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Existing methods for directly extracting the spectral phonon properties from molecular dynamics (MD)
simulations, like the normal mode analysis (NMA) and spectral energy density analysis, all require a very long
simulation time to produce reliable results with good convergence. So far, these methods are mainly applied
in studies using small systems and with empirical potentials, as the heavy computational load has greatly
hindered their further applications. Here we propose a perturbation-tracking (PT) method for directly probing the
mode-wise phonon anharmonic frequencies and lifetimes. We show that results obtained from our method are
in excellent agreement with those from the conventional NMA approach, using Si as the model material system.
Comparing with the NMA approach, the PT method offers a greater accuracy and significant improvement of
efficiency. It takes an average of two orders of magnitude and up to three orders of magnitude less simulation
time to obtain the same lifetime result of a phonon mode with intermediate to high accuracy. Meanwhile, our
method preserves all the dynamics of probed phonon mode from a particular state, which means it is capable of
studying the transient thermal transport processes in a nonequilibrium system. Besides the exceptional efficiency,
our method also comes with freedom to choose to probe only those modes of interest. This makes it ideal for use
with large systems and in computationally demanding applications, such as ab initio MD simulations. Moreover,
the PT method we propose here is very straightforward and easy to implement.

DOI: 10.1103/PhysRevE.102.053311

I. INTRODUCTION

Much attention has been given to the search of novel ma-
terials and structures with desired thermal transport properties
[1–3]. The thermal conductivity is closely related to the prop-
erties of phonons, which are the dominant heat carriers in
semiconductors and dielectrics. In order to correctly interpret
measured thermal conductivity results from experiments and
to seek a deeper understanding of the underlying mecha-
nisms, gaining insight into the spectral transport properties of
phonons has become a necessity [4–7].

Based on the Boltzmann transport equation (BTE) under
the relaxation time approximation (RTA), the lattice thermal
conductivity κ can be written in terms of the spectral phonon
lifetime (which is also called relaxation time or scattering
time) τ, the specific heat c, and the group velocity �v as

κμ = 1

V

∑
λ

τλcλ(�vλ · �eμ)2, (1)

where V is the system volume and �eμ is a unit vector along the
transport direction μ. The summation runs over all available
phonon modes λ ≡ (�k ν) with wave vector �k and polariza-
tion ν. The product of the group velocity and lifetime gives
the phonon mean free path, which is extensively used to ex-
plain different thermal transport phenomena such as the size
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effects. Two of the three key ingredients, the mode specific
heat and the group velocity can be readily calculated once the
phonon dispersion relations are known. To obtain the anhar-
monic vibrational frequencies is challenging but necessary for
improving the accuracy when calculating κ at a finite temper-
ature. The remaining difficulty is to accurately and efficiently
determine the spectral phonon lifetimes.

Methodologies for predicting phonon properties and the
lattice thermal conductivity have been under active develop-
ment in two main categories: anharmonic lattice dynamics
(ALD) calculations and molecular dynamics (MD) simula-
tions. Since the third-order ALD method was first proposed
to calculate the intrinsic three-phonon scattering rates via
Fermi’s golden rule, calculations based on ALD have been
carried out to predict phonon lifetimes from density functional
theory (DFT) [8,9] and combined with BTE to predict the
lattice thermal conductivity [10,11]. The ALD approach with
interatomic force constants determined from first principles or
from an empirical potential is now widely employed [4,5,12].
However, there are certain limitations associated with ALD
calculations. For instance, the approach is based on pertur-
bation theory, which gives accurate results at a relatively low
temperature. But it may fail at high temperatures or in strongly
anharmonic systems [13,14], given that only three-phonon or
at most four-phonon processes are considered [15–17].

Approaches based on molecular dynamics (MD) sim-
ulations on the other hand have advantages over ALD
calculations at high temperatures since full orders of anhar-
monicity are naturally incorporated. Other issues related to
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anharmonic effects, such as imaginary phonon frequencies
solved from lattice dynamics calculations [14,18], can also be
easily handled through MD simulations at a finite temperature
[19]. Anharmonic phonon frequencies have been determined
either indirectly by solving the dynamical matrix with force
constants obtained from an MD simulation or directly through
Fourier analysis of the statistical result from a simulation
run. For the indirect approach, Kong proposed a Green’s
function method to construct the dynamical matrix based on
the fluctuation-dissipation theorem [20]. Hellman et al. de-
veloped a temperature-dependent effective potential (TDEP)
method [19,21] to subsume anharmonic effects in the effective
force constants. The TDEP method was applied in ab initio
molecular dynamics (AIMD) due to its efficiency. For the
direct approach, the two most commonly adopted methods
are the time domain normal mode analysis (NMA) [22–24]
and the spectral energy density (SED) analysis [25–28]. Both
the anharmonic phonon frequencies and phonon lifetimes can
be extracted using either one of the two methods, which
are basically equivalent [28,29]. In the time domain NMA,
a time history of the normal mode amplitudes or mode en-
ergy is obtained by projecting the atomic trajectories onto
each phonon mode in a system. The phonon lifetime of each
mode is extracted by fitting the autocorrelation result to an
exponential decay curve. If only the potential energy is used,
the autocorrelation function gives a decay curve with oscilla-
tions, from which the anharmonic phonon frequency can be
extracted. In the SED analysis, the kinetic energy of a single
phonon mode or multiple modes with the same wave vector is
calculated in the frequency domain through Fourier transform.
The resulting time average gives a Lorentzian function for
each phonon mode with its peak position as the frequency and
full width at half maximum as inverse of the phonon lifetime.
There are other MD simulation techniques and schemes for
predicting lattice thermal conductivities such as the approach-
to-equilibrium method [30–32], Green-Kubo method [33–36],
and the direct method [37–40], which are more general and ca-
pable of dealing with complex material systems. Meanwhile,
theories were developed for spectral decomposition of the heat
flux for quantifying the contribution from various vibrational
modes towards the total thermal conductivity [41,42]. In this
work, we will limit our scope to the BTE-based phonon quasi-
particle picture and only focus on getting the key phonon
properties from MD simulations.

Most of the MD simulation studies for direct extraction
of the spectral phonon properties especially those involv-
ing phonon lifetimes have been conducted using empirical
potentials because of the high computational cost. Existing
methods, whether based on autocorrelation function or SED,
all require a long simulation time—usually hundreds of pi-
coseconds to several nanoseconds—to produce reliable results
with good convergence. This has greatly limited their ap-
plications in AIMD simulations. As a trade-off, the system
size has to be very small [25,43,44], which often causes
strong size effects that result in underestimation of the ther-
mal conductivity. It is possible to accelerate the convergence
process and improve result fitting from additional theoretical
approaches [45], but it can be quite complicated and diffi-
cult to implement. Meanwhile, the reduction in the required
simulation time is still limited as the auxiliary calculations do

not change the method itself. Moreover, for methods that rely
on averaging to suppress the background noise from thermal
fluctuations, the final result essentially reflects the overall
statistical average and individual phonon processes on small
timescales have all been washed away.

In this work, we propose a perturbation-tracking (PT)
method to directly extract the spectral phonon properties from
MD simulations. Unlike the statistics-based NMA or SED
analysis, our method preserves all the dynamics of a decay
process and offers great flexibility and exceptionally high
efficiency for studying individual phonon modes of interest.
The remaining article is structured as follows: In Sec. II,
we introduce the PT method along with its theoretical back-
ground. Results from the PT method versus those from the
time-domain NMA for the model material system Si are pre-
sented in Sec. III. We demonstrate the validity of the PT
method for extracting anharmonic vibrational frequencies and
phonon lifetimes, and provide detailed comparisons between
the two methods on accuracy and efficiency. In Sec. IV, we
further discuss the advantages, limitations, and application
scenarios of the PT method. Section V ends with a summary
and conclusions.

II. THEORETICAL BACKGROUND AND METHOD

Starting from lattice dynamics, the general equation of a
traveling wave in a crystal can be written as

�uλ

(
jl
t

)
= 1√

m( j)
Aλ�ελ( j)

× exp{i[−→k · −→r ( jl ) + ϕλ − ωλt]}, (2)

where �uλ( jl t ) is the time-dependent displacement of atom
j in the unit cell l under the influence of a vibrational mode
λ, A is the wave amplitude factor, m is the atomic mass,
�r is the equilibrium position, ϕ is the relative phase, ω is
the angular frequency, and �ε is the displacement vector. The
angular frequency and the displacement vector are obtained by
solving the eigenvalue problem, ω2

λ�ελ = D̄(�k)�ελ, with D̄ being
the dynamical matrix. Within the harmonic approximation,
the total displacement is a linear superposition of all available
waves of different phonon modes as

�u
(

jl
t

)
=

∑
λ

�uλ

(
jl
t

)
. (3)

It is convenient to describe a lattice wave in reciprocal space
by using the normal mode coordinate (NMC), which can be
calculated from

Qλ(t ) =
∑

jl

√
m( j)

N
exp[−i

−→
k · −→r ( jl )]�ε∗

λ( j) · �u
(

jl
t

)
, (4)

where N is the number of lattice points and the asterisk super-
script denotes the complex conjugate. For the harmonic wave
of a phonon normal mode, Q oscillates over time as

Qλ(t ) = Qλ(0) exp [−iωλt]. (5)

In the presence of lattice anharmonicity, anharmonic inter-
actions dampen the oscillations, which is seen as spectral
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line broadening, and cause frequencies to shift from their
harmonic values. If the frequency shift and linewidth are rel-
atively small, the time-dependent NMC can be reintroduced
as

Pλ(t ) = Qλ(0) exp {−i[ωλ + 	λ − i
λ]t}, (6)

where 	 is the frequency shift and 
 is the linewidth. The
phonon lifetime and linewidth are related as

τλ = (2
λ)−1. (7)

The use of P is to distinguish from the measured Q at time
t because Eq. (6) describes the evolution of a phonon state
initially started from time 0 that decays over time. Neverthe-
less, phonons in each mode are not only being scattered to but
also created from other modes. The population of a phonon
mode, which is proportional to the mode’s energy, fluctu-
ates about a mean value due to multiple phonon processes.
At thermodynamic equilibrium, the average mode energy is
〈Eλ〉 = h̄ωλ(nλ + 1/2), where h̄ is reduced Planck’s constant
and n is the average phonon occupation number, which fol-
lows Bose-Einstein statistics. In the classical limit or for a
classical system, according to the equipartition theorem, it
reduces to

〈Eλ〉 = kBT, (8)

where kB is Boltzmann’s constant. The simultaneous creation
and annihilation of phonons at any moment gives a new state
starting from that moment. Because Q measures the current,
updated state, the time-dependent energy of a normal mode
can be calculated as

Eλ(t ) = Vλ(t ) + Kλ(t )

= 1
2ω2

λQ∗
λ(t )Qλ(t ) + 1

2 Q̇∗
λ(t )Q̇λ(t ), (9)

where V is the potential energy, K is the kinetic energy, and Q̇
is the time derivative of the NMC, which can be determined
from atomic velocities �̇u similar to Eq. (4):

Q̇λ(t ) =
∑

jl

√
m( j)

N
exp[−i

−→
k · −→r ( jl )]�ε∗

λ( j) · �̇u
(

jl
t

)
. (10)

Since 〈Vλ〉 = 〈Kλ〉, we have

〈Q∗
λ(t )Qλ(t )〉 = kBT

ωλ
2
. (11)

So the measured NMC sequence does not directly reflect
the decay of a particular normal mode state as described by
Eq. (6). In order to extract the effective decay rate of a normal
mode, the common way has been using a statistical approach,
such as the autocorrelation function (NMA) or SED analysis.
The method we propose here is, on the other hand, using a
different strategy.

The two NMCs, one in Eq. (4) that measures the current
phonon state and the other in Eq. (6) that describes a previous
decaying state are related as

Qλ(t ) = Pλ(t ) + Cλ(t )

= Qλ(0) exp
(−iωA

λ t
)

exp (−
λt ) + Cλ(t ), (12)

where ωA
λ = ωλ + 	λ is the anharmonic angular frequency

and C is a time-dependent complex number, introduced here
as an accumulated change in the NMC due to the newly
created phonons in mode λ. In order to reveal the oscillatory
and decaying behavior of a damped mode, the effect from C
needs to be eliminated. We introduce a perturbation χ to the
initial state of phonon mode λ:

Qp
λ(0) = Qλ(0) + χλ, (13)

where

χλ =
∑

jl

√
m( j)

N
exp[−i

−→
k · −→r ( jl )]�ε∗

λ( j) · �up
λ( jl ), (14)

with

�up
λ( jl ) = 1√

m( j)
Ap

λ�ελ( j) exp
{
i
[−→

k · −→r ( jl ) + ϕ
p
λ

]}
, (15)

in which Ap
λ is the amplitude and ϕ

p
λ is the relative phase of the

perturbation in real space. The corresponding displacement
field of the perturbed system at t = 0 is then

�up

(
jl
0

)
= �u

(
jl
0

)
+ �up

λ( jl ), (16)

and the velocity field is

�̇up

(
jl
0

)
= �̇u

(
jl
0

)
+ �̇up

λ( jl ), (17)

where

�̇up
λ( jl ) = −iωA

λ �up
λ( jl ). (18)

The perturbed system with Qp
λ(0) as the initial state of mode λ

is let to evolve in a separate simulation run, as a parallel sys-
tem to the original one. The initial states of all other phonon
modes together with other initial conditions are exactly the
same for the two parallel systems. For the same well-defined
mode, Qp

λ(0) also evolves according to Eq. (6) with the same
oscillatory and decay rate as Qλ(0). Similar to Eq. (12), for
the perturbed system, we have

Qp
λ(t ) = Qp

λ(0) exp
(−iωA

λ t
)

exp (−
λt ) + Cp
λ (t ), (19)

where the use of Cp with a superscript is to distinguish from
C in the original system. Although both of them are unknown,
they are different, since the evolution of the perturbed system
is different. Subtracting Eq. (12) from Eq. (19) we get

Qp
λ(t ) − Qλ(t ) = [

Qp
λ(0) − Qλ(0)

]
exp

(−iωA
λ t

)
exp (−
λt )

+ [
Cp

λ (t ) − Cλ(t )
]
. (20)

During a simulation run, atomic trajectories are updated at
discrete time steps and so are the normal mode coordinates
calculated. We also evaluate the term involving Cp and C in
a discrete form. The second term on the right-hand side of
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Eq. (20) can be expanded as

Cp
λ (tn) − Cλ(tn)

= [
ξ

p
λ (t1) − ξλ(t1)

]
exp

[
(n − 1)

( − iωA
λ − 
λ

)
dt

]
+ [

ξ
p
λ (t2) − ξλ(t2)

]
exp

[
(n − 2)

( − iωA
λ − 
λ

)
dt

]
...

+ [
ξ

p
λ (tn) − ξλ(tn)

]
exp

[
(n − n)

( − iωA
λ − 
λ

)
dt

]
, (21)

where tn = ndt means at time step n with dt being the length
of one time step, and ξλ is the change in the NMC for one time
step due to the newly created phonons in the original system
and satisfies

Qλ(tn) = Qλ(tn−1) exp
[( − iωA

λ − 
λ

)
dt

] + ξλ(tn). (22)

In the same way in the perturbed system,

Qp
λ(tn) = Qp

λ(tn−1) exp
[( − iωA

λ − 
λ

)
dt

] + ξ
p
λ (tn). (23)

The NMC that describes the normal mode state at the current
time step can be decomposed into two parts. The first one
comes from the mode state measured at the previous time
step with preserved relative phase information but decreased
amplitude. This corresponds to phonons of mode λ being
scattered into other modes. The second part, ξλ (or ξ

p
λ ), is from

all other phonon modes in the system. This corresponds to
the combined result of all anharmonic phonon processes that
created new phonons into mode λ since last time step (after the
previous NMC was measured). Because we only perturb one
phonon mode λ and the states of all other modes are exactly
the same right after perturbation, ξλ is equal to ξ

p
λ at t1. So

the first term on the right-hand side of Eq. (21) is always
zero. But starting from the second time step, the difference,
χλ, in the perturbed system begins to propagate towards all
other modes. The changes in others in turn makes ξ

p
λ deviate

from ξλ. Although the deviation is expected to increase with
further propagation of the difference, the existence of a large
number of different modes greatly dilutes the effect of χλ and
its impact on the states of other modes. It may take many
out-scattering and back-scattering cycles before the difference
between ξ

p
λ and ξλ becomes perceivable. The second part of

each term in Eq. (21) with the exponential decay indicates
that the effects from later time steps are more prominent than
those from earlier time steps. The total effect is that all terms
in Eq. (21) except for the first one will be nonzero and will in-
crease progressively from a tiny initial value. In order to keep
Cp

λ (tn) − Cλ(tn) small, we will give a small perturbation and
limit the time steps. For the time period before ξ

p
λ (tn) − ξλ(tn)

gets too large and if

Cp
λ (tn) − Cλ(tn) 	 Qp

λ(tn) − Qλ(tn), (24)

Eq. (20) may be approximated as

Qp
λ(t ) − Qλ(t )

= [
Qp

λ(0) − Qλ(0)
]

exp
(−iωA

λ t
)

exp (−
λt )

= χλ exp
(−iωA

λ t
)

exp (−
λt ). (25)

From this result we see that the initial perturbation to the
phonon mode λ evolves the same as that described by Eq. (6).
Since the underlying phonon properties are revealed through
this perturbation, we will also think of it and call it a “probe”.

From above, the angular frequency can be straightfor-
wardly obtained by tracking the relative phase change over
time. According to Eq. (25), the phase angle of Qp

λ(t ) − Qλ(t )
is

ψw
λ (t ) = tan−1

[(
Qp

λ

)∗
(t ) − Q∗

λ(t ) − Qp
λ(t ) + Qλ(t )(

Qp
λ

)∗
(t ) − Q∗

λ(t ) + Qp
λ(t ) − Qλ(t )

]
. (26)

However, because ψw
λ (t ) is wrapped and −π � ψw

λ (t ) < π ,
we need to further calculate the unwrapped phase angle ψλ(t ),
which differs from ψw

λ (t ) by an integer multiple of 2π :

ψλ(t ) = ψw
λ (t ) ± 2πm, (27)

where m is an integer. After unwrapping, ψλ(t ) gives a
sequence that changes linearly over time without abrupt dis-
continuities. So that

ωA
λ = ψλ(t ) − ψλ(0)

t
. (28)

The above works for all traveling modes with nonzero group
velocities. Nevertheless, for the stationary modes whose phase
angles do not change, we have to directly fit the time sequence
of Qp

λ(t ) − Qλ(t ) to a sinusoidal function to extract ωA
λ .

Next, in order to extract the lifetime τλ, we treat Qp
λ(t ) −

Qλ(t ) in a way similar to that calculating the mode energy by
taking [(

Qp
λ

)∗
(t ) − Q∗

λ(t )
][

Qp
λ(t ) − Qλ(t )

]
= χ∗

λχλ exp
(−iωA

λ t
)

exp
(
iωA

λ t
)

exp (−2
λt )

= χ∗
λχλ exp (−2
λt ). (29)

Rearranging and using Eq. (7), we have

exp (−t/τλ) = exp (−2
λt )

=
[(

Qp
λ

)∗
(t ) − Q∗

λ(t )
][

Qp
λ(t ) − Qλ(t )

]
χ∗

λχλ

. (30)

So far, only the potential part of the probe energy based on
atomic displacements has been utilized. The same τλ is also at-
tainable by considering the kinetic energy from velocities. But
in order to achieve the best result with minimum unwanted
oscillations, we find it more desirable to track the total probe
energy over time. In this way, we have

exp (−t/τλ) = 2EProbe
λ (t )

ωA
λωA

λχ∗
λχλ + χ̇∗

λ χ̇λ

, (31)

where χ̇λ = Q̇p
λ(0) − Q̇λ(0) is the kinetic counterpart of χλ,

and

2EProbe
λ (t ) = ωA

λωA
λ

[(
Qp

λ

)∗
(t ) − Q∗

λ(t )
][

Qp
λ(t ) − Qλ(t )

]
+ [(

Q̇p
λ

)∗
(t ) − Q̇∗

λ(t )
][

Q̇p
λ(t ) − Q̇λ(t )

]
. (32)

Now we are able to extract τλ by fitting the right-hand-side
expression of Eq. (30) or Eq. (31) to an exponential decay
curve.
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So we have given a detailed explanation and derivation of
the PT method. Its implementation procedure for MD simu-
lation is actually quite straightforward and looks much more
simplified. To probe a phonon mode λ, we first prepare the
system to be in a desired thermal state as a reference. Then
we create a parallel system by adding a small perturbation of
that mode to its reference state according to Eqs. (15)–(18).
In Eq. (15), the relative phase ϕ

p
λ can be arbitrary; for the

perturbation amplitude Ap
λ, we recommend it to be at least

three orders of magnitude smaller than the lattice parameter of
the material system being investigated for a minimum impact
on the probed mode. In practice, the harmonic frequency is
used instead of the anharmonic one in Eq. (18) to generate the
perturbation as ωA

λ is not known yet. Next, both the reference
and the perturbed system are to run for the same simulation
length, with both their atomic displacements and velocities
dumped at the same time steps for NMC calculations. After
that, ωA

λ can be obtained by either linear fitting, Eqs. (26)–
(28), or sinusoidal fitting of Qp

λ(t ) − Qλ(t ), and the mode’s
lifetime, τλ, readily extracted according to Eqs. (30)–(32).

III. RESULTS

In this section, we demonstrate the validity and unique
features of our method using silicon (Si), which has been
frequently adopted as a model material for studying the ther-
mal transport properties with different methods and conditions
[38–40,46]. The environment-dependent interatomic potential
(EDIP) [47] is chosen for the crystalline Si studied here be-
cause reasonably good thermal conductivity results have been
previously reported with this potential [24,40].

All our simulations have been performed with the classi-
cal MD code LAMMPS [48]. The velocity-Verlet integration
algorithm is used with a time step of 0.001 ps, which pro-
vides enough resolution to capture the highest-frequency
oscillations in our material system. A typical cubic supercell
containing 4096 atoms is employed with periodic boundary
conditions applied in all three directions. The lattice param-
eter, a, of Si we use is 0.5431 nm. To create the initial
perturbation, we choose a sufficiently small amplitude Ap

λ

of 2 × 10−5 for any phonon mode being probed. And the
harmonic frequency and displacement vectors of each mode
are calculated with the analytical lattice dynamics solver in
GULP [49]. Before data collection from the NVE (constant
number of atoms, volume and energy) ensemble, we have
made sure that the material system is well equilibrated at the
target temperature.

A. Validity and efficiency of the PT method for probing
phonon anharmonic frequencies

We first examine the validity of the PT approach start-
ing from the mode-wise anharmonic frequencies at a finite
temperature. In Fig. 1 we show comparison of the frequency
shifts of Si phonons in the [100] direction at 600 K obtained
from two different methods. The NMA results are extracted
from the oscillations of the autocorrelation function of the
potential energy of each normal mode, and the simulation run
length is 40 ps to ensure all results are fully converged. While
with the PT method, the simulation is run for 0.5 ps for each

FIG. 1. Comparison of frequency shifts of Si phonons at 600 K
in the [001] direction from four different polarization branches: (a)
TA, (b) LA, (c) LO, and (d) TO. The NMA results are plotted as
blue squares and those from the PT method are plotted as blue
crosses (these correspond to the left axis). The dispersion relations
are plotted as red curves (use the right axis).

individual phonon mode. The anharmonic frequency shifts are
plotted as a function of reduced wave vector, k/kmax, where
kmax = 2π/a, and the resulting dispersion relation of each
phonon branch is also plotted in the same figure. We see that
the results from the two methods agree very well. The largest
difference, which is at zone boundary for the TA (transverse
acoustic) branch and near zone center for the TO (transverse
optical) branch, is only about 3%.

Now that the PT method is capable of revealing the delicate
anharmonic frequency shifts with high accuracy, we continue
to check its efficiency. In Fig. 2 we show how accurate the
results the PT method provides are, as a function of simulation
run length. From each different polarization branch, we sam-
ple two phonon modes, one with a relatively low and the other
with a relatively high frequency. The anharmonic frequency
result of each mode at a certain simulation length is obtained
by fitting all previous data points directly probed during the
simulation to the linear or sinusoidal function according to
that described in the previous section. It is then normalized
and plotted as a % of the final converged value. We see that in
all cases the largest fluctuation appears in the first half phonon
vibration period. The results then converge rapidly with more
data points becoming available and are at more than 99%
convergence by the end of one vibrational cycle.

The initial fluctuation and time needed for achieving con-
vergence are quite mode frequency dependent. Modes with
higher frequencies converge faster because fitting accuracy is
proportional to how many cycles are included. In our Si case,
we find that with the PT method, a simulation length of 0.3
ps is enough for a fitted frequency result with 99.5% con-
vergence for the two low-frequency TA and LA (longitudinal
acoustic) modes we sampled. For the high-frequency TA and
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FIG. 2. Convergence of probed anharmonic frequencies with
simulation run length using the PT method. Two phonon modes
are sampled for each different polarization branch: (a) TA, (b) LA,
(c) LO, and (d) TO.

LA modes and other modes with higher frequencies, including
all LO (longitudinal optical) and TO modes, an even shorter
simulation time of 0.05 to 0.1 ps is enough for very accurate
results with less than 0.5% difference from the final converged
value.

So we have demonstrated the validity and efficiency of
our PT method for probing the anharmonic frequencies of
individual phonon modes. Our focus now is on extracting
mode-wise phonon lifetimes.

B. Characteristics and validity of the PT method
for probing phonon lifetimes

Some examples of the decay profiles obtained by the PT
method are presented in Fig. 3, in which we have included
results from three LA phonon modes with different vibrational
frequencies. We see that the PT method can give us a very
stable and consistent series of data points in the time period
from 0 to 10 ps, which allows us to generate excellent fitting
results. This is obtained right out of a single simulation run
without the need to be averaged like in the statistics-based
NMA method. One key benefit coming from it is that we are
able to keep track of all subtle changes in the probed mode
in real time, which is essential for studying the evolution of a
transient process. Nevertheless, there is an error accumulation
issue associated with the PT method, as we mentioned in the
previous section. The smooth decay signal becomes unstable
starting from 10 ps, and then abruptly changes its course. This
serves as a clear sign of error eruption, meaning all data points
from that moment on will be badly corrupted and shall not be
included for decay fitting.

The error accumulation behavior in the PT method is more
system-dependent rather than mode-dependent. Though the
three phonon modes shown in Fig. 3 in our Si model have
various frequencies and wavelengths, they almost experience

FIG. 3. Examples of the decay profiles of three LA phonon
modes from the PT method. The series of discrete symbols in differ-
ent colors are the total probe energy of each mode normalized by the
respective initial amplitude at t = 0 and each black line represents
the corresponding best exponential fit.

error eruption at the same time, all about 14 ps (marked by the
vertical dotted line) after creation of the initial perturbation.

Next, we plot comparison of the lifetimes of Si phonons in
the [100] direction at 600 K from the two different approaches
in Fig. 4. The NMA results, which have been averaged over
three independent simulation runs of 1.2 ns, are plotted as

FIG. 4. Comparison of phonon lifetimes of Si in the [100] di-
rection at 600 K obtained from the NMA (orange squares) and the
PT method (blue circles with error bars). Results from four different
polarization branches are presented: (a) TA, (b) LA, (c) LO, and
(d) TO.
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orange squares. And the PT results, each averaged over five
independent short runs, are plotted as blue circles. We only
include the error bars (standard deviation) from the PT method
here for clarity.

We see that except for several long-wavelength (small k)
phonon modes with large τ values, most of the results from
the two methods are in excellent agreement. It is worth men-
tioning that neither the NMA nor the PT method distinguishes
between the types of phonon scattering, such as normal, Umk-
lapp, three-phonon or higher order processes. The lifetimes
extracted here reflect the net effect from various phonon-
phonon interactions and all anharmonic contributions. For
short-wavelength TA modes and modes from the entire TO
branch, differences in the results from the two methods are all
within 15%; for short-wavelength LA modes and all modes
from the LO branch, differences are only as much as 5%. The
most distinguishable mismatch comes from a TA mode with a
reduced wave vector of 0.125. The result from our PT method
is almost twice as large as that from the NMA method. This is
not unexpected given that the uncertainty extent is much larger
than the mismatch itself. Because of the huge error bar, it has
to be plotted separately at a different scale. Another obvious
difference, coming from an LA mode with a reduced wave
vector of 0.25, is about 30%. But still, it is within the coverage
of the error bar. The large uncertainty mainly comes from the
long lifetime of the first long-wavelength modes in the TA
and LA branch. It is hard for these modes to find enough
partners for anharmonic interactions and the scattering rate
is unstable due to their relatively large phonon occupation
fluctuations. When the wave vector becomes larger, the error
bar decreases to a fairly small range, as a result of smoother
and more stable decay curves. Meanwhile, we find that the
entire decay profile down to near 0 like that of the 12.1 THz
LA mode example plotted in Fig. 3 is not necessarily needed
for an accurate fitting result. Fitting with data from a short
period of time comparable to the lifetime of the probed mode
is already enough to yield a reliable result with a minimal
level of error. Although error bars for the NMA results are
not shown here, they are actually larger than those from the
PT method, even after running for hundreds of times longer
simulation time. More details are provided in the following
section.

C. Accuracy and efficiency of the PT method comparing
with the NMA approach for extracting mode dependent

phonon lifetimes

We proceed to examine the accuracy of the results from
the two methods in more depth. First, we take an LA phonon
mode of intermediate frequency from Si as an example to
show the convergence of lifetime results with simulation run
length, which are presented in Fig. 5. The NMA result is plot-
ted in the left panel and that from the PT method is plotted in
the right panel for comparison. The average values (blue curve
with symbols) and the uncertainty band (two black curves) are
determined from multiple runs; we performed six independent
simulation runs with the NMA approach and five runs with
the PT method. It should be noted that the simulation lengths
(x axis) of the two subfigures are not on the same scale. We
see that the averaged NMA result gradually converges without

FIG. 5. Comparison of convergence of the lifetime result from
the NMA approach (left) and the PT method (right) with simulation
run length. Example of a Si LA mode of 12.05 THz. The blue curve
with symbols in each plot is the average from multiple runs and the
two black curves form an uncertainty band with its upper and lower
bound being one standard deviation away from the average.

showing much variation as the simulation runs longer, and
the deviation from converged value gets below 15% after
200 ps. However, the uncertainty band is quite large and is
still larger than that of using the PT method even after 1000
ps of simulation time. By contrast, the PT method produces
consistent results with very small uncertainty and super-short
convergence time, which is less than 2 ps.

In order to have a clearer view of how accurate the life-
time results the two methods can provide and how fast they
converge, we calculate the relative error (RE) as a function of
simulation run length t using the following expression:

RE(t ) = 1

τ c
λ

(
1

p − 1

p∑
i=1

(
τλ,i(t ) − τ c

λ

)2

)1/2

, (33)

where i indexes over p individual results from multiple runs
and τ c

λ is the final converged lifetime of phonon mode λ. The
calculated RE estimates the amount of variation involved in
the result of one simulation run with a confidence level of
about 68%, similar to that of one standard deviation calcu-
lation.

The Si results at 600 K from the two methods are plot-
ted in Fig. 6 for comparison. From each different dispersion
branch, we choose two phonon modes, one with a relatively
low frequency and one with a relatively high frequency, as
representatives. All of these are listed in Table I. Results of the
representative acoustic modes are plotted in Fig. 6(a). From
the large RE values in the left panel we see that lifetimes
obtained by the NMA approach can be quite inaccurate if
simulation run length and data sampling is not long enough.
This is especially severe for low-frequency modes with long
lifetimes. The RE values of TA-1 and LA-1 mode from 100 s
run time are as high as 120%, which then slowly drop down
with longer simulation length. But still, they are about 30
to 40% even after 1 ns run time. By comparison, the RE
values of the same modes by the PT approach (right panel)
are much smaller and decrease significantly faster. We find
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FIG. 6. Variation of the RE versus simulation run length calcu-
lated using Eq. (33) for Si phonon modes. Results from lifetimes
obtained by the NMA approach are plotted in the left panel and those
by the PT method are plotted in the right panel. (a) RE values for
sampled TA and LA modes. (b) RE values for sampled LO and TO
modes.

they are already lower than what by the NMA approach can
ever achieve after only 5 ps of simulation time, and this is
200 times more efficient. The reason for this huge difference
is that the NMA approach relies on averaging to cancel out the
noise brought by intense thermal fluctuations, while the PT
method is not based on statistics and the system-wide fluctua-
tions are already dealt with when calculating Qp

λ(t ) − Qλ(t ). It
should be noted that the PT method does not always produce
a more accurate result with longer simulation length. After
certain point, the relative error starts to rebound, as can be
clearly seen from the result of mode LA-1. This behavior
is directly related to the nature of the method and the way
postprocessing is done. We will have more detailed discussion
in the next section when we further compare the PT method
with the NMA approach.

For the acoustic modes with intermediate frequencies, e.g.,
LA-2 of Si, the errors are about one half smaller due to
their shorter phonon lifetimes. The LO and TO modes with

comparably short lifetimes too have about the same level of
RE, as shown in Fig. 6(b), though their vibrational frequencies
are much higher. Nevertheless, a quite long simulation run
is still needed for these modes to obtain converged lifetime
results using the NMA approach. In the meantime, we find
the level of RE and time for convergence of the results by the
PT method also decrease accordingly and proportionally with
the NMA results, which means the PT method is consistently
more accurate and efficient.

To quantify how much more efficient the PT method is
comparing with the conventional NMA approach for extract-
ing the lifetime of a single phonon mode, we proceed to
calculate the efficiency factor of using the PT method for each
sampled mode. We first determine how long a simulation run
time is required to achieve a RE that is below a certain level for
both of the two methods. Then the efficiency factor is obtained
as the ratio of the time needed by the NMA to that needed by
the PT method. Five RE levels ranging from 120% to 10% are
used for performance benchmarking. Results of all sampled
modes from Si are tabulated in Table I. We note that because
the initial RE values of mode TA-2 and LO-1 for both two
methods are already below 120%, their numbers for this level
are unavailable.

As can be seen in Table I, the efficiency factors for prob-
ing Si phonons are generally pretty high. The number varies
depending on the accuracy level, polarization, and lifetime of
a mode. For instance, the efficiency factor of mode LA-2 for
achieving a RE below 120% is 1238, which means simulation
time needed by the PT method is over a thousand times less
than that needed by the NMA approach. This has been quite a
big leap forward in performance for just a low-accuracy result.
The efficiency factor keeps increasing with the result being
more accurate and almost triples for a RE below 20%. After
that, it becomes difficult to further improve the accuracy with
the conventional NMA approach. The use of “>” sign in the
last column is because the NMA result fails to converge to
a RE below 10% after 1.2 ns of simulation run but the PT
result achieves so in only 0.16 ps; this makes the efficiency
factor on mode LA-2 greater than 7400. Similar numbers are
obtained for mode LO-2, which has the same polarization as
mode LA-2 and a very close frequency and lifetime. When it
comes to high-frequency modes, e.g., LO-1, the NMA shows
a much better performance, resulting in shorter convergence
time. Thus the PT efficiency factor drops to a moderate num-

TABLE I. List of sampled modes from different polarization branches of Si and efficiency factors of using the PT method to probe phonon
lifetimes at various accuracy levels.

For achieving a relative error that is below

Sampled mode Frequency (THz) 120% 80% 40% 20% 10%

TA-1 2.4 580 168 128 >190 >190
TA-2 7.0 – 487 1313 704 >470
LA-1 3.8 25 156 >120 – –
LA-2 12.1 1238 1649 1860 3851 >7400
LO-1 18.1 – 230 340 548 >2080
LO-2 14.5 1170 1580 2790 5285 >740
TO-1 18.1 1028 1146 620 1193 1289
TO-2 15.7 530 606 6672 595 >280

Average 156 203 185 498 >455
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ber of around several hundred for intermediate result accuracy.
We also see from the relatively low numbers with mode TA-1
and LA-1 that the PT method is less effective when dealing
with low-frequency acoustic modes because of the very long
lifetimes, which we have previously pointed out. In these two
cases, the PT method may only provide limited reduction in
computational cost by factors of tens to over a hundred for
results with low to intermediate accuracy. The numbers for the
remaining modes range from hundreds to several thousand.
We further estimate the average efficiency factors for each
accuracy level. We find an average number of about 200 is
to be expected for results with low accuracy and about 500 for
results with intermediate to high accuracy.

IV. DISCUSSION

The average efficiency factors presented in Table I are con-
servative estimations. Normally only one very long simulation
run is performed for use with the NMA approach since infor-
mation regarding all available modes has been included. But
the total simulation time depends on the longest length needed
by the main contributors to achieve good convergence. This
total time is usually significantly longer than that required
by short-lifetime modes, which means the actual efficiency
factors of the PT method will be considerably higher. How-
ever, for the same reason that the NMA takes care of all
modes in just one simulation run while the PT method handles
individual modes in separate short runs, the overall efficiency
factor, unlike the striking numbers for individual modes, is
expected to be much lower. It decreases proportionally with
increasing number of modes that need to be probed. Thus, the
efficiency advantage of the PT method will be offset when
dealing with hundreds or more modes in a system that has
many dispersion branches due to complex material structure.
In such situation, using the all-in-one NMA or SED analysis
will be more appropriate.

The essential difference between the PT method and
statistics-based methods is also seen in how the accuracy of
their results changes over time. The NMA approach offers
progressively more accurate results with increasing simulation
length, as more data sets become available for correlation and
averaging. It is worth noting that the optimal fitting length
in the NMA approach is significantly shorter than the whole
simulation run length. Although correlated data series can
be very long, only the first short period comparable to each
mode’s lifetime is used to produce results with best accuracy
and convergence. As for the PT method, the available fitting
length is the same as simulation length. We find that the accu-
racy of the results using the PT method only improves in the
first period of time, at the end of which the converged lifetime
with lowest level of error is achieved. After that, the accuracy
starts to worsen due to uncertainty from both extended fitting
length and error accumulation by the method itself. Taking the
acoustic mode LA-1 of Si as an example, the optimal fitting
length for the best result using the PT method is about 7 ps,
as is seen in Fig. 6(a) (right panel). This is far before the
occurrence of error eruption, which is at 14 ps. We also notice
that for a mode like LA-1 that decays slowly, the optimal
fitting length of 7 ps is much shorter than its long lifetime,
which is 30 ps. This shows that the PT method is well capable

of handling phonon modes with long lifetimes. Nevertheless,
if the available fitting length from a single simulation run is
too short and barely covers a small segment of the decay
profile, there could be considerable error in the fitted result.
In such a case, an average of multiple results obtained from
different runs can be taken to improve the accuracy. For most
of the modes that have relatively short lifetimes, the optimal
fitting length is slightly longer than the lifetime of each mode.

One major superiority of the PT method is its flexibility
for computationally expensive cases. Being able to efficiently
probe each phonon mode separately means freedom to choose
which ones we want. For a system of very large size that
cannot be handled by the conventional statistical approaches,
we can sparsely probe a proportion of the modes and estimate
the rest by extrapolation. In some cases, when only certain
modes are of interest, e.g., zone center optical modes excited
by laser pulses, we can sample only those we are interested in
without wasting resources on others.

There are further potential applications in which the PT
method is particularly useful. For instance, studying the re-
laxation of a nonequilibrium system requires that the transient
process is preserved. Approaches based on statistics corrupt
such processes during time averaging, whereas our PT method
responses to the changes and evolution in real time.

V. CONCLUSIONS

We have presented a PT method for probing spectral
phonon properties from MD simulations. The method first
creates a parallel system from the reference system by intro-
ducing a small perturbation to a normal mode of interest. The
perturbation is then used as a probe to track a mode’s evolution
from a particular state, which oscillates and decays over time.
The probe signal is obtained by comparing the normal mode
states of the two systems that are running side by side. In this
way, it cancels out the large noise of thermal fluctuations due
to concurrent phonon-phonon processes.

Results from the PT method are benchmarked against those
from the widely used NMA using EDIP Si as the model mate-
rial system. We find excellent agreement on both mode-wise
anharmonic frequencies and phonon lifetimes, demonstrating
the validity of the method. Results are produced consistently
by our method with small uncertainty and short convergence
time. We find a simulation length of 0.3 ps for low-frequency
acoustic or 0.05 to 0.1 ps for high-frequency acoustic and
all optical modes is enough to yield a 99.5% converged
anharmonic frequency in our Si case. Unlike the existing
statistics-based approaches that require a very long simulation
time for averaging to suppress the large noise, our method is
highly efficient. We find that an average factor of about 200
to 500 reduction in computational effort is to be expected
when using the PT method to extract the lifetime of a Si
phonon mode with various accuracy levels. For most of the
mid- to high-frequency modes (with relatively short lifetimes)
we have studied, the PT method can reduce the simulation
time needed by three orders of magnitude, comparing with
the NMA approach. The general trend is that the efficiency
advantage increases with the demand for a higher accuracy.
However, our method is not suitable for handling too many
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modes as the efficiency also decreases proportionally with
increasing number of modes.

In the meantime, the flexibility of our method allows one
to choose to probe only certain modes of interest from a
large system or in a particular case. Another important feature
of the method is its ability to keep track of the changes in
a normal mode state in real time, which makes it ideal for
studying the transient process in a nonequilibrium system. We
expect the PT method to be equally well applicable to AIMD
simulations, where interatomic interactions are determined
from first principles. Our much higher efficiency than that of
the conventional approaches can greatly ease the burden from
expensive DFT-based calculations.
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