categorical case leads
to new phenomena, most importantly the dependence of the
interaction Ia

i1,...,in on the particular categories of Ti1 , . . . , Tin
one considers. Indeed, e.g., Ia

i, j in the binary case has a unique
double derivative whereas in general a derivative is a function
that needs to be evaluated at a point (i.e., a category) in order
to obtain a value.

Before we define interaction as a target parameter, we again
specify the statistical model:

M = {p(Y, T1, T2, . . . , Tr,W ) | Y continuous,

Ti categorical with ki ∈ N categories, W a covariate}
Let ti, t ′

i and t j, t ′
j be categories of Ti and Tj , respectively. First,

we define the interaction between the effects of Ti on Y as Ti

changes from ti to t ′
i and the effect of Tj on Y as Tj changes

from t j to t ′
j . We write Ti : ti → t ′

i to mean that Ti changes from
ti to t ′

i . For example, the average treatment effect of Ti : ti → t ′
i

on Y , given Tj = t j , reads as

ATETi:ti→t ′
i
(Y | Tj = t j ) = E(Y | Ti = t ′

i , Tj = t j )

−E(Y | Ti = ti, Tj = t j ). (11)

The target mapping for the additive interaction between the
effects of Ti and Tj on the outcome Y is the following. The
additive interaction Ia

i, j (tit
′
i ; t jt ′

j ) between the effect of the cate-
gorical variables Ti : ti → t ′

i on Y and the effect of Tj : t j → t ′
j

on Y is given by the difference of their respective treatment
effects, i.e.,

Ia
i, j (tit

′
i ; t jt

′
j ) = ATETi:ti→t ′

i
(Y | Tj = t ′

j, T = 0)

− ATETi:ti→t ′
i
(Y | Tj = t j, T = 0). (12)

This definition reduces to that of Eq. (3) in the case where
both Ti and Tj are binary with labels {0, 1}, i.e.,

Ia
i, j (01; 01) = Ia

i, j . (13)

For properties of n-point interaction in this more general set-
ting, such as transitivity, see Appendix A.

C. Multiplicative interaction

In this section, we define the multiplicative interaction
among n binary random variables Xi forming part of a

random variable O = (X0, . . . , Xr ) with joint probability den-
sity function p0. First of all, we specify the statistical model
as in Sec. II A:

M = {
p(X0, X1, . . . , Xr ) | Xi binary random variables

}
.

The target map �m
i, j is our nonparametric multiplicative for-

mulation of two-point interaction between the binary random
variables Xi and Xj :

M � p �→ �m
i, j (p) := Im

i, j

= p(Xi j = (1, 1) | X = 0)
p(Xi j = (1, 0) | X = 0)

p(Xi j = (0, 0) | X = 0)
p(Xi j = (0, 1) | X = 0)

. (14)

The above ratios of conditional probability distributions may
be expressed in terms of the joint probability distribution p
since all are conditioned on X = 0. As a result, the two-point
interaction between, e.g., X1 and X2, can be directly estimated
from the data, as it reduces to

Im
1,2 = p(1, 1, 0, . . . , 0)

p(1, 0, 0, . . . , 0)

p(0, 0, 0, . . . , 0)

p(0, 1, 0, . . . 0)
. (15)

Moreover, if a variable Xk appearing in the X is independent of
both Xi and Xj , then one need not condition on Xk . In this case,
statistics may be improved as Xk drops out of the conditional
joint distribution p(Xi, Xj |X ) for (Xi, Xj ). See Sec. II F where
this argument is explained in detail.

The multiplicative two-point interaction Im
i, j of Eq. (14)

between the binary random variables Xi, Xj can also be ex-
pressed in terms of their (conditional) expectation values.
Numerically, this reformulation allows one to obtain uncer-
tainties on the estimates of Im

i, j using, e.g., the empirical
bootstrap procedure (see Sec. IV C). The expression of Im

i, j in
terms of expectation values is derived via the product rule for
probabilities, which yields

p(Xi j = (0, 0) | X = 0)
p(Xi j = (1, 0) | X = 0)

= 1 − E(Xi | Xj = 0, X = 0)

E(Xi | Xj = 0, X = 0)
,

and similarly for the remaining two probabilities. Therefore,
the multiplicative two-point interaction (14) can be written as
a combination of expectation values:

Im
i, j = E(Xi|Xj = 1, X = 0)

E(Xi|Xj = 0, X = 0)

(1 − E(Xi|Xj = 0, X = 0))
(1 − E(Xi|Xj = 1, X = 0))

.

(16)

It is not hard to see that this expression is symmetric under
Xi ↔ Xj . For a general statement, see Proposition 2.

The following is the target map for our nonparametric
multiplicative formulation of n-point interaction.

Definition 2. Let K = {i1, . . . , in} ⊂ {0, 1, . . . , r} be a
subset of indices. The multiplicative n-point interaction
among the binary random variables XK = (Xi1 , . . . , Xin ) is
defined as

M � p �→ �m
i1,...,in (p) := Im

i1,...,in

=
n∏

j=0

( ∏
J⊂K :�(J )= j

p
(
XK = e(n)

J | X = 0
)(−1)n− j

)
, (17)

where the internal product runs over all subsets J ⊂ K of
length �(J ) = j.
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As an example, consider the three-point interaction Im
1,2,3

among the binary random variables X1, X2, X3. It consists of
23 = 8 terms. Writing XK = X1,2,3 for the triple (X1, X2, X3),
the interaction reads as

Im
1,2,3 = p(XK = (1, 1, 1) | X = 0)

p(XK = (1, 1, 0) | X = 0)
p(XK = (1, 0, 0) | X = 0)
p(XK = (1, 0, 1) | X = 0)

· p(XK = (0, 1, 0) | X = 0)
p(XK = (0, 1, 1) | X = 0)

p(XK = (0, 0, 1) | X = 0)
p(XK = (0, 0, 0) | X = 0)

. (18)

Note that the four terms in the numerator are those for which
an odd number of variables satisfies Xi = 1, whereas the four
terms in the denominator are those for which an even number
of variables satisfies Xi = 1. This is the other way around for
two-point interactions [see Eq. (14)] and depends on the parity
of the number n in general as follows from Eq. (17). There is
a large amount of symmetry in this expression:

Im
1,2,3 = Im

1,2(X3 = 1)

Im
1,2(X3 = 0)

= Im
1,3(X2 = 1)

Im
1,3(X2 = 0)

= Im
2,3(X1 = 1)

Im
2,3(X1 = 0)

, (19)

where Im
1,2(X3 = 1) means that all instances of X3 are condi-

tioned as X3 = 1, as opposed to X3 = 0. The fact that all three
expressions (and the remaining three) are equal follows from
the 3! = 6 symmetries of Im

1,2,3 of Proposition 2 below. We
also remark that Im

1,2,3 can be readily computed from data since
the ratios of conditional probability distributions appearing in
this equation may be expressed in terms of the joint proba-
bility distribution p of O. As for the two-point interaction, a
general three-point interaction Im

i, j,k can be expressed in terms
of expectation values:

Im
i, j,k = Ri; jk (1, 1)

Ri; jk (1, 0)

Ri; jk (0, 0)

Ri; jk (0, 1)
, (20)

where we have defined, for any variable Xi conditioned on
Xjk = (Xj, Xk ) = (a, b), the following expression:

Ri; jk (a, b) = E(Xi | Xjk = (a, b), X = 0)
1 − E(Xi | Xjk = (a, b), X = 0)

. (21)

For any binary variable T with p(T = 1) = p, this fraction
encodes the ratio p/(1 − p). The expression of the three-point
interaction Im

i, j,k in terms of expectation values over binary
random variables is used in Sec. IV C for the purposes of
numerical estimation via statistical bootstrap. It is straightfor-
ward to write an expression similar to that of Eq. (20) for any
n-point interaction, making statistical bootstrap applicable in
general.

Finally, we make explicit a basic and natural symmetry that
is inherent in our nonparametric formulation of n-point inter-
action Im

i1,...,in among the binary random variables Xi1 , . . . , Xin :
n-point interaction is invariant under any permutation σ of the
n variables, namely,

Im
i1,...,in = Im

σ (i1,...,in ). (22)

We refer the interested reader to Proposition 2 for a proof.

D. Relating additive and multiplicative formulations

Consider binary random variables Xi forming part of a ran-
dom variable O = (X0, . . . , Xr ) with joint probability density
function p. In this section, we show that the nonparametric
formulation of multiplicative n-point interaction among the

variables Xi1 , . . . , Xin is equivalent to the additive n-point in-
teraction among the effects of the variables Xi1 , . . . , Xin on a
particular outcome canonically related to p; in fact, when both
interactions are defined, they are related by a logarithm. This
outcome is the negative of the energy function E (X ), obtained
from the joint distribution p via

p(X ) = exp(−[− ln p(X )]) and E (X ) = − ln p(X ). (23)

Note that the expectation value of E (X ) is the Shannon en-
tropy of the probability distribution p. More precisely, the
additive and multiplicative n-point interactions among the
Xi1 , . . . , Xin are related via

ln
(
Im
i1,...,in

) = Ia
i1,...,in , (24)

where the additive n-point interaction is computed with
respect to the outcome Y = −E (X ). Indeed, this follows di-
rectly as taking the logarithm of Eq. (17) yields Eq. (10). Here
we have used that

p
(
Xi1,...,in = e(n)

J

∣∣X = 0
)

p
(
Xi1,...,in = e(n)

J ′
∣∣X = 0

) = p
(
Xi1,...,in = e(n)

J , X = 0
)

p
(
Xi1,...,in = e(n)

J ′ , X = 0
) , (25)

i.e., a ratio of conditional probabilities is equal to the corre-
sponding ratio of joint probabilities, together with the fact that
an expectation value of the number

α = ln p
(
Xi1,...,in = e(n)

J , X = 0
)

equals the number itself: E(α) = α. Take, as an example, the
two-point interaction Im

1,2 between X1 and X2 of Eq. (14):

Im
1,2 = p(X12 = (1, 1) | X = 0)

p(X12 = (1, 0) | X = 0)
p(X12 = (0, 0) | X = 0)
p(X12 = (0, 1) | X = 0)

= p(X12 = (1, 1), X = 0)
p(X12 = (1, 0), X = 0)

p(X12 = (0, 0), X = 0)
p(X12 = (0, 1), X = 0)

.

Taking the logarithm and simplifying notation to
p12(X1, X2) = p(X1, X2, X = 0) yields

ln Im
1,2 = ln p12(1, 1) − ln p12(1, 0)

− ln p12(0, 1) + ln p12(0, 0) = Ia
1,2,

as claimed. Note that we recognize the canonical outcome
Y = −E (X ) = ln p(X ).

As a corollary, we deduce the general permutation symme-
try of the additive n-point interaction, namely,

Ia
i1,...,in = Ia

σ (i1,...,in ) (26)

for any permutation σ ; see Corollary 2 for a proof.

E. Interpreting higher-order interactions

The nonparametric n-point interaction consists of 2n terms,
as it involves n binary variables turning on or off. Conse-
quently, the interpretation of such higher-order interactions is
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somewhat delicate. To fix ideas, we focus on the case of addi-
tive three-point interactions, the discussion readily generalizes
to n-point interactions.

Let T1, T2, T3 be three binary random variables and let
Y denote the outcome. The interpretation of the three-point
interaction Ia

1,2,3 of Sec. II B is similar to that of the two-point
interaction in Eq. (5). Consider the following diagram:

(1, 1, 0) (1, 0, 0)

(1, 1, 1) (1, 0, 1)

(0, 1, 0) (0, 0, 0)

(0, 1, 1) (0, 0, 1) (27)

We have introduced the shorthand

A(t1, t2, t3) = E(Y | T123 = (t1, t2, t3), T = 0), (28)

where t1, t2, t3 ∈ {0, 1}. Vertex (t1, t2, t3) represents the ex-
pected outcome A(t1, t2, t3). An arrow represents the ATE of
the variable of which the value changes, where the sign is
again dictated by target minus source. For example, the front
left vertical arrow encodes the ATE:

A(1, 1, 1) − A(0, 1, 1) = ATET1 (Y | T23 = (1, 1), T = 0).

The 12 arrows along the 6 faces of the cube (one horizontal
and one vertical each) encode the 6 additive two-point inter-
actions between the effects of two out of the three variable
T1, T2, T3 on the outcome Y , with the third variables fixed to
0 or 1, together with their inherent symmetry as discussed
in Sec. II B. Either of the three arrows through the sides of
the cube, depicted in the figure below, encodes the additive
three-point interaction between the effects of T1, T2, T3 on the
outcome Y :

I23(T1 = 1)

I12(T3 = 0)

I13(T2 = 1) I13(T2 = 0)

I12(T3 = 1)

I23(T1 = 0) (29)

We have the relations target minus source:

Ia
1,2,3 = Ia

1,2(T3 = 1) − Ia
1,2(T3 = 0)

= Ia
1,3(T2 = 1) − Ia

1,3(T2 = 0)

= Ia
2,3(T1 = 1) − Ia

2,3(T1 = 0).

(30)

This is our threefold interpretation of three-point interaction:
it is the change in the two-point interaction between T1 and T2,
i.e., Ia

1,2 = Ia
1,2(T3 = 0), as T3 is turned on T3 : 0 → 1, yielding

Ia
1,2(T3 = 1). In other words, Ia

1,2,3 captures the dependence of
the two-point interaction between T1 and T2 as a function of
T3. We conclude that the sign and magnitude of a three-point
interaction can be interpreted relative to any of the two-point
interactions between two out of the three variables.

As an illustration, we present the natural interpretation
of symmetric higher-order interactions in the following real-
world examples:

(1) Genomic variant interaction leading to disease: The
additive two-point interaction answers the following question:
Does variant i influence disease differently depending on the
status of variant j, and by how much? The three-point inter-
action answers the following question: Does the interaction
between variant i and variant j influence disease differently
depending on the status of variant k, and by how much? The
same interpretation applies to combination therapy where the
effects of multiple drug interactions on health are examined.

(2) Molecular networks: The multiplicative two-point in-
teraction answers the following question: Does the likelihood
of gene i being on increase or decrease depending on whether
gene j is on or off, and by how much? Similarly, the three-
point interaction answers the following question: Does the
interaction between gene i and gene j influence outcome
differently, depending on the status of gene k, and by how
much?

The cause-effect directionalities are either provided by
subject experts, discovered by perturbation experiments, or
derived by causal discovery algorithms.

F. Improving statistics via (conditional) independence

The nonparametric formulations of n-point interaction
among the random variables Xi1 , . . . , Xin [Eqs. (10) and (17)]
require conditioning on all remaining variables in the system.
In order to improve statistical power when estimating inter-
actions directly from data, this requirement can be relaxed
under the assumption that the system is Markovian. Then, one
need only condition on the parents of the variables Xi1 , . . . , Xin
involved in the interaction. A finite collection of categorical
random variables {Xi}r

i=1 is a Markov random field if
(1) the joint distribution is strictly positive, i.e., p(Xi =

xi for 1 � i � r) > 0, and
(2) for each Xi there exists a set of parents Pi ⊂

{1, 2, . . . , r}, not including i, which is the minimal set such
that the following condition holds:

p(Xi = xi | X = x) = p(Xi = xi | Xj = x j for j ∈ Pi ).

In words, the conditional probability of Xi = xi only depends
on its parents Xj = x j , j ∈ Pi.

It is not hard to see that the set of parents Pi of the variable
i is unique. To any Markov random field one can associate a
finite undirected graph with a vertex for each variable Xi and
an edge connecting Xi and Xj if j ∈ Pi, i.e., Xj is a parent of Xi.
The Hammersley-Clifford theorem [17] (see also [18]) states
that {Xi}r

i=1 is a Markov random field if and only the joint
probability distribution p(X1, . . . , Xr ) is a Gibbs ensemble,
i.e., there exists a Hamiltonian E (X1, . . . , Xr ) such that

p(X1, . . . , Xr ) = 1

Z exp[−E (X1, . . . , Xr )], (31)

where Z denotes the partition function normalizing the dis-
tribution. As a result, all energy-based models of binary and
categorical random variables are Markov random fields, and
may thus benefit from the aforementioned improvement in
statistical power when computing n-point interactions directly
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from data. These facts are leveraged in the numerical Secs.
IV C and V B below. We also remark that we regard the as-
sumption that {Xi}r

i=1 be a Markov random field as minimal in
the context of inverse problems since it is a basic axiom in any
treatment of causality, e.g., in the works of Pearl [7] or Rubin
[16]. In practice, it may be the case that the parent structure of
a Markov random field {Xi}r

i=1 is not a priori known and is to
be inferred from data. This can be achieved by applying algo-
rithms designed to estimate conditional independence among
variables in a given system, from data. These algorithms use
parametric or nonparametric statistical methods, such as Pear-
son’s χ -squared test, to establish conditional independence
among categorical random variables [8–10].

As an example of a structure discovery algorithm, the
Peter-Clark (PC) algorithm only scales exponentially in the
worst case scenario. The sparser the ground truth network
structure is, the faster the algorithm will converge. In Ref. [8],
parallelized PC is benchmarked for constructing gene network
neighboring structures for yeast (5361 variables), a bacterium
(2810 variables), and DREAM5-Insilico data set (1643 vari-
ables). The algorithm was shown to converge in less than 12 h
in all cases, on a personal computer with 8-cores. Once the
graph structure is known or learned, estimating interactions
scales as efficiently as computing averages over the data. The
algorithm is therefore approximately as fast as estimating the
bootstrap error on the interaction estimates.

As a simple illustration, in Sec. IV D we demonstrate the
results of conditional independence tests on data generated
by the two-dimensional Ising model, using the χ -squared
test, and discuss the improved statistics of the interaction
estimates.

III. RESULTS I: ANALYTICAL MAP TO REGRESSION
AND NUMERICAL RESULTS FOR THE UK

BIOBANK SIMULATION

As an elementary and concrete example, in this section we
show that the nonparametric additive definition of interactions
(Definition 1) reduces to an interaction coefficient in a linear
regression model. We illustrate this example in the context of
a biomedical application.

A. Application: Interactions in biomedicine

Genome-wide association studies (GWAS) are methods to
identify genetic variants in the genome of individuals in a
population, that could be associated with a disease or trait.
In case-control GWAS, one searches for variants, a collec-
tion of single nucleotide changes in the DNA, that occur
more frequently in people with a particular disease (cases) as
compared to those without the disease (controls). The goal
of GWAS is to find candidate genes that could potentially
increase the risk of a certain disease, with the medical aim of
identifying potential drug targets. Currently, one of the main
aims of this field of study is to move away from associational
to causal variant-trait relations. For the magnitude of causal
effects of genomic variants on traits to be inferred accurately,
one is required to (i) relax parametric assumptions such as
the linear dependencies of the traits on the variants, and (ii)
take into account interactions among the variants affecting
traits, known as epistasis. In contrast to the methods used in

some of the key literature in the field [19,20], our definition
of interaction via the targeted learning framework satisfies
requirement (i) by removing the need for parametric assump-
tions altogether, and incorporates (ii) by taking into account
epistatic interactions.

B. Epistatic interactions

Consider (i) a transcription factor protein which modifies
gene expression by binding the DNA. The degree of binding,
however, depends on the underlying DNA variants to which
the transcription factor is binding. Now, suppose that (ii) there
are multiple other variants across the genome that regulate the
effect of another transcription factor protein, hence changing
levels of gene expressions. Then, (i) and (ii) have downstream
interactions that affect particular traits or diseases in humans.
As the considerations of genetics and causality are beyond
the scope of this work, we limit ourselves here to a sam-
ple application of our techniques in extracting such epistatic
interactions, using simulated data of trait and disease repre-
sentative of the summary-level UK BioBank population [13].
We consider the case of a complex continuous trait, height, as
an example.

There are many variants across the genome contributing a
small fraction to a complex trait such as height; this is known
as the omnigenic model [21]. Suppose that we have an a
priori understanding of which genomic variants are relevant
to consider, e.g., those in the vicinity of bone developmental
genes. Consider the following linear ground truth, involving
six variants Vj , for j = 1, 2, . . . , 6, across the genome each
contributing via a positive or negative coefficient to the value
of height. Without loss of generality, suppose that only two
of them also have a nonzero interaction (the generalization to
more interactions is trivial):

Height(i) ∼ α0 +
6∑

j=1

α jV
(i)
j + γV1V2 + ε, (32)

where i represents an individual, ε is the noise in height,
and α0 corresponds to unobserved, but independent, variants
contributing to height.

We use our model-agnostic nonparametric additive two-
point interaction estimator Ia

1,2 [Eq. (3)] to show we recover
the coefficient γ representing the ground truth interaction
between V1 and V2. To see this, we simply compute the four
expected outcomes in Eq. (3):

E(H | V1 = 1,V2 = 1,V3,4,5,6 = 0) = α0 + α1 + α2 + γ ,

E(H | V1 = 1,V2 = 0,V3,4,5,6 = 0) = α0 + α1,

E(H | V1 = 0,V1 = 0,V3,4,5,6 = 0) = α0 + α2,

E(H | V1 = 0,V2 = 0,V3,4,5,6 = 0) = α0.

We obtain the following expressions for the four average
treatment effects:

ATEV1 (H | TV = 1) = α1 + γ ,

ATEV1 (H | TV = 0) = α1

ATEV2 (H | TV = 1) = α2 + γ ,

ATEV2 (H | TV = 0) = α2.

(33)

The interactions both ways around are Ia
1,2 = γ = Ia

2,1, as
expected since interaction is symmetric by Corollary. 2. In
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FIG. 1. Histogram of female, male, and combined heights on
simulated data, such that it is representative of the UK BioBank
population (UK BioBank, standing height).

conclusion, we have Ia
1,2 = γ as claimed. Generalizations to

higher-point interactions are trivial. For a numerical example
with three-point interactions, see Appendix D.

C. Numerical simulations based on the UK BioBank traits

We generate data from the above ground truth, Eq. (32).
The coefficients are chosen without loss of generality to repro-
duce a realistic distribution of heights which is representative
of the UK BioBank population [13], with approximately the
same mean (168.5 cm) and standard deviation (9.3 cm) (UK
BioBank, standing height).

The male and female populations are generated sepa-
rately and merged to form the full distribution of height,
consisting of 20 000 individuals, as presented in Fig. 1.
More explicitly, without loss of generality, α0 = 154 for fe-
males and α0 = 166 for males, together with {α1, . . . , α6} =
{2, 6,−3, 6,−1.5, 6} with γ = ε = 5. Notice that the two-
point interaction γ between the two aforementioned variants
is chosen to approximately equal the level of noise in
height across the population. The variant allele frequencies
for V1, V2 ∼ Binom(0.8), Binom(0.7), respectively, and for
V3, . . . ,V6 ∼ Binom(0.5).

We apply the additive targeted learning estimator of in-
teraction (10) to the data. We obtain the targeted learning
prediction γ = 4.77(1.36) which agrees with the ground truth
value γ = 5, within statistics.

NB. Since the targeted learning (TL) estimator is nonpara-
metric, it is completely agnostic to form, e.g., linearity or
nonlinearity, of the data generating process. In particular, in
the case of categorical variants, there is no biological basis for
the linearity assumption often used in modeling variant-trait
relations. The above example merely serves to illustrate that if
the underlying truth were to be linear, then the TL estimator
correctly recovers this linearity. In fact, TL can be used to test
if the effect of variants on trait is linear.

The targeted learning estimator of epistatic interactions
applies to all scenarios, be they linear, nonlinear, or nonmono-
tonic, without requiring any parametric ansatz regarding the
form of the fit function. This generality is of crucial impor-
tance since transcription factors often consist of large protein
complexes that can introduce highly nontrivial behavior as
well as other higher-order interactions. Such scenarios will be

missed by standard linear parametric fits. Using individual-
level DNA variant and trait population data, our estimator’s
agnosticism and flexibility allows for new discoveries of novel
and more complex interaction networks.

IV. RESULTS II: ANALYTICAL MAP AND NUMERICAL
RESULTS OF THE 2D ISING MODEL AND RESTRICTED

BOLTZMANN MACHINES (RBM)

In this section, we discuss Boltzmann probability
distributions. In Sec. IV A, we recover the two-point
couplings in an Ising Hamiltonian from the multiplicative
formulation (14). In Sec. IV B, we consider a more complex
Hamiltonian: The restricted Boltzmann machine (RBM). We
analytically obtain its all-order couplings without any need
for an asymptotic expansion and resummation as originally
employed in [12], using the same universal multiplicative
estimator (14). In Sec. IV C, we compare numerical results
and finally, in Sec. IV D, we evaluate the improvement in
the numerical results when applying Markovian conditional
independence criteria.

A. Two-dimensional Ising model

We briefly recall the two-dimensional Ising model. Con-
sider a two-dimensional square lattice of size L2 with periodic
boundary conditions, with a spin ṽi on each lattice point i
taking on values ṽi = ±1. A state of the Ising model is the
assignment ṽ of a value +1 or −1 to each of the L2 spins.
Given a temperature T , the Boltzmann distribution describes
the probability p(ṽ|T ) that the system takes on a particular
state ṽ at temperature T . Explicitly,

p(ṽ|T ) = 1

Z (T )
e−E (ṽ) where E (ṽ) = −

∑
i, j

Ji, j ṽiṽ j, (34)

where the sum runs over all pairs of lattice sites (i, j), where
Ji, j is the coupling between spins ṽi and ṽ j , the external
magnetic field is zero, and Z (T ) is the partition function that
normalizes this probability distribution.

In the basic version of the Ising model, the interaction be-
tween non-nearest neighbor spins is put to zero, and Ji, j = 1

2T
for all nearest neighbor spins ṽi, ṽ j ; this is not required in
general. However, Ji, j = Jj,i is symmetric.

The inverse Ising problem is concerned with estimating
the coupling Ji, j from data. Our nonparametric definition (14)
of multiplicative two-point interaction between the binary
random variables vi and v j recovers the coupling coefficient
Ji, j directly from the probability distribution, after applying
ln(−)/8; the factor of 8 is due to double counting as explained
below. To see this, we first apply the bijective transformation
ṽi = 2vi − 1 expressing the values of a spin vi in terms of
{0, 1} as opposed to {−1, 1} in order to use our definition
of multiplicative two-point interaction (14). Thus, ṽi = −1
corresponds to vi = 0, whereas ṽi = 1 corresponds to vi = 1.
The energy function corresponds to

E (v) = −4
∑
i, j

Ji, jviv j + 4
∑

i

(∑
j

Ji, j

)
vi −

(∑
i, j

Ji, j

)
,

where we have used the symmetry Ji, j = Jj,i.
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Next, we compute the multiplicative two-point interaction
Im
i, j between two spins. Without loss of generality, we do this

for spins v1 and v2. We compute the probabilities that (v1, v2)
takes on the values {(1, 1), (1, 0), (0, 1), (0, 0)} with all other
spins being zero, i.e., v = 0. We find

p(1, 1, v = 0)

p(1, 0, v = 0)
= exp

(
4J1,2 + 4J2,1 − 4

∑
j 	=1

J1, j

)
, (35)

p(0, 0, v = 0)

p(0, 1, v = 0)
= exp

(
4

∑
j 	=1

J1, j

)
, (36)

and multiplying both yields Im
1,2 = exp(8J1,2). Hence,

ln(Im
1,2)/8 = J1,2 as claimed.

Whether or not Im
1,2 is smaller or larger than 1 is due to the

interpretation of the interaction. In this case, it is the two-point
interaction between turning on both spins, i.e., v1 : 0 → 1 and
v2 : 0 → 1, not turning them off. Alternatively, computing the
additive interaction between v1 : 0 → 1 and v2 : 0 → 1 on the
outcome −E (v) is easily seen to be Ia

1,2 = 8J1,2. The factor
of 8 is due to the change of variables ṽi �→ vi and a double
counting in Eq. (34). Finally, the coupling Ji, j can be obtained
directly by taking the double derivative of the outcome −E (v)
with respect to v1 and v2.

In Sec. IV C, we extract Ji, j directly from data. In order
to improve the estimate of the two-point interaction Im

i, j from
data, one may appeal to the Hammersley-Clifford theorem
of Sec. II F to increase statistics by only conditioning on the
relevant parent variables, i.e., in this case the nearest neigh-
bors of vi and v j . In fact, the Monte Carlo algorithm, e.g.,
Metropolis, generating Ising configurations uses this feature
in its update step by computing the change in energy only us-
ing nearest neighbor spins. For completeness, we analytically
demonstrate that the Hammersley-Clifford theorem applies to
the Ising model in Appendix C.

B. Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is a type of
undirected Markov random field (MRF) with a two layer
architecture. An RBM consists of m visible nodes v j , j ∈
{1, . . . , m}, collectively denoted by v and representing the
observed input data, and n hidden nodes hi, i ∈ {1, . . . , n},
collectively denoted by h. We consider binary variables, i.e.,
v j, hi ∈ {0, 1}. The energy of the joint state {v, h} of the ma-
chine is as follows:

E (v, h; θ ) = −
n∑

i=1

m∑
j=1

hiwi jv j −
m∑

j=1

b jv j −
n∑

i=1

cihi, (37)

and we collectively call θ = {w, b, c} the model parameters.
The RBM is used to encode the joint conditional probability
distribution of a state {v, h} given a set of parameters θ :

p(v, h|θ ) = 1

Z (θ )
e−E (v,h;θ ), (38)

where the partition function Z (θ ) normalizes the probability
distribution. Marginalizing over the binary hidden variables
hi yields the probability distribution of the variables in the

visible layer [22]:

p(v|θ ) = 1

Z (θ )

m∏
j=1

(ebjv j )
n∏

i=1

(
1 + eci+

∑m
j=1 wi jv j

)
. (39)

By equating the RBM energy function to the two-dimensional
Ising energy function, the expression

Jj1, j2 = 1

8
ln

n∏
i=1

(1 + eci+wi j1 +wi j2 )(1 + eci )

(1 + eci+wi j1 )(1 + eci+wi j2 )
(40)

is obtained in [12]. This expresses the Ising coupling Jj1, j2 in
terms of the model parameters of the RBM. The proof uses
an asymptotic expansion and a resummation. Computing the
nonparametric two-point interaction, as in Eq. (14), of the
RBM readily yields the above formula:

1

8
ln

(
Im

j1, j2

) = Jj1, j2 , (41)

where Im
j1, j2 is computed from Eq. (38). Indeed, this follows

from Eq. (14) by a direct computation since

Im
j1, j2 = p(v j1 j2 = (1, 1), v = 0)

p(v j1 j2 = (1, 0), v = 0)
p(v j1 j2 = (0, 0), v = 0)
p(v j1 j2 = (0, 1), v = 0)

=
n∏

i=1

(1 + eci+wi j1 +wi j2 )(1 + eci )

(1 + eci+wi j1 )(1 + eci+wi j2 )
.

Indeed, both the partition functions and the bj coefficients
cancel out. By the same argument, one immediately recovers
the closed form expression for the three-point interaction be-
tween v j1 , v j2 , v j3 as derived in [12, Eq. (66)], and the closed
form expressions for all n-point interactions, without having
to resolve to an asymptotic expansion and resummation as
in [12].

C. Numerical results for the Ising model
and comparisons with the RBM

In this section, we generate two-dimensional Ising configu-
rations at various values of temperature using MAGNETO [23],
a fast parallel C++ Monte Carlo code available online. We
set Ji j = 1/2T in Eq. (34). We then use the nonparametric
multiplicative definition of interactions, Sec. II C, to extract
the couplings Ji j directly from the data, i.e., we solve the
inverse problem. We demonstrate agreement with the ground
truth and compare the performance of the estimation of in-
teractions directly from the data with the estimates obtained
via the RBM [12]. Ising states generated by MAGNETO consist
of spins ±1. Note that these are converted to 0, 1 as input to
both the multiplicative interaction formulation and the RBM,
as already discussed in Sec. IV A. Before delving into the
numerical analysis, our main results are summarized in the
paragraph below.

In general, the nonparametric interaction converges to the
true value in the infinite data limit as it is unbiased, whereas
the RBM need not do so as the original data are almost
surely not generated from an RBM distribution. However, for
finite sample sizes, the direct computation may become noisy
and unstable without additional information, such as condi-
tional independence among the variables. Take, for example,
the case of the Ising configuration in different temperature
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regimes. At low temperatures the system is highly coupled
and symmetric with respect to configurations mostly con-
taining spin zeros and those mostly containing spin ones. In
this regime, there are enough samples to estimate conditional
probabilities appearing in Eq. (14). On the other hand, it is
harder to train an RBM in highly coupled systems, e.g., in [12]
more precise hyperparameter tuning and longer training was
required. This behavior of the RBMs has been reported previ-
ously in the literature [22] and is due to the machine remaining
in local minima of the activation function. To avoid this
problem, the RBM needs to be trained using more advanced
algorithms such as parallel tempering [22] which allows the
machine to exit potential local minima. Of course, this in turn
requires tuning of extra hyperparameters and results in longer
training times. For temperatures above the critical tempera-
ture, the system becomes weakly coupled and moves toward
more randomly distributed zero and one spin configurations.
In this scenario, conditioning on all but two variables in the
system results in very low sample sizes and unstable esti-
mates of the interactions unless the total sample size is very
large. The RBM, on the other hand, captures the interactions
well given a comparable sample size. If however, information
about conditional independence among the variables in the
system is used, the nonparametric estimates perform better
than the RBM in terms of bias, variance, and compute time.
In what follows, we quantify the above statements explicitly.

Before we present numerical results, we note that exclud-
ing higher-order interaction terms from the outset necessarily
results in biased or incorrect estimates of even the two-point
and self-couplings. To give a simple example, consider the
following formula:

E = E0 + h1v1 + h2v2 + J12v1v2 + J123v1v2v3

= E0 + h1v1 + h2v2 + (J12 + J123v3)v1v2. (42)

Thus, any parametric fit ignoring third order (and higher)
interactions will incorrectly report J12 + J123E(v3) as the two-
point interaction. More disturbingly, in a situation where the
ground truth satisfies J12 = 0 but J123 	= 0, a truncated para-
metric fit will incorrectly produce the nonexistent two-point
interaction J123E(v3). Our method avoids this problem en-
tirely.

Using the TL universal estimator (14) directly, it is pos-
sible to obtain an accurate estimate of the couplings at cold
temperatures, without conditioning on the Markovian parents
or using translational invariance. Unlike Refs. [1–5] no para-
metric assumptions, regularization, truncation of higher-order
interactions, or other approximations are required. The results
are shown in Fig. 2.

Above the critical temperature, however, TL estimation re-
quires larger samples sizes. More explicitly, beyond T = 2.4,
the states become more random, and conditioning on all vi’s
to be zero, apart from the two spins whose interaction is to be
estimated, results in low sample sizes and unstable predictions
of the conditional probabilities appearing in Eq. (14). This is
demonstrated by plotting the bin sizes used to estimate the
probabilities at various values of temperature in Fig. 3.

Note that, as mentioned earlier, the nonparametric ap-
proach of estimating coupling from the data is an unbiased
estimator and only limited by the amount of data. Therefore,

FIG. 2. All nonzero two-point interaction estimates using
Eq. (14) directly, at temperature T = 1.8, in an Ising system of size
L2 = 82 with periodic boundary conditions. 100 000 samples are
used for this estimation. No conditioning on the Markovian parents
is performed, no translational invariance assumptions are made.

larger samples sizes are required, if one wishes to make
no physical approximation or further assumptions about,
e.g., conditional independence among the variables. Figure 4

FIG. 3. Average sample sizes for conditional probabilities en-
tering the computation of the two-point interaction for the nearest
neighbor pairs in an L2 = 82 lattice. These values are obtained by
conditioning on all other spins. The bin vi = v j = 0 is left out as
it has the largest size as compared to the other three. The top plot
is from 100 000 samples, and the bottom is from 1 × 106 samples.
Notice that each of the bin sizes increases 10-fold as we go from
100 000 to 1 × 106 samples, as expected. Observing the 100 000 plot,
it is clear that above T = 2.6, there are not enough samples in the
vi = v j = 1 bin to yield reliable estimates of the interactions, with
T = 2.6 containing approximately nine samples on average. With
1 × 106 total samples, one can obtain estimates for T = 2.7, which
on average contain 10 samples in the vi = v j = 1 bin, respectively.
Beyond this temperature, one has to again increase the sample size
to 2 × 106 or more.
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FIG. 4. A comparison of estimates of the two-point interaction
among nearest neighbor spins as the temperature varies, in an Ising
system of size L2 = 82 with periodic boundary conditions, averaged
over all 128 pairs of nearest neighbors for summary illustration.
Each point represents a bootstrap average with error bar given by
the bootstrap error. For T � 2.6, 100 000 samples are enough to
estimate the nearest neighbor interactions. For T > 2.6 substantially
more samples are required for stable estimates of the interactions. At
T = 3.0, 8M samples are required for a stable estimate.

indicates this requirement: Above the critical temperatures,
the sample sizes need to be increased from 100 000 to 1 × 106

and 10 × 106, at very hot temperatures, in order to estimate
the couplings. As expected, in Fig. 4 the estimates converge
to the theoretical ground truth when the samples sizes are
sufficiently increased. Note that translational invariance is not
a requirement and is merely used as a summary to illustrate
convergence of the nonzero couplings to the correct ground
truth value.

We now demonstrate improvements in the estimates of
interactions at all values of temperatures, by using information
on conditional independence among the spins. This allows for
a substantial reduction in the sample sizes required, especially
at high temperature. As discussed earlier in Sec. II F and will
be further explained in Sec. IV D, to obtain correct estimates
of interaction among spins of interest, it is sufficient to condi-
tion on their parents, i.e., nearest neighbor spins, as opposed
to all other spins in the rest of the lattice. For interactions
between pairs of nearest neighbor spins, we condition on their
six nearest neighbors, while for interactions between pairs

FIG. 5. Conditioning on the nearest neighbors (as prior informa-
tion) to estimate Im

i j substantially improves the estimates. 100 000
samples for estimations at T = 1.8, 2.2, 3.0, L2 = 82.

FIG. 6. Average sample sizes for conditional probabilities en-
tering the computation of the two-point interaction for the nearest
neighbor pairs in an L2 = 82 lattice. These values are obtained by
conditioning on the nearest neighbor spins only. The bin vi = v j = 0
is left out as it has the largest size as compared to the other three.
There are enough samples in each bin to yield stable estimates of
each conditional probability/expectation value.

of non-nearest neighbor spins we condition on their 4 + 4
nearest neighbor spins.

The individual per spin pair results, without using trans-
lational averaging, for T = 1.8, 2.2, 3.0 are shown in Fig. 5.
Individual vanishing per spin triplet and quadruplet three- and
four-point interactions are presented in Appendix F (Fig. 24)
with T = 1.8 as an example. Figure 6 indicates an increase
in the smallest bin size, i.e., vi = v j = 1, at all temperatures.
This results in more precise estimates for the couplings, pre-
sented in Fig. 7,1 by using translational invariance. Again,
note that translational invariance used in Fig. 7 is not a re-
quirement and is merely used as a summary for comparison
with the RBM results in [12].

Figure 8 (upper) indicates individual spin pair couplings
Im
i j , estimated using Eq. (16) over 100 000 samples as com-

pared to 20 000 (lower) for both nearest and non-nearest

1All run times are measured on a MacBook Pro (2018) machine,
6-Core Intel i9 with 16GB memory.

FIG. 7. Conditioning on the nearest neighbors (as prior informa-
tion) to estimate Im

i j substantially improves the estimates as compared
to Fig. 4. 100 000 samples are used for both training the RBM and
estimating the interactions directly using TL. See Fig. 23 for the
successful estimation of interactions and their uncertainty using TL,
with 10 000 samples. The run time for each estimation using TL is at
the order of a few seconds.
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FIG. 8. L2 = 82, T = 3.0, with conditioning on the nearest
neighbors to estimate Im

i j for both nearest and non-nearest neighbor
spin pairs. In order to reduce clutter, the same number of non-nearest
as nearest neighbor couplings are shown (128). No translational in-
variance is used. Top: the results are computed over a total of 100 000
samples, using Eq. (16) and statistical bootstrap, as compared to
bottom: The results are computed over a total of 20 000 samples. For
the latter, approximately 2% of spins had no samples in the p11 bin.
This is because it is unlikely that two spins have value one, while
their eight nearest neighbors all have spin value zero, as the total
sample size reduces.

neighbor spins. The latter results are more noisy as expected.
As compared to the 100 000, 20 000 total samples approx-
imately had 2% of spin pairs with no samples in the p11

bin. This is due to the fact that it is unlikely that two spins
having value one, while their eight nearest neighbors all have
spin zero. This scenario is observed more often at colder
temperatures (see Figs. 21 and 22 in Appendix F). Note that
the nonparametric method of estimation, combined with in-
formation on conditional independence among the variables,
has nevertheless enabled us to obtain accurate estimates of
the interactions relying on a smaller number of samples in
total. For example, using this method, there is enough power
to estimate all the nearest neighbor spin pair interactions and
approximately 83% of the non-nearest neighbor spin pair
interactions for temperature T = 2.2 using 10 000 sample
only, as demonstrated in Fig. 8. In contrast, e.g., the RBM
does not train well on Ising data with 10 000 samples (see
[12, Fig. 31]), and therefore is not able to provide accurate
estimates of the interactions at low sample sizes.

Finally, we present the results of estimating the two-point
interactions per individual spin pair, for a L2 = 322 lattice
at temperature T = 3.0, in Fig. 9. As expected, the results
for the case of 20 000 total samples is more noisy, however,
the signal is clearly distinguishable from background with
most of the nearest-neighbor interactions being more than

FIG. 9. L2 = 322, T = 3.0, with conditioning on the nearest
neighbors to estimate Im

i j for both nearest and non-nearest neighbor
spin pairs. In order to reduce clutter, 2 × 128 interactions are shown.
No translational invariance is used. Top: The results are computed
over a total of 100 000 samples, using Eq. (16) and statistical boot-
strap, as compared to bottom: The results are computed over a
total of 20 000 samples. For the latter, there is sufficient power to
accurately estimate all the nearest neighbor interactions, as well as
approximately 98% of non-nearest neighbor interactions.

3σ away from the zero line. We note that training an RBM
on a lattice of this size, if possible, is expected to be com-
putationally expensive and not possible for low numbers of
sample sizes. This is due to the fact that a L2 = 322 lattice
contains 1024 spins which would correspond to an RBM with
1024 × 1024 weights + 2 × 1024 bias terms, i.e., 1 050 624
parameters to be determined, when the number of hidden
nodes (1024) is set equal to the visible nodes (1024). The run
time of the nonparametric approach is of the order of minutes
on a local computer.

D. Numerical evidence for conditional independence

In the first step of the targeted learning road map stated
in Sec. II A, we select the set of probability distributions p
that are compatible with a priori knowledge regarding the data
and how it is generated. For example, in the case of the Ising
model, this knowledge could include information regarding
the nearest neighbor structure, namely, that by conditioning
on the parental spins of two spins, the two spins become
independent of each other and the rest of the spins if they
are non-nearest neighbors. If they are nearest neighbors, then
they only become independent of the rest of the spins but
not of each other. Then, using the Markovian property and
the Hammersley-Clifford theorem of Sec. II F, to obtain the
interactions between pairs of spins, it suffices to condition on
their nearest neighbors to be zero, rather than all the rest of the
spins (see Appendix C for a proof). This results in improved
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FIG. 10. Nearest neighbor structure in the two-dimensional Ising
model. Parents of the pairs of interest required for conditional inde-
pendence: the six parents of a nearest neighbor pair (top), and the
eight parents of a non-nearest neighbor pair (bottom).

statistical estimates, as the number of samples that satisfy the
latter condition will be significantly larger than the former.
The Markovian parent structure of nearest and non-nearest
neighbors in the two-dimensional Ising model is presented in
Fig. 10.

If a priori information on conditional independence is not
known, one can use nonparametric statistical testing to de-
termine such independence criteria, in order to improve the
estimates of interactions. The χ -squared test of independence
can be used for the case of binary or categorical variables
and, e.g., an information-theoretic independence criterion for
continuous variables [24]. Algorithms such as Peter-Clark
can then be employed to automatically detect (conditional)
independence using a given test in an efficient way [10].
Discussion on the latter is beyond the scope of this work, and
we only briefly present results on applying a χ -squared test
directly on Ising data as an example.

We perform the χ -squared test of independence on Ising
configurations generated at the critical temperature which is
approximately T = 2.3. The null hypothesis H0 of χ -squared
is that the variables are independent of each other. Given a
particular threshold, if the computed p values become less
than the threshold, we reject the null hypothesis in favor of the
alternative hypothesis H1, i.e., that the variables in question
are indeed dependent. For the two-dimensional Ising model
at the critical temperature we expect the correlation length
to diverge, and therefore to observe a large degree of depen-
dence among all spins. Therefore, taking pairs of spins, while
conditioning on no other spins in the system, we expect the χ -
squared test to result in small-p values, indicating dependence
among the spins. Indeed, we observed p ≈ 0 for all pairs of

FIG. 11. Histogram of χ -squared test p values for non-nearest
neighbor spins pairs, conditioned on all of the eight parents, for the
T = 2.3 Ising model. We expect the null hypothesis of independence
not to be rejected, i.e., high-p values. This is indeed observed with
less than 10% of the p values being less than the chosen threshold
0.1. The χ -squared test has incorrectly taken these as dependent,
however, taking more spins into account when conditioning does not
introduce any bias in the estimation of the interactions.

spins in this case. If, on the other hand, we condition on
all eight nearest neighbor spins of any non-nearest neighbor
spin pair, we observed that most of the p values are large,
indicating independence as expected. However, the test does
result in less than 10% of the non-nearest neighbor spin pairs
having small-p values, namely, less than the chosen threshold
of 0.1 (see Fig. 11). These are the result of a type I error, or
false claim of dependence, which do not bias the estimation
of the interactions but merely render the procedure more con-
servative than necessary, at the cost of larger variance.

Next, we observe what happens if we, wrongly, do not con-
dition on all the parents of variables that χ -squared otherwise
declares as dependent. As an example, conditioning on only
two of the total of eight nearest neighbors, the χ -squared test
declares all p ≈ 0. Estimating the interaction between non-
nearest neighbor spin pairs, while conditioning on two parents
only, results in highly biased estimates of the interactions, as
expected, as indicated on the right-hand side of Fig. 12.

Finally, we condition on four out of the eight nearest neigh-
bors, for all the non-nearest neighbor spin pairs, with all four
blocking one of the spins from the rest of the system. In
this case the χ -squared test seems to declare independence
in most cases. This is a type II error: failure to reject a false
null hypothesis of independence. We examine the resulting
bias on the estimates for the associated two-point interactions
in Fig. 13: The level of statistical variation in the data is
large enough to compensate for the bias introduced by not
conditioning on all the Markovian parents. In the tests that
we have performed, we have observed these features both at
cold and hot temperatures as well.

In summary, when a priori knowledge regarding indepen-
dence among variables is not available and has to be derived
from the data, one can perform the nonparametric χ -squared
test for binary and categorical data. If χ squared declares
dependence among variables, we must ensure to condition on
these when estimating the interactions. If χ squared declares
false independence, potentially due to the level of variance
or noise in the data, it is likely to be the case that this missed
degree of dependence is not so large as to bias the estimates of
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FIG. 12. Non-nearest neighbor two-point interactions for Ising
configurations near the critical temperature T = 2.3, 100 000 sam-
ples. 128 spin pairs are taken as representatives of all 1888
non-nearest neighbor spin pairs. Top: conditioning on all eight
parents, estimation accurately recovers the ground truth. Bottom:
Conditioning on only two parents, even though χ -squared has ac-
curately detected dependence, results in biased estimates of the
interactions.

n-point interaction, again given the level of variance or noise
in the data.

V. RESULTS III: A HAMILTONIAN WITH ONE-, TWO-,
THREE-, AND FOUR-POINT INTERACTIONS

A. Analytical formulation

In this section, we consider an Ising-type Hamiltonian in
the {−1, 1} basis with four-point couplings. After transform-
ing to the {0, 1} basis, this results in a Hamiltonian with
nonzero self, two-, three-, and four-point couplings. The setup
is as follows. Consider a two-dimensional square lattice of
size L2 with periodic boundary conditions, with a spin ṽi on
each lattice point i taking on values ṽi = ±1. A state is the
assignment ṽ of a value +1 or −1 to each of the L2 spins. The
Boltzmann distribution describes the probability p(ṽ|T ) that
the system takes on a particular state ṽ at temperature T , i.e.,

p(ṽ|T ) = 1

Z (T )
e−E (ṽ), (43)

where

E (ṽ) = − 1

T

∑
(i, j)

Ji, j ṽ(i, j)ṽ(i+1, j)ṽ(i, j+1)ṽ(i+1, j+1). (44)

FIG. 13. Non-nearest neighbor two-point interactions for Ising
configurations near the critical temperature T = 2.3, 100 000 sam-
ples. 128 spin pairs are taken as representatives of all 1888
non-nearest neighbor spin pairs. Top: Conditioning on four out of
the total of eight parents, the χ -squared test is unable to detect
dependence. Bottom: numerical results indicate that when χ squared
does not detect dependence in the data, conditioning on four out of
the total of eight parents does not introduce strong bias in estimating
the interactions accurately.

The sum runs over all L2 lattice sites (i, j) ∈ {1, 2, . . . , L}2

and Ji, j is the coupling among the square of spins
{ṽ(i, j), ṽ(i+1, j), ṽ(i, j+1), ṽ(i+1, j+1)}, see Fig. 14.

We first solve the inverse problem defined by the Hamilto-
nian of Eq. (44) analytically. Our nonparametric Definition 2
of multiplicative self-, two-, three-, and four-point interaction

FIG. 14. Nearest neighbor structure in the Ising-type Hamil-
tonian with four-point interactions. There are 12 parents to be
conditioned on for estimating the four-point interaction among the
quadruple of spins of interest.
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FIG. 15. Estimates of the self- to four-point interactions Im
i jkl av-

eraged across spins and normalized by various values of coupling
constants in the Hamiltonian 0.1, 0.125, 0.15, 0.2, 0.25. Estimations
are performed using 1 × 106 samples. As the total number of samples
used for estimation is lowered, the power to detect higher-order
interactions is reduced.

among binary variables immediately recovers the couplings
−8Ji, j , 8Ji, j , −8Ji, j , and 16Ji, j respectively, from the prob-
ability distribution of Eq. (44), after applying ln(−) and
correcting for double counting due to the change of basis
{−1, 1} �→ {0, 1}. To see this, we first apply the transfor-
mation ṽ(i, j) = 2v(i, j) − 1 expressing the values of a spin in
terms of {0, 1} as opposed to {−1, 1} in order to apply the
definition of multiplicative n-point interaction of Eq. (17).
Thus, ṽ(i, j) = −1 corresponds to v(i, j) = 0, whereas ṽ(i, j) = 1
corresponds to v(i, j) = 1. This yields

Ji, j ṽ(i, j)ṽ(i+1, j)ṽ(i, j+1)ṽ(i+1, j+1) = Ji, j (2v(i, j) − 1)

(2v(i+1, j) − 1)(2v(i, j+1) − 1)(2v(i+1, j+1) − 1),

for the contribution to E (v) of a single square of spins with the
top left spin at lattice site (i, j). The interactions may now be
computed by taking suitable derivatives of the energy function
E (v) in the {0, 1} basis, while putting the remaining spins to
zero, and taking care of double counting due to the change of
basis.

B. A Hamiltonian with four-point interactions

In this section, we evaluate the performance of our non-
parametric formulation of multiplicative interaction on data
generated by an Ising-type Hamiltonian with four-point cou-
plings in the {−1, 1} basis. This corresponds to having
nonzero self-, two-, three-, and four-point interactions in the
{0, 1} basis.

One million samples were generated using the Metropo-
lis algorithm at T = 1 and different coupling constants
0.1,0.125,0.15,0.2,0.25. The results for self- to four-point
interactions, normalized by the corresponding coupling con-
stant and corrected for change of basis factors, are presented
in Fig. 15. As expected, the uncertainty on the estimations
increases as we consider higher-order interactions. Neverthe-
less, at one million samples, the uncertainty on the average
four-point interaction is approximately less than 10% in this
system. Reducing the sample sizes from 1 × 106 to 500 000,
then to 200 000, results in not having sufficient power
to estimate the four-point and the three-point interactions,

FIG. 16. Two-point (top) and three-point (bottom) per spin es-
timates of interactions for the ground truth coupling constant 0.2.
Estimations are performed on 1 × 106 samples.

respectively. The results for the interactions per pair, triple,
and quadruple of spins are presented in Figs. 16 and 17.

C. Interaction in energy-based models

Our nonparametric definition of n-point interaction applies
to any set of n binary and categorical random variables in
any probability distribution p. For example, if the probabil-
ity distribution is believed to be a Boltzmann distribution,
our formulation can be used to estimate all the n-point

FIG. 17. Four-point per spin estimates of interactions for the
ground truth coupling constant 0.2. Estimations are performed using
1 × 106 samples. We observe that the variance is large, in the sense
that if the ground truth were to be unknown, some of the couplings
would be considered as insignificant.
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interactions, i.e., the coefficients in the Hamiltonian up to
statistics, e.g., as shown in Sec. V B numerically. In partic-
ular, given any parametric form pθ , our formulation yields an
analytical, closed form expression for all n-point interactions
in terms of the parameters θ of the given model. For example,
the restricted Boltzmann machine was dealt with in Sec. IV B.
Note, however, that in such energy-based neural networks
determining the n-point interaction is a two-step procedure:
(i) marginalizing of the hidden (latent) variables to obtain the
probability distribution in terms of the visible variables only,
and (ii) replacing the probabilities p in Eq. (17) with the para-
metric form pθ . Thanks to the targeted learning framework,
the last step can be performed directly without the need for
asymptotic expansions and resummations.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have provided a nonparametric solution to
the inverse problem of estimating n-point interactions among
binary and categorical random variables directly from data,
using the framework of targeted learning. In doing so, no
parametric assumptions have to be made, yielding a fully
model-independent and unbiased estimator of interaction at
all orders. We have shown that interaction can naturally be
interpreted as a derivative and, more specifically, that n-
point interactions are inductively interpretable as a change
in (n − 1)-point interaction when fixing any one of the n
variables. Under a Markovian assumption, which is satisfied
by all energy-based models in statistical physics and machine
learning, we have demonstrated that interaction can be effi-
ciently estimated from data by only conditioning on parent
variables. If the parent structure is known, or has been inferred
from a nonparametric independence test, one can substantially
reduce the sample size required to obtain an accurate estimate.
Furthermore, as the estimator only consists of expectation
values over the data, the run time on a local machine is of
the order of a few minutes. We have illustrated the above
both analytically and numerically on a two-dimensional Ising
Hamiltonian, a four-point Ising-type Hamiltonian, and the
distribution of a restricted Boltzmann machine. Moreover, we
have argued that our formulation can be used to extract closed
form expressions of n-point interaction in any system of bi-
nary and categorical random variables, such as energy-based
neural networks, where this coupling cannot directly be read
off from a Hamiltonian, e.g., due to multiple hidden nodes. Fi-
nally, we have indicated how our definition of interaction via
targeted learning has applications in population biomedicine,
in particular genome-wide association studies (GWAS), since
it both removes the need for parametric assumptions alto-
gether and correctly accounts for molecular interaction effects
(epistasis), in contrast to current approaches in the literature.

In future work, we plan to examine the bias-variance trade-
off in extracting n-point interactions from other generative
networks, such as variational autoencoders (VAE) and gen-
erative adversarial networks (GAN).

ACKNOWLEDGMENTS

We are most grateful to M. van der Laan for his sug-
gestions regarding the formulation of 2-variable interactions

using the targeted learning framework, in a private conversa-
tion at the causal machine learning master class, the Alan
Turing Institute, London. We are thankful to L. Del Debbio
for his comments on the numerical results, as well as A.
Papanastasiou and A. Jansma for reading and commenting on
the manuscript. We are also thankful to C. Ponting and N.
Clark, for their insights into the biological applicability of our
work. S.V.B. is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germanys
Excellence Strategy–EXC-2047/1–390685813. A.K. is a
cross-disciplinary post-doctoral fellow supported by fund-
ing from the University of Edinburgh and Medical Research
Council (MC_UU_00009/2).

APPENDIX A: ADDITIVE INTERACTION
FOR CATEGORICAL VARIABLES

We make the following remarks regarding Eq. (12) of ad-
ditive two-point interaction for categorical variables.

(1) Similar to the notion of interaction in the binary case,
the notion of interaction for categorical variables is inherently
symmetric under the exchange of the variables (T1 : t1 → t ′

1)
and (T2 : t2 → t ′

2), i.e.,

Ia
1,2(t1t ′

1; t2t ′
2) = Ia

2,1(t2t ′
2; t1t ′

1). (A1)

(2) The interaction between the effect of T1 : t1 → t ′
1 on

Y and T2 : t2 → t ′
2 on Y is opposite in sign to the effect of

T1 : t ′
1 → t1 on Y (we swap t1 and t ′

1) and T2 : t2 → t ′
2 on Y ,

i.e.,

Ia
1,2(t1t ′

1; t2t ′
2) = −Ia

1,2(t ′
1t1; t2t ′

2). (A2)

For example, the interaction between the effect of turning on
variable T1 : 0 → 1 on Y and the effect of T2 : t2 → t ′

2 on Y , is
opposite in sign to the interaction between the effect of turning
off variable T1 : 1 → 0 on Y and the effect of T2 : t2 → t ′

2 on
Y .

(3) As a result of the above remark, swapping both cate-
gories yields the same interaction

Ia
1,2(t1t ′

1; t2t ′
2) = (−1)2Ia

1,2(t ′
1t1; t ′

2t2). (A3)

Finally, the additive two-point interaction between categor-
ical variables satisfies the following transitivity:

Proposition 1. Let T1, T2 be two categorical variables, let
{0, 1, 2} denote the labels of three categories of T1, and let
{0, 1} denote the labels of two categories of T2. Then, the
interactions satisfy transitivity, i.e.,

Ia
1,2(01; 01) + Ia

1,2(12; 01) = Ia
1,2(02; 01). (A4)

Heuristically, the result states that the sum of the effect on
Y of changing T1 from 0 to 1 and then changing T1 from 1 to
2 equals the effect on Y of changing T1 from 0 to 2 directly.
The same heuristic holds for the interaction with the effect of
T2 : 0 → 1 on Y as this effect is the same during all three steps
of the procedure.

Proof. We define the function f : {0, 1, 2} × {0, 1} → R as

f (t1, t2) := E(Y | T1 = t1, T2 = t2, T = 0). (A5)
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We may express the average treatment effect in terms
of f as ATET1:t1→t ′

1
(Y | T2 = t2, T = 0) = f (t ′

1, t2) − f (t1, t2).
This leads to the following expression for the interaction in
terms of f :

Ia
1,2(t1t ′

1; t2t ′
2) = [ f (t ′

1, t ′
2) − f (t1, t ′

2)] − [ f (t ′
1, t2) − f (t1, t2)].

(A6)

Equation (A4) now follows by writing out both sides:

Ia
1,2(01; 01) + Ia

1,2(12; 01)

= [ f (1, 1) − f (0, 1)] − [ f (1, 0) − f (0, 0)]

+[ f (2, 1) − f (1, 1)] − [ f (2, 0) − f (1, 0)]

= [ f (2, 1) − f (0, 1)] − [ f (2, 0) − f (0, 0)]

= Ia
1,2(02; 01).

This completes the proof. �
As an important corollary, we obtain a criterion for linear

dependence of the interaction Ia
1,2 on particular labels of the

categorical variables. The precise statement is the following.
Corollary 1. Let T1, T2 be two categorical variables, let

{0, 1, 2} denote the labels of three categories of T1, and let
{0, 1} denote the labels of two categories of T2. If

Ia
1,2(01; 01) = Ia

1,2(12; 01), (A7)

then the interaction Ia
1,2( ; 01) between the effect of T1 on Y

and the effect of T2 : 0 → 1 on Y depends linearly on the label
of the categorical variable T1, in the sense that

Ia
1,2(02; 01) = 2Ia

1,2(01; 01). (A8)

Thus, the 2 of the label 02 can be taken outside to multiply the
interaction leaving the label 01, hence the term linear.

Proof. This follows directly from Proposition 1. �
A similar statement holds for the interaction conditioned

on a particular covariate W = w, and when interchanging the
roles of T1 and T2 by considering two categories for T1 and
three for T2.

This result has a graphical interpretation in terms of the
following triangle:

2

0 1
i(01)

i(02)

i(12)

(A9)

where we denote the corresponding interaction by i(t1t ′
1) =

Ia
1,2(t1t ′

1; 01) which is represented by the length of the vertical
component of the arrow. For example, in the above picture
i(01) = 0 since the arrow is horizontal, and i(12) = i(02) as
the vertical components of both arrows have the same length.
Thus, the transitive relation

i(01) + i(12) = i(02) (A10)

allows us to draw this triangle. Under the condition of Corol-
lary 1, the vertical components of the arrow 0 → 1 and 1 → 2
are equal, i.e., i(01) = i(12), in which case the above triangle
is degenerate, i.e., a line segment. In conclusion, the linearity
of the dependence on the categorical variable T1 of the inter-
action Ia

1,2( ; 01) between the effect of T1 : 0 → 1 on Y and

the effect of T2 : 0 → 1 on Y , in the sense that

i(02) = 2i(01) (A11)

corresponds to degeneracy of the above triangle. This is a
geometrical criterion for linearity.

The notion of interaction as in Eq. (12) is independent of
the chosen labels for the categorical random variables T1, T2

whether they be numbers, farm animals, or names of cabinet
ministers. The interpretation of Eq. (A8) in terms of linearity
depends on the chosen labels since it forces them to appear in
the mathematical formula (A8). Naturally, the above discus-
sion admits a direct generalization to the case of categorical
variables describing more than three categories. In fact, all
results are formulated in this general setting already, apart
from assigning the particular labels {0, 1, 2} or {0, 1}.

APPENDIX B: SYMMETRY OF n-POINT INTERACTION

In this Appendix, we prove the symmetry under any per-
mutation of the variables Xi1 , . . . , Xin of the multiplicative
formulation of n-point interaction.

Proposition 2. Let K = {i1, . . . , in} ⊂ {0, 1, . . . , r} be a
subset of indices, and let σ be any of the n! permuta-
tions of {1, 2, . . . , n} that acts on the n-tuple K as σ (K ) =
σ (i1, . . . , in) = {iσ (1),...,σ (n)}. Then, we have

Im
i1,...,in = Im

σ (i1,...,in ). (B1)

Proof. Let J ⊂ K be a subset of j indices and recall that
e(n)

J = (ei1 , . . . , ein ) is the unique n-tuple such that eil = 1 if
il ∈ J and eil = 0 otherwise; in particular, this n-tuple con-
tains j ones and n − j zeros. The same property holds for the
n-tuple e(n)

σ (J ), where σ is any permutation of K . As a result, it
suffices to show that σ satisfies

Im
σ (i1,...,in )( j) = Im

i1,...,in ( j), (B2)

where

Im
i1,...,in =

n∏
j=0

Im
i1,...,in ( j), (B3)

i.e., that it fixes the n + 1 factors Im
i1,...,in ( j) of Im

i1,...,in separately.
But any permutation of K = {i1, . . . , in} simply permutes all
subsets J ⊂ K of fixed length �(J ) = j among each other.
This completes the proof. �

As a corollary, we deduce the general permutation symme-
try of the additive n-point interaction.

Corollary 2. Let K = {i1, . . . , in} ⊂ {1, 2, . . . , r} be a
subset, and let σ be any of the n! permutations of {1, 2, . . . , n}
acting on K as σ (K ) = σ (i1, . . . , in) = {iσ (1),...,σ (n)}. The ad-
ditive n-point interaction satisfies

Ia
i1,...,in = Ia

σ (i1,...,in ). (B4)

Proof. For the outcome Y = −E (X ), this follows directly
by combining Eqs. (22) and (24). For a general outcome Y , it
follows by the argument of Proposition 2. �

APPENDIX C: HAMMERSLEY-CLIFFORD
THEOREM FOR THE ISING MODEL

Recall the two-dimensional Ising model of spins {vi} taking
on the value ±1. As an example, we explicitly establish the
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FIG. 18. Estimates of two-point (top) and three-point (bottom)
interaction as a function of sample size, with noise σ 2 = 1. The
uncertainties on the estimates are derived using statistical bootstrap.
See Fig. 19 in Appendix E for a comparison of bin sizes for each of
the expectation values as the total sample size increases.

Hammersley-Clifford theorem of Sec. II F in this case by
verifying that its Hamiltonian

p(v) = 1

Z (T )
e−E (v) where E (v) = −

∑
i, j

Ji, jviv j (C1)

from Eq. (34) is locally, and hence globally, Markovian. To do
so, we denote by N the set of all spins in the system, by Ni

the set of (four) spins neighboring spin i, and we denote by
N−i the set of all spins in the system apart from spin i. The
probability p is locally Markovian if we have the equality

p(vi = ±1 | v j for j 	= i) = p(vi = ±1 | v j for j ∈ Ni ),

(C2)

for each i ∈ N . Fix a spin v0 and denote its neighbors by
N0 = {v1, v2, v3, v4}. We will check that in the conditional
probability on the left-hand side of Eq. (C2), one only needs

FIG. 19. Number of samples for each of the expectation values vs
total sample size. Top: for the two-point interaction I12. The variables
are distributed as T1 ∼ Binom(0.4) and T2 ∼ Binom(0.7) so that,
e.g., the bin size of (T1, T2) = (1, 0) is the smallest, whereas the one
of (T1, T2) = (0, 1) is the largest. Bottom: for the three-point inter-
action I123, where T3 ∼ Binom(0.5). The legend T1 = T2 = T3 = 1
and T1 = T2 = T3 = 0 are placed lowest and highest in the bar plot,
respectively.

to condition on the spins v1, v2, v3, v4. Here,

p
(
v0, v j | j ∈ N−0

) = 1

Z (T )
e− ∑

i, j 	=0 Ji, jviv j e−v0
∑4

i=1(J0,ivi+Ji,0vi ),

p
(
v j | j ∈ N−0

) = 1

Z (T )
e− ∑

i, j 	=0 Ji, jviv j

×[
e− ∑4

i=1(J0,ivi+Ji,0vi ) + e
∑4

i=1(J0,ivi+Ji,0vi )
]
.

It follows that their ratio, which is by definition the binary
probability distribution p(v0 | v j for j 	= i), is fully deter-
mined once one conditions on the four nearest neighbor spins
v1, v2, v3, v4 of v0. This proves the claim.

APPENDIX D: LINEAR REGRESSION

Let us consider the regression model with quadratic
and cubic terms, representing additive two- and three-point
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FIG. 20. Histograms of 100 000 (top) and 1 × 106 (bottom) es-
timates of the two-point interaction at T = 1.8, in an Ising system
of size L2 = 82. The interactions are computed directly from the
data using the nonparametric multiplicative formulation in Eq. (14).
As expected, with larger sample sizes, the peaks corresponding to
non-nearest neighbor interactions, around zero, and nearest neigh-
bor interactions, around 1

2T ≈ 0.28, become more distinct with less
noise.

interactions among the effects of the binary random variables
T1, T2, and T3 on Y :

Y = α0 + α1T1 + α2T2 + α3T3 + α12T1T2

+α13T1T3 + α23T2T3 + γ T1T2T3 + ε. (D1)

The noise term ε is normally distributed N (0, σ 2) with
σ 2 = 1. Without loss of generality, the ground truth three-
point interaction γ is set to twice the value of the noise,
i.e., γ = 2, while the two-point interactions are set to
α12, α13, α23 = 5.0,−2.5, 0, respectively. The zeroth order
coefficient α0 = −1.5 and the linear coefficient are set to
α1, α2, α3 = −2, 10, 0. We generate Ns = 40, 80, . . . , 1000
samples with T1 ∼ Binom(0.4), T2 ∼ Binom(0.7), T3 ∼
Binom(0.5), where we have fixed regression coefficients to
be as above. We then take as input (Y, T1, T2, T3), and com-
pute the expectation values in Eq. (10) to estimate the two-
and three-point interactions, for varying sample sizes Ns, and
compare with the ground truth values used to generate the
data.

FIG. 21. L2 = 82, T = 1.8, with conditioning on the nearest
neighbors to estimate Im

i j for both nearest and non-nearest neighbors.
In order to reduce clutter, the same number of non-nearest couplings
as nearest neighbors are shown (128). No translational invariance
is used. Top: The results over 100 000 samples, using Eq. (16) and
statistical bootstrap, as compared to bottom: the results over 20 000
samples. For the latter, approximately 30% of spins had no samples
in the p11 bin. This is due to the fact that it is very rare to find two
spins having value one, while their eight nearest neighbors all have
spin value 0, particularly at cold temperatures, as the total sample
size becomes smaller.

In order to ensure the estimates are robust, sufficiently
many subsamples have to be available for estimating each of
the four conditional expectation values appearing in Eq. (10).
As with any statistical estimator, having very few samples
for one of the conditional expectation values may result in
unstable estimates of the expectation value and its variance.
This will in turn introduce instabilities in the estimates of the
interactions. See Appendix E for a comparison of bin sizes
for each of the expectation values as the total sample size
increases.

The three two-point interactions and the three-point inter-
action among variables T1, T2, T3 are presented in Fig. 18.
The uncertainties on the estimates are derived using statistical
bootstrap [25]. One can readily observe that as the sample
size increases, the estimates converge to the correct value with
smaller variance as expected.

APPENDIX E: LINEAR REGRESSION:
BIN SIZES AS A FUNCTION OF SAMPLE SIZE

In Fig. 19 we plot the bin sizes for each of the four expec-
tation values appearing in Eq. (3) as the sample size grows.
When the total sample size is, e.g., Ns = 40, some of the
conditional expectation values are estimated using one or two
samples only and thus are unreliable.
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FIG. 22. L2 = 82, T = 2.2, with conditioning on the nearest
neighbors to estimate Im

i j for both nearest and non-nearest neighbors.
In order to reduce clutter, the same number of non-nearest couplings
as nearest neighbors are shown (128). No translational invariance
is used. Top: the results over 100 000 samples, using Eq. (16) and
statistical bootstrap, as compared to bottom: the results over 20 000
samples. At 20 000 samples we have power to accurately estimate
approximately 98% of non-nearest neighbor spin pairs.

APPENDIX F: INTERACTION ESTIMATES
PER SPIN PAIR FOR THE ISING MODEL

We present the histogram of two-point interactions among
all pairs of (non)-nearest neighbors, using Eq. (14) for Ising
states simulated at temperature T = 1.8 and L2 = 82. As fol-
lows from Fig. 20, as the total sample size increases the two
peaks corresponding to zero couplings between non-nearest

FIG. 23. L2 = 82, T = 2.2, with conditioning on the nearest
neighbors to estimate Im

i j for (non-)nearest neighbors. In order to
reduce clutter, the same number of non-nearest couplings as nearest
neighbors are shown (128). Similar to the results in Fig. 22, except
the total sample size is now 10 000 only. There is enough power to
accurately estimate Im

i j for all nearest neighbor pairs, and approxi-
mately 83% of the non-nearest neighbor pairs. In contrast, e.g., the
RBM does not train on 10 000 samples (see [12, Fig. 31]).

FIG. 24. L2 = 82, T = 1.8, with conditioning on the nearest
neighbors to estimate three-point (top) and four-point (bottom) inter-
action for the nearest neighbors. Due to the cold temperature, 85%
of triples can be estimated, all four points are estimated. If 100 000
samples are used 40% of the three points can be estimated, but they
are all accurately zero within statistics, similar to the top plot.

neighbor pairs and positive couplings at 1
2T ≈ 0.28 corre-

sponding to the nearest neighbor pairs become more distinct.
The estimates of two-point couplings for both the nearest

neighbor and non-nearest neighbor spin pairs, using 100 000
(top) and 20 000 (bottom) sample sizes, are presented in
Fig. 21. As mentioned in Sec. IV C, one can use smaller
sample sizes to estimate the couplings at the cost of re-
duced power. For colder temperatures and small sample sizes,

FIG. 25. Conditioning on the nearest neighbors to estimate Im
i j

substantially improves the estimates as compared to Fig. 4. The
square points are estimations of interactions and their uncertainty
using TL with 10 000 samples. The run time for each estimation
using TL is at the order of a few seconds.
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there may be no states in the p11 bin, for the case of non-
nearest neighbor spin pairs. For T = 1.8 over 20K samples,
we have power to accurately estimate all the nearest neigh-
bor couplings, but only have power to accurately estimate
approximately 70% of couplings between non-nearest neigh-
bor pairs. As expected, increasing the sample size to 100 K
improves the latter to 99%. Note that with real data sets,
one may have limitations on the sample size. For example,
as shown in Figs. 22 and 23, the nonparametric estimator,

combined with conditional independence among the variables
has nevertheless enabled us to obtain accurate estimates using
10 000 samples only. In contrast, e.g., the RBM does not train
well on Ising data with 10 000 samples (see [12, Fig. 31]).
Individual vanishing per spin triplet and quadruplet three- and
four-point interactions are presented in Fig. 24, for T = 1.8.

Figure 25 illustrates the estimates for nearest neighbor
interactions vs temperature with 10 000 total samples using
the TL framework.
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