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Non-Gaussian distribution of displacements for Lennard-Jones particles in equilibrium
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Most mesoscale simulation methods assume Gaussian distributions of velocity-like quantities. These quan-
tities are not true velocities, however, but rather time-averaged velocities or displacements of particles. We
show that there is a large range of coarse-graining scales where the assumption of a Gaussian distribution of
these displacements fails, and a more complex distribution is required to adequately express these distribution
functions of displacements.
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I. INTRODUCTION

A key result of statistical mechanics is that in equilibrium
the velocity distribution of particles is given by a Gaus-
sian distribution function, typically referred to as the the
Maxwell-Boltzmann distribution and that all the velocities are
uncorrelated. Here we focus on the distribution of particle dis-
placements which is often implicitly needed, but has received
far less attention. As these displacements can be viewed as
time averages of the velocities it is typically assumed that this
result generalizes and the particle displacements also follow a
Gaussian distribution.

We report here the surprising result that particle displace-
ments can deviate from a Gaussian distribution. We believe
that this is the first time this unexpected result has been re-
ported in the literature. This can be of practical relevance for
mesoscale simulation methods like Brownian dynamics [1],
dissipative particle dynamics [2], stochastic rotation dynamics
[3], and the lattice Boltzmann method [4,5] to name but a
few. This is because for these methods particle velocities and
particle displacements in a finite time are often implicitly
equated.

The question of physical displacements of particles has
not received a lot of attention but is of general interest in
statistical mechanics, as the short-term displacement is often
modelled by a random walk. This has been discussed recently
by Masoliver et al. [6,7].

The paper is structured as follows: In Sec. II, we show
the numerical evidence that the distribution of displacements
indeed differs from a Gaussian distribution. This is followed
by a detailed description of the simulation setup used to
obtain the MD data given in Sec. III. In Sec. IV, we show
the mismatch between the MD data and the single Gaussian
distribution of displacements. We propose two novel proba-
bility distribution functions which could be adjusted to match
the second- and fourth-order moments of the measured data,
respectively, in Secs. V and VI. Since one could be concerned
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that the good agreement between the experiments and theory
was solely caused by matching these two moments, in Sec. V
we show the results for a ballistic-diffusive Gaussian mixture
mode, which also matches those two moments but the agree-
ment is much poorer. This demonstrates that the agreement
between the Poisson weighted sum of Gaussians probability
distribution function proposed in Sec. VI and the measured
distribution function is better than simply matching those two
moments. Finally, some concluding remarks and future work
are mentioned in Sec. VII.

II. MOTIVATION

In typical hydrodynamic systems, the locally conserved
quantities are relaxed toward local equilibrium much faster
than quantities that can be relaxed through collisions. For
these systems the distribution of particle velocities will be
close to a Maxwell-Boltzmann distribution corresponding to
the local conserved quantities density, momentum, and tem-
perature. This observation is at the core of many descriptions
of nonequilibrium thermodynamics. For the Boltzmann equa-
tion it leads to an approximation which allows the two-particle
collision term to be replaced by a simpler term of relaxing
the velocity distribution toward the local Maxwellian distri-
bution. This is known as the Bhatnagar-Gross-Krook (BGK)
approximation [8]. In the BGK formalism, the entire local
relaxation depends on the details of small deviations from the
local equilibrium distribution function.

In the molecular dynamics lattice gas (MDLG) [9,10]
context, we measure the distribution function of parti-
cle displacements from an underlying MD simulations of
Lennard-Jones particles in equilibrium and thus, obtain an
equilibrium distribution function for a specific simulation.
For the particular application of measuring collisions, it is
required to obtain precise measurements of the deviations
from equilibrium. We noticed that the collision operator did
not appear to relax toward the equilibrium distribution func-
tion predicted by Parsa et al. [9], but instead it relaxes to a
distribution that deviates by a few percentages. This deviation
was not previously noticed but since now we were examining
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small deviations from equilibrium, these differences between
the predicted and measured equilibrium distributions have the
same order of magnitude as the nonequilibrium contributions
to the distribution function. Since the only ingredient in the
analytical prediction of the MDLG equilibrium distribution
is the distribution of particle displacements [9], we began to
question the validity of the assumption that the distribution
of the local displacements was truly given by a Maxwell-
Boltzmann distribution, as expected.

This lead us to investigate the distribution of displacements
for different finite time steps. For very short time steps �t , the
effect of particle interactions can be neglected and particles
simply displace according to their current velocity. Therefore,
the particle displacement can be expressed as a function of the
velocity and given by δx j = v j�t for particle j. The Maxwell-
Boltzmann distribution function Pv (v j ) as given in Eq. (12)
can be expressed in terms of the particle displacements for the
limiting case of �t → 0 as

P(δx j ) = Pv

(
δx j

�t

)
, (1)

and it is given by a Gaussian distribution which is fully defined
by its mean value and standard deviation. Without loss of
generality, we set the net momentum of our simulations to
zero which corresponds to zero mean value of the distribution
function. The standard deviation can be obtained in two ways:
measured directly from the MD simulation or approximated
from the velocity autocorrelation function. By calculating the
mean-squared displacement from an analytical approximation
of the velocity autocorrelation function, we obtain a simple
dependence including only one parameter. Details about the
performed MD simulations, the derivation of the Gaussian
distribution function and discussion of the results can be found
in Secs. III and IV.

Regardless of the used method to obtain the mean-squared
displacement, Fig. 1 shows that the resulting Gaussian
functions—PG-T (Xi ) and PG-M (Xi ), do not agree with the
measured MD probability distribution function PMD(Xi ). As
suspected from our studies of the deviation of nonequilibrium
systems from equilibrium [11], the equilibrium distribution
functions are close to a Gaussian distribution but they show
noticeable deviations from the MD data. We emphasize that
even though the disagreement between the two displacement
functions is indeed small, it is of the same order of magnitude
or larger than the deviation of a nonequilibrium distribution
function.

In this paper, we investigate for which time steps the
displacement distribution is given by a Maxwell-Boltzmann
distribution and when a better description is needed. We found
that the Maxwell-Boltzmann function is only valid in the
extreme ballistic regime for very short �t , and in the ex-
treme diffusive regime for very large �t . In an intermediate
regime, the Maxwellian does not capture the distribution of
the displacements and introduces an error to the collision op-
erator. This is a practical issue that matters in many mesoscale
methods such as Brownian dynamics [1], dissipative particle
dynamics [2], stochastic rotation dynamics [3], and the lattice
Boltzmann method [4,5].
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FIG. 1. (a) Displacements probability distribution functions. The
solid line (black) depicts a PDF obtained from an MD simulation
of LJ particles in equilibrium. The lines with empty or full squares
(red) illustrate a Gaussian probability distribution function defined in
Eq. (17) with mean-squared displacement obtained from the velocity
autocorrelation function as given in Eq. (21) and with mean-squared
displacement fitted directly to the MD data, respectively. Only the
data for positive velocities have been depicted due to symmetry.
Panel (b) shows the difference between the distributions per interval
Xi as defined in Eq. (23). The presented data are for the standard pa-
rameters used in the paper and a coarse-grained time step �t = 3.2.

III. SIMULATION SETUP

We are investigating a system of particles interacting with
the standard 6-12 Lennard-Jones (LJ) intermolecular potential
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defined as

VLJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6]
(2)

with ε being the potential well depth, σ is the distance at
which the inter-particle potential goes to zero, and r is the
distance between two particles. We set the particle mass to
m = 1 and the LJ particle diameter to σ = 1. All the MD
simulations were executed using the open-source molecular
dynamics software LAMMPS [12,13] that is developed by
Sandia National Laboratories. We performed multiple MD
simulations with N = 99 856 particles in a two-dimensional
(2D) square with length L = 1000 LJ units which corresponds
to an area fraction of φ = 0.078387. The area fraction φ for
circular LJ particles with radius a = σ/2 is defined as the
product of the particle surface area and the number of parti-
cles, divided by the square length L of the simulation box. The
simulations were initialised with homogeneously distributed
particles having kinetic energy that corresponds to a tempera-
ture of 20 in LJ units. The the kinetic theory considered in this
paper (in particular the Poisson distribution of collision times)
are expected to be correct only for dilute systems. Therefore,
we focus our attention here on simulations of fairly dilute
systems.

We have executed simulations of two-dimensional systems
instead of three-dimensional ones to minimize computational
cost. For a three-dimensional MD simulation to be computa-
tionally feasible, we need to reduce the domain size and adjust
the number of particles to recover the same volume fraction
as the 2D area fraction mentioned earlier. By reducing the
domain size, we put a constraint on the coarse-grained time
step �t and therefore, on the maximum average particle dis-
placement. Thus, it will not be possible to simulate extremely
large time steps due to periodic image problems occurring
when the particle displacements are larger than half of the
simulation length L.

According to the definition of the LJ interaction potential
in Eq. (2), we write the timescale as

τLJ =
√

mσ 2

ε
, (3)

which corresponds to the time in which a particle with ki-
netic energy of half the potential energy well ε traverses one
diameter σ of a LJ particle. It is worth noting that there is
a second timescale, i.e., the time it takes a particle with the
kinetic energy of 1/2 kBT to transverse the diameter σ of a LJ
particle, which is given by

τth =
√

mσ 2

kBT
(4)

and we call this scale a thermal timescale. Note that for the
temperature of 20 in LJ units, the thermal timescale is smaller
than the LJ timescale τLJ by factor of 1/

√
20 ≈ 0.22.

The simulation setup characterizes a standard semidilute
gas in equilibrium with average velocity fixed to zero,

Nuα =
N∑

j=1

v j,α = 0, (5)

with N being the total number of MD particles.

TABLE I. LAMMPS simulation details.

MD step MD output Output Total MD Total MD
�t size (τLJ) frequency number time steps time (τLJ)

0.01 0.0001 100 5000 500 000 50
0.1 0.0001 1 000 5000 5 000 000 500
0.2 0.0001 2 000 5000 10 000 000 1 000
0.4 0.0001 4 000 5000 20 000 000 2 000
0.8 0.0001 8 000 2000 16 000 000 1 600
1.6 0.0001 16 000 2000 32 000 000 3 200
3.2 0.0001 32 000 2000 64 000 000 6 400
6.4 0.0001 64 000 2000 128 000 000 12 800
12.8 0.0001 128 000 2000 256 000 000 25 600
25.6 0.0001 256 000 2000 512 000 000 51 200

The MD step size is set to 0.0001 τLJ with total MD sim-
ulation time varying from 50 τLJ to 51 200 τLJ as shown in
Table I. We chose a very small MD step size to ensure high
accuracy of the MD simulation data. Our goal is to obtain
results for MD simulations with wide regime range—from
simulations with mean free time smaller than the time be-
tween collisions (ballistic regime) to simulations with much
larger mean free path than the time step (diffusive regime).
We define the dimensionless coarse-grained time step �t as a
product of the MD step size and the MD output frequency. The
coarse-grained time step �t varies from 0.01 τLJ to 25.6 τLJ.
To ensure the MD simulations have reached equilibrium state
before we start collecting data, the initial 1 200 000 MD
iterations (120 τLJ) were discarded. The values depicted in
Table I do not include the discarded iterations for clarity.
The total number of saved MD iterations of per-particle data
differs depending on the coarse-grained time step �t . For
simulations with smaller time step �t ∈ [0.01, 0.4], we saved
5000 coarse-grained iterations, while for simulations with
�t ∈ [0.8, 25.6], the output number was reduced to 2000
coarse-grained iterations due to their high computational cost.
This corresponds to 500 000 MD time steps for the MD sim-
ulation with the smallest executed coarse-grained time step
�t = 0.01, and 512 000 000 MD time steps for the simulation
with the largest time step �t = 25.6. Since we are simulating
a semidilute gas in equilibrium, the total simulation number is
irrelevant for the physical properties of the system, because
they do not change once the gas has reached equilibrium
state. However, we run the simulations for large number of
iterations in order to produce large amounts of data which
ensures sufficient averaging. An overview of the simulation
parameters is given in Table I.

All the simulations were executed in parallel using 32
processors on the Darwin cluster at Los Alamos National
Laboratory. The longest executed test case with �t = 25.6
took about 120 h wall-clock-time. Depending on the number
of coarse-grained iterations (2000 or 5000) the output data
files took 20- or 50-GB memory space, respectively. The total
memory space used for all LAMMPS simulations exceeded
350 GB.

We have performed a standard molecular dynamics sim-
ulation without the use of a thermostat. In the LAMMPS
nomenclature this is called a NVE integration. The name is
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related to a microcanonical ensamble NVE which is character-
ized by a constant number of particles (N), a constant volume
(V), and a constant energy (E). By using the NVE thermostat,
we sample from the microcanonical ensamble, thus we avoid
any possible complications coming from the altered equations
of motion a thermostat could introduce. However, to ensure
the validity of the MD simulations, we have tested the canoni-
cal NVT thermostat which was used in earlier papers [9,14]
and we have obtained equivalent results. For the canonical
ensamble (NVT) the number of particle (N), volume (V) and
temperature (T) are constant while the energy of the system
fluctuates.

We analyze the collected MD data to recover the proba-
bility distribution function (PDF) P(δx) of the displacements
δx. To obtain an estimate for P(δx), we define the particle
displacement δx j (t ) as

δx j,α (t + �t ) = x j,α (t ) − x j,α (t + �t ), (6)

where x j,α (t ) is the position of particle j at time t , and α refers
to the spatial coordinates α ∈ {X,Y } in 2D.

Two probability distribution functions can be compared in
different ways: In principle, the PDF is defined as a function or
it can be defined through an infinite set of moments. Given the
experimental data set, we are of course limited in how well we
can estimate the PDF. Therefore, here we use a combination
of both approaches.

To obtain the full PDF description, we define a histogram
H (Xi ) for the discrete displacement intervals Xi as follows:

H (Xi ) =
∑T

t=0

∑N
j=1 �Xi (δx j (t ))

T N
, (7)

with number of MD particles N , number of the coarse-grained
time steps T and with �Xi (δx j (t )) being defined as

�Xi (δx j (t )) =
{

1, if δx j (t ) ∈ Xi

0, otherwise. (8)

Xi is a histogram bin and corresponds to a range of ri �
δx < ri+1 with i number of bins. In the current publication,
we use i = 200 number of bins with equal bin width for a
certain coarse-grained time step. The bin width depends on
the particle displacements and varies for different time step
�t . The first and the last intervals are open at the edges to
ensure that there are no empty bins in the histogram and
that all possible displacements have been accounted for. This
histogram has the following property:∑

i

H (Xi ) = 1. (9)

We can then estimate the probability

P(δx ∈ Xi ) =
∫

δx∈Xi

P(δx) dδx ≈ H (Xi ). (10)

Even though the MD data are in discrete space and by using
the collected MD displacements we are able to construct only
a histogram as given in Eq. (7), we will further recall it as a
probability distribution function. By collecting very large data
sets for each coarse-grained time step �t , we ensure that all
histograms are very fine grained and thus agree very well with
the underlying PDF as expressed in Eq. (10).

In our MD simulation setup, momentum is conserved. This
means that we can also define the momentum through the
displacements in addition to Eq. (5). We have

uα = 〈δx j,α〉
�t

=
∑N

j=1 δx j,α

N�t
=
∑N

j=1 v j,α

N
, (11)

which are all equivalent. Even though, we have performed
simulations with zero initial velocity we could obtain re-
sults for different mean velocities uα by applying a Galilean
transformation.

IV. GAUSSIAN DISTRIBUTION FUNCTION

The first theory for the probability distribution function of
the displacements that we consider follows the assumption
made by Parsa et al. [9]. For very short times the particle dis-
placement is given by the velocity v j of the particle j as δx j =
v j�t . Thus, we can write lim�t→0 P(δx j ) = Pv (δx j/�t ) using
the probability distribution of the velocity given by

Pv (v j ) = 1

[2πkBT ]d/2
exp

[
(v j − u j )2

2kBT

]
, (12)

where d is the number of dimensions and kBT is temperature
of the system with kB being the Boltzmann constant. Equation
(12) is also known as the Maxwell-Boltzmann distribution
which approximates the probability of particle moving in a
certain direction. It holds for very short times �t where the
mean free time between two collisions is much shorter than
the time step �t . In this regime, particles undergo simple
ballistic motion and the mean-squared displacement in one
dimension is

〈(δxα )2〉ball = 2kBT (�t )2. (13)

Then the probability for collisionless displacements is

Pball(δx) = 1

[2πkBT (�t )2]d/2
exp

[
− (δx − u�t )2

2kBT (�t )2

]
. (14)

In a diffusive regime, the times are much longer than the
mean free time and the particles undergo multiple collisions
between time steps. Using the self-diffusion constant D, we
write the mean-squared displacement in one dimension as

〈(δxα )2〉diff = 2dD(�t ). (15)

The probability distribution function of the displacements is
given by

Pdiff (δx) = 1

[4πdD(�t )]d/2
exp

[
− (δx − u�t )2

4dD(�t )

]
. (16)

Since both limiting cases are given by a Gaussian distribution
function as shown in Eqs. (14) and (16), Parsa et al. [9]
suggested that the intermediate probabilities can be well ap-
proximated by a single Gaussian distribution defined as

PG(δx) = 1

[2π〈(δxα )2〉]d/2
exp

[
− (δx − u�t )2

2〈(δxα )2〉
]
, (17)

with a mean-squared displacement 〈(δxα )2〉 which can be ob-
tained theoretically or can be measured directly from an MD
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simulation. The displacement of a particle is given by

δx =
∫ �t

0
v(t ) dt . (18)

Now, for a simple semidilute gas system, we express the
mean-squared displacement as a function of the velocity auto-
correlation function,

〈(δxα )2〉 =
〈∫

dt
∫

dt ′v(t )v(t ′)
〉

=
∫

dt
∫

dt ′〈v(t − t ′)v(0)〉

=
∫ �t

−�t
(�t − δt )〈v(δt )v(0)〉 dδt

= 2
∫ �t

0
(�t − δt )〈v(δt )v(0)〉 dδt . (19)

For gases the velocity autocorrelation function is usually esti-
mated by an exponential decay,

〈vα (δt )vα (0)〉 = kBT exp

(
−�t

τ

)
, (20)

where kBT is the temperature of the semidilute gas in LJ units
and τ is an exponential decay constant which approximates
the mean free time [15–19]. The velocity autocorrelation func-
tion for the simulated gas system is depicted in Fig. 2(a).
We have approximated the mean free time to τ ≈ 0.728,
which gives a good prediction of the velocity autocorrelation
function for early times. As shown in Fig. 2(a), the velocity
autocorrelation function has long range contributions for later
times (�t > 4.0) that is typical for two-dimensional systems
[15–19]. The deviations resulting from the long-time tails
are noticeable only for later times and larger displacements.
In this work, we focus on results for �t = 3.2, where the
velocity autocorrelation function is well approximated by an
exponential decay as defined in Eq. (20). For simplicity, we
will therefore neglect the long-time tails shown in Fig. 2(a).

Now, the theoretical mean-squared displacement can be
calculated according to Eq. (19) as

〈(δxα )2〉 = 2kBT τ 2

[
exp

(
−�t

τ

)
+ �t

τ
− 1

]
. (21)

As shown in Fig. 2(b), this prediction recovers the mean-
squared displacement very well. There are small deviations
for later times which are not visible in log-log scale. These
deviations are result of the long-time tails of the velocity au-
tocorrelation function mentioned previously. This completes
the definition of the Gaussian distribution function model
using a mean-squared displacement obtained from Eq. (21).
In general, 〈(δxα )2〉 can be also measured from the MD simu-
lations. Later, we compare the Gaussian distribution functions
obtained using these two approaches.

To estimate how good this PDF matches the MD data,
we transform the formulation of P(δx) from continuous to
discrete using a histogram as defined in Eq. (10). This is
realized by integrating the probability distribution function

FIG. 2. (a) Velocity autocorrelation function measured from an
MD simulation compared to an exponential decay with τ ≈ 0.728 as
given in Eq. (20). The long-time tails are typical for two-dimensional
systems [15–19]. (b) The mean-squared displacement directly mea-
sured from an MD simulation is compared to the theoretical value
given in Eq. (21). Notice the two scaling regimes: 〈(δxα )2〉 ∝ �t for
a ballistic regime with small times and 〈(δxα )2〉 ∝ �t2 for a diffusive
regime with large times.

over predefined intervals Xi as

H (Xi ) =
∫ ri+1

ri

P(δx) dδx

= 1

2

[
erf

(
ri

σ
√

2

)
− erf

(
ri+1

σ
√

2

)]
, (22)
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where Xi corresponds to a rage of ri � δx < ri+1 with num-
ber of bins i = 200. erf (ri ) is an error function encountered
in integrating the normal distribution function with standard
deviation σ and mean equal to zero. Using a histogram to
compare two PDFs is a convenient method to analyze pre-
cisely where two or more distributing functions diverge.

To analyze how well the Gaussian distribution function fits
the MD displacements in the transition regime, we consider a
time step of �t = 3.2. In Fig. 1(a), the MD displacements
(black line) are plotted alongside a Gaussian distribution
function PG-T (Xi ) with theoretical mean-squared displace-
ment (red dashed line with empty squares) and a Gaussian
distribution function PG-M (Xi ) with measured mean-squared
displacement (red line with full squares). Both Gaussian dis-
tribution functions give an adequate prediction of the MD
displacements distribution function; however, there are vis-
ible discrepancies at about 5%. Even though the deviations
between the MD data and the proposed Gaussian distribution
functions are small, they are of significant importance when
examining nonequilibrium behavior and looking at small de-
viations from equilibrium.

Since the deviations between the Gaussian PDFs and the
MD simulation data are relatively small, the following func-
tion is used to quantify more precisely the discrepancies:

K (Xi ) = K (R ‖ Q) = R(Xi ) log

[
R(Xi )

Q(Xi )

]
, (23)

where R(Xi ) and Q(Xi ) are probability distributions over an
interval Xi. By performing a sum over all the bins Xi, we
obtain the well-known Kullback-Leibler (KL) divergence [20]
defined as

DKL(R ‖ Q) =
∑

i

R(Xi ) log

[
R(Xi )

Q(Xi )

]
. (24)

The KL divergence measures the discrepancies of one proba-
bility distribution function to another. It is always nonnegative
DKL(R ‖ Q) � 0 or equal to zero if and only if the probability
distribution functions are identical R(Xi ) = Q(Xi ) [20].

In Fig. 1(b), we show the discrepancies between the Gaus-
sian probability distribution functions and the MD data per
bin element Xi measured using Eq. (23). The solid line (black)
depicts K (PMD ‖ PMD) which is zero by construction. The
lines with full or empty symbols (red) display the divergence
between the MD data and the Gaussian distribution functions
with theoretical or measured mean-squared displacement, re-
spectively. Note here that the K (Xi ) measure identifies both
positive and negative deviations (which is necessary, since
the integral of both probability distribution functions is 1)
but as long as there is any deviation, the integral (or sum) in
Eq. (24) always leads to a positive value. We can see a clear
structure in the error of the MD data and the two Gaussian
probability distribution functions. Thus, we conclude that a
single Gaussian distribution function with the same standard
deviation, being measured or theoretically obtained from the
velocity autocorrelation function, differs significantly from
the MD data in the intermediate regime.

The Kullback-Leibler divergence of the PDF models and
the MD data are illustrated in Fig. 3. The divergence is
calculated for a variety of time steps �t ∈ [0.01, 25.6]. In

FIG. 3. Kullback-Leibler divergence results: Empty or full
squares (red) for DKL(PMD ‖ PG-T ) and DKL(PMD ‖ PG-M ) discussed
in Sec. IV; empty or full circles (green) for DKL(PMD ‖ PBDM-T )
and DKL(PMD ‖ PBDM-M ) discussed in Sec. V; empty or full trian-
gles (blue) for DKL(PMD ‖ PWSG-T ) and DKL(PMD ‖ PWSG-λ1 ), and ×
symbols (yellow) for DKL(PMD ‖ PWSG-λ2 ) discussed in Sec. VI. The
DKL(PMD ‖ PMD) divergence (black line) is zero by definition and it
is shown just as a comparison. All displacements PDFs show small
error for very small �t (ballistic regime) and for large �t (diffusive
regime). However, in the transition regime only the PWSG-λ2 (Xi )
distribution function with average number of collisions λ2 gives a
satisfactory description of the measured MD distribution function.
The KL divergence is calculated for all time steps �t ∈ [0.01, 25.6]
considered in this publication.

the current section, we focus on the two KL divergence
measures DKL(PMD ‖ PG-T ) and DKL(PMD ‖ PG-M ) depicted
by lines with full or empty squares (red), respectively. As
expected, for purely ballistic test cases the constructed Gaus-
sian distribution functions match very well the PDF obtained
from MD data. In the transition regime, the estimated di-
vergence increases rapidly and reaches a peak at �t = 3.2,
which indicates that the MD displacement function cannot be
captured using a single Gaussian distribution function. For
�t = 25.6, the K (PMD ‖ PG-M ) divergence is close to zero
and we conclude that the simulation has reached diffusive
regime. For some of the considered time steps, PG-M (Xi )
delivers slightly better results in comparison to PG-T (Xi ) but
the improvement is not significant. For the particular case
of �t = 3.2, there is no visible difference between the two
Gaussian distribution functions, which explains the complete
overlap of the K (PMD ‖ PG-T ) and K (PMD ‖ PG-M ) results
shown in Fig. 1(b).

To obtain a better theoretical formulation for the distribu-
tion of the equilibrium LJ displacements, we need to analyze
rigorously the displacements’ distribution function obtained
from the MD data. One way to distinguish between two
distribution functions is by looking at their moments. By esti-
mating the PDF using the moments of the MD displacements,
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we eliminate the small error introduced by the histogram in
Eq. (10). From the MD simulation data, we calculate the kth
moment as

μk = 〈(δx)k〉. (25)

Since we are looking at an ensemble average of particle dis-
placements, the moments μk can be averaged in space and in
time, leading to the following approximation

μk =
∑T

t=1

∑N
j=1[x j (t + �t ) − x j (t )]k

T N
(26)

with N being the number of MD particles and T being the
number of the coarse-grained time steps. The zeroth moment
is given simply by the normalization as μ0 = 1. The first
moment defines the average velocity uα , which in our sim-
ulation setup is zero and leads to zero first- and third-order
moments μ1 = μ3 = 0 due to symmetry. The second moment
μ2 is known in statistics as the variance or the mean-squared
displacement and is given by μ2 = 〈(δx)2〉. The fourth mo-
ment μ4 = 〈(δx)4〉 is called kurtosis and it is a measure for
the “tailedness” of a probability distribution function.

A probability distribution function is defined uniquely
through an infinite set of moments. Generally, the better
moments match, the better the distributions agree, and the
higher order a moment is the less important it tends to be.
It is therefore reasonable that we examine the agreements of
the moments. The zeroth moment corresponds to normaliza-
tion and always matches. The second moment should always
match, but small errors can occur for theoretical distributions
that use Eq. (21). The fourth-order moments at this point are
unconstrained, and therefore the deviation of this moment
from the experimental one should give a good estimate of the
accuracy of the theoretical distribution. We therefore focus on
the first two nontrivial moments—μ2 and μ4. The moments
μ0, μ1, and μ3 have been measured for completeness, but
their value for LJ particles in equilibrium are expected to be
μ0 = 1 and μ1 = μ3 = 0 for symmetry reasons.

As mentioned previously, the probability distribution func-
tion PG(δx) in Eq. (17) could be calculated using a theoretical
or a measured 〈(δx)2〉. We measured the second and fourth
moments of the Gaussian distribution functions and compared
their deviation from the MD moments as shown in Fig. 4. The
error is calculated in percentage.

The Gaussian distribution function with theoretical mean-
squared displacement fails to reconstruct the second- and the
fourth-order moments. The second-order moment error, de-
picted with a dashed line (black), is relatively small (below
3%). This error rapidly increases with larger time steps and
reaches its highest point at �t = 25.6. The PG-T (δx) fourth-
order moment error is depicted in Fig. 4 as dashed line (red)
with empty squares. The μG-T

4 error is much larger than the
μG-T

2 error and increases very fast in the transition regime.
The second-order moment of PG−M(Xi ) matches the MD

second-order moment by construction. The fourth-order mo-
ment μG-M

4 , however, differs from the measured fourth-order
moment as shown in Fig. 4 (red line with full squares). For
�t ∈ [0.8, 1.6], PG-M (δx) has a slightly larger fourth-order
moment error than PG-T (δx). Unlike μG-T

4 , which does not
decrease with larger time steps, the μG-M

4 error is large in

FIG. 4. Second- and fourth-order moment error calculated be-
tween the MD simulation data and the theoretical probability
distribution functions. The second-order error is equivalent for all
theoretical PDF models. The fourth-order error varies: The PG-T (δx)
and PG-M (δx) errors are discussed in Sec. IV (red lines with empty
or full squares); the PBDM-T (δx) errors discussed in Sec. V (green
lines with circles); and the PWSG-T (δx) error is discussed in Sec. VI
(blue lines with triangles). For some of the proposed distribution
functions the second and the fourth-order moments have been fitted
to the measured MD moments. These PDFs have zero second- and
fourth-order error by construction, and, therefore, they have not been
depicted. The presented data are for the standard parameters used in
the paper and a time step �t = 3.2.

the transition regime and decreases to less than 1% for later
times. We assume that the larger μG-T

4 error is related to the
larger second-order moment error of PG-T (δx). Figure 4 shows
that the μG-M

4 error is very small for early and late times
which indicates that the Gaussian description with measured
mean-squared displacement is valid for extreme ballistic and
diffusive regimes.

Considering these results, we conclude that a single
Gaussian distribution function cannot recover the MD dis-
placements distribution function in a transition regime. In the
following section, we construct a Gaussian mixture model
which can be adjusted to capture better the MD simulation
data.

V. BALLISTIC-DIFFUSIVE DISTRIBUTION FUNCTION

Going back to the assumption made by Parsa et al. [9],
we take a slightly different approach by approximating the
displacements PDF using a Gaussian mixture model with two
components. The first component is a distribution function in
a ballistic regime given by Eq. (14), while the second compo-
nent is a distribution function in a diffusive regime defined in
Eq. (16). We call this formulation ballistic-diffusive mixture
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(BDM) model and define it as

PBDM(δx) = exp

(
−�t

τ

)
Pball(δx)

+
[

1 − exp

(
−�t

τ

)]
Pdiff (δx), (27)

where the ratio �t/τ relates to the average number of colli-
sions within a time interval �t . The mean free time τ can be
evaluated from the velocity autocorrelation function as given
in Eq. (20). As shown in Fig. 2(a), the mean free time is
estimated to τ ≈ 0.728 which agrees well with the measured
velocity autocorrelation function for early times.

In a transition regime, the BDM model receives contri-
butions from the ballistic and from the diffusive Gaussian
distribution functions. The mixing coefficient exp (−�t/τ )
depends on the time step and controls the ratio of the two
probability distribution functions. For infinite small or infinite
large time steps, PBDM(δx) is reduced to a single Gaussian
distribution given by Eq. (14) or Eq. (16), respectively.

For the BDM model in Eq. (27), the ballistic contribu-
tion is fully defined by the simulation setup with standard
deviation equal to 2kBT (�t )2 as given in Eq. (13). For the
diffusive part Pdiff (δx), one could attempt to simply relate
it to the self-diffusion constant D. This does not give the
correct second-order moment though. Instead, we generalize
the diffusive PDF from Eq. (16) as

Pdiff (δx) = 1[
2πσ 2

diff

]d/2 exp

[
− (δx − u�t )2

2σ 2
diff

]
, (28)

where σdiff is a free parameter and can be expressed as a
function of the second-order moment μ2 approximated by
Eq. (21)

μ2 =
∫ ∞

−∞
PBDM(δx)(δx)2 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)2 dδx

+
∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)2 dδx

= exp

(
−�t

τ

)
kBT (�t )2

+
[

1 − exp

(
−�t

τ

)]
σ 2

diff , (29)

with δx ∈ Xi. Now σdiff given by

σdiff =
√

μ2 − exp
(−�t

τ

)
kBT (�t )2[

1 − exp
(−�t

τ

)] . (30)

We examine the dependence of this diffusion constant on �t
in Fig. 6. Our original motivation would demand that D =
σ 2

diff/2�t is a constant. However, this is not the case and we
will see below that the BDM model only provides a modest
improvement over the single Gaussian description. From now
on, we will refer to this distribution function as theoretical
BDM and denote it as PBDM-T (Xi ), since the mean free time
τ and the mean-squared displacement are estimated using the
velocity autocorrelation function.

FIG. 5. (a) Displacements probability distribution functions. The
solid line (black) depicts a PDF obtained from an MD simulation
of LJ particles in equilibrium. The lines with empty or full cir-
cles illustrate the ballistic-diffusive distribution function defined in
Eq. (27) with mean-squared displacement obtained from the velocity
autocorrelation function as given in Eq. (21), and with mean-squared
displacement fitted directly to the MD data, respectively. Only the
data for positive velocities have been depicted due to symmetry.
Panel (b) shows the difference between the distributions per interval
Xi as defined in Eq. (23). The presented data are for the standard pa-
rameters used in the paper and a coarse-grained time step �t = 3.2.
The y axis has not been re-scaled for a better comparison with Fig. 1.

In Fig. 5(a), we show the resulting PBDM-T (Xi ) distribution
function, which resembles well the displacement distribution
function obtained from the MD simulation. To assess the
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FIG. 6. Dependence of the self-diffusion constant to the time
step �t . The diffusion D = σ 2

diff/2�t converges to a constant for
PBDM-T and PBDM-M , however, for early times it is not fixed. This
demonstrates that the BDM models do not capture the hydrodynam-
ics properties.

discrepancies between the theoretical BDM and the MD dis-
tribution function, we calculate K (PMD ‖ PBDM-T ) defined in
Eq. (23). The results are displayed in Fig. 5(b). The theo-
retical ballistic-diffusive probability distribution function with
�t = 3.2 demonstrates a significant improvement in compar-
ison to the single Gaussian distribution function shown in
Fig. 1. However, there are noticeable deviations between the
PDFs which we will investigate further.

The second- and fourth-order moment errors of the BDM
distribution function are depicted in Fig. 4. The error is
denoted as μBDM-T

2 (back dashed line) and μBDM-T
4 (green

line with empty circles). The second-order moment error is
equivalent to μG-T

2 by construction. This error comes from
the long tails of the velocity autocorrelation function shown
in Fig. 2(a), which are not resolved in the theoretical ap-
proximation of the mean-squared displacement. Overall, the
fourth-order moment error of the theoretical BDM model is
smaller than the one calculated for the two Gaussian mod-
els discussed in Sec. IV. However, for later times this error
increases and becomes as large as the theoretical Gaussian
distribution function error.

In order to reduce the error, we construct a second version
of the ballistic-diffusive mixture model where we fit the μ2

and μ4 moments directly to the MD data. This BDM model
does not rely solely on the approximation of the average
number of collisions (�t/τ ), which cannot be measured pre-
cisely and depends on the approximation made for the velocity
autocorrelation function.

In Sec. IV, we defined the mean-squared displacement
in terms of the velocity autocorrelation function given by
Eq. (19). Now, we define the fourth-order moment in a similar

way

μ4 = 〈(δxα )4〉

=
〈∫

dt1v(t1)
∫

dt2v(t2)
∫

dt3v(t3)
∫

dt4v(t4)

〉

=
∫

dt1

∫
dt2

∫
dt3

∫
dt4〈v(t1)v(t2)v(t3)v(t4)〉, (31)

where we need the four-point time correlators for the velocity,
that are derived from the displacements given by Eq. (18).
This integral, if feasible, would allow us to calculate the-
oretically the fourth-order moment and thus obtain a better
approximation of the probability distribution function of dis-
placements. However, we are unaware of a reliable way to
derive this four-point velocity autocorrelation function and
therefore, we measure the second- and the fourth-order mo-
ments directly from the MD simulation instead.

We have to make the following adjustments to the BDM
probability distribution function, so that the second- and the
fourth-order moments match the MD data: First, instead of
calculating the mean-squared displacement from the velocity
autocorrelation function, we use the measured mean-squared
displacement for μ2 in Eq. (30); second, instead of calculat-
ing the mean free path τ from the velocity autocorrelation
function, we define it as a function of μ2 and μ4. Thus, the
PBDM-M (Xi ) distribution function has zero second- and fourth-
order moments error by construction.

The fourth-order moment then has the form

μ4 =
∫ ∞

−∞
PBDM(δx)(δx)4 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)4 dδx

+
∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)4 dδx

= 3

{
σ 4

diff + exp

(
−�t

τ

)[
(kBT (�t )2)2 − σ 4

diff

]}
(32)

with σdiff obtained using the measured second-order moment.
Now, τ is not a constant anymore and is given by

τ = −�t

ln
{ μ4

3 −σ 4
diff

[kBT (�t )2]2−σ 4
diff

} . (33)

Equations (30) and (33) define a system of linear equations
with two unknowns. The system has a unique solution for
σdiff and τ as a function of μ2, μ4, and �t . Thus, a sec-
ond version of the ballistic-diffusive distribution function is
derived and we refer to it as measured ballistic-diffusive dis-
tribution function PBDM-M (Xi ) because it is fully defined by
the MD moments. Details of the derivation are can be found in
Appendix A.

As mentioned earlier, we demand D = σ 2
diff/2�t to be a

constant, however, Fig. 6 illustrates that D converges to a
constant for both BDM models but is not fixed for early time
steps. This demonstrates that the BDM model does not capture
the physical diffusion properties.

The PBDM-M (Xi ) distribution function matches well the MD
data as depicted in Fig. 5(a). The K (PMD ‖ PBDM-T ) results
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are illustrated in Fig. 5(b) and they show that the divergence
between PBDM-M (Xi ) and PMD(Xi ) is smaller in comparison
to the theoretical BDM distribution function. However, there
is still error with well defined structure, which has to be
accounted for.

To gain a better understanding of how the BDM model
relates to the MD data and the Gaussian distribution func-
tions, we calculate the KL divergence for �t ∈ [0.01, 25.6]
as shown in Fig. 3. The dashed line with empty circles (green)
corresponds to the KL divergence DKL(PMD ‖ PBDM-T ), while
the solid line with full circles (green) illustrates the result of
DKL(PMD ‖ PBDM-M ). The divergence is decreased by more
than half compared to the KL divergence obtained from the
Gaussian distribution functions. However, there is still clear
error in the intermediate simulation regime.

Even though, we have fitted the second- and the fourth-
order moments, we still have an unsatisfying approximation
of the probability distribution function of the displacements.
Thus, we conclude that a Gaussian mixture cannot capture the
form of the distribution of the displacements for LJ particles in
equilibrium. The remaining dependence of D = σ 2

diff/2�t on
�t suggests that it is not appropriate to assume that particles
that have undergone just one collision will then follow a
diffusive displacement. Instead, it might be useful to consider
a range of distribution functions occurring after a number of
collisions. We will follow up this idea in the next section.

VI. POISSON WEIGHTED SUM OF GAUSSIAN
DISTRIBUTION FUNCTIONS

The number of collisions within a time interval plays an
important role in the definition of the probability distribution
function of displacements. We can prove this statement by
a thought experiment: Consider a number of particles in a
domain. When the particles undergo a collision their direction
and velocity changes. This in turn means that the collisions
also change the probability of certain displacements to occur.

In this section, we assume that the intermediate ballistic-
diffusive regime could be described as a Poisson weighted
sum of Gaussian distributions. One can consider that after a
time step �t the particles can be divided into groups depend-
ing on the number of collisions they have experienced. We
model these particle collisions using the Poisson probability
distribution function

P(δx) =
∞∑

c=0

e−λ λc

c!
, (34)

where λ is effectively the average number of collisions given
by

λ = �t

τ
, (35)

where τ ≈ 0.728 is the mean free time obtained using
Eq. (20). In this formulation the mean free time is considered
to be an exponential decay constant. In principle the timing
of the collisions should also be random (i.e., given by a
Poisson process), but the resulting integrals over the collision
times do not admit analytical solutions. Assuming that the
collisions are evenly spaced may introduce a small error, but
it makes the resulting displacements after c collisions again

Gaussian, which simplifies the application of our results. For
details on arbitrary collision occurring at random time refer to
Appendix B.

With this approximation the Poisson weighted sum of
Gaussians (WSG) model is then given as

PWSG(δx) =
∞∑

c=0

e−λ λc

c!

√
(λ + 1)√

2π (c + 1)〈(δx)2〉

× exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(36)

for displacements δx in one dimension. In extreme regimes,
being purely ballistic or purely diffusive, the probability dis-
tribution function PWSG(δx) is reduced to a single Gaussian
distribution given by Eq. (14) or Eq. (16), respectively. How-
ever, in an intermediate regime, we will have contributions
from multiple Gaussian distribution functions weighted by a
Poisson distribution function.

By using the definition of the average number of collisions
given in Eq. (35) and obtaining the mean free time and the
mean-squared displacement based on the velocity autocorre-
lation function, we recover a fully defined theoretical version
of the Poisson WSG model which we refer to as PWSG-T(Xi ).
This probability distribution function is illustrated in Fig. 7(a)
by a dashed line with empty triangles (blue). PWSG-T(Xi )
shows a good fit to the distribution function measured di-
rectly from the MD simulation but there are still visible
discrepancies.

In Figs. 7(b)–7(d), the K (PMD ‖ PWSG-T ) function is illus-
trated for three different time steps: �t = 0.01, �t = 0.1, and
�t = 3.2. The results for �t = 0.01 show noise coming from
the averaging procedure as one can see in Fig. 7(b). With
increasing the time step, we start seeing some structure in
the discrepancies between the theoretical weighted sum of
Gaussians and the MD probability distribution function as
shown in Fig. 7(c). For �t = 3.2, one can see that the rate
of discrepancies is as large as the one shown in Fig. 1(b) cal-
culated for the single Gaussian distribution function but with
an opposite sign. This observation suggests that the theoretical
WSG does not capture well the distribution of the measured
MD displacements.

To compare the overall performance of PWSG-T (X ), we cal-
culate its KL divergence as shown in Fig. 3 (blue dashed line
with empty triangles). The DKL(PMD ‖ PWSG-T ) divergence
is slightly smaller than the one measured for the Gaussian
models presented in Sec. IV.

In order to find the source of the large KL diver-
gence, we display the second- and fourth-order moments
error in Fig. 4. The second-order moment error is equiva-
lent to the error calculated for the other theoretical models
(μG-T

2 = μBDM-T
2 = μWSG-T

2 ). The PWSG-T (Xi ) fourth-order mo-
ment error, however, is larger than the fourth-order moment
error of the other two models. This is true especially for
the intermediate regime and explains the poor results of the
theoretical WSG model.

The average number of collisions λ plays an important
role in the definition of the BDM and WSG models. Unfor-
tunately, it is difficult to make a good approximation for λ

based on the velocity autocorrelation function. Therefore, to
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FIG. 7. (a) Displacements probability distribution functions. The solid line (black) depicts a PDF obtained from an MD simulation of LJ
particles in equilibrium. The dashed line (blue) with empty triangles illustrates the PDF of the theoretical WSG defined in Eq. (36) with λ

obtained using the theoretical velocity autocorrelation function from Eq. (20). The solid lines with full squares or x-symbols denote the Poisson
WSG distribution function with average number of collisions λ1 and λ2, respectively. The time step is �t = 3.2 and due to symmetry only the
data for positive velocities has been depicted. Panels (b)–(d) show the difference between the distributions per interval Xi as defined in Eq. (23)
for a variety of time steps: (b) �t = 0.01, (c) �t = 0.1, and (d) �t = 3.2. The presented data are for the standard parameters used in the paper.
The y axis of (a) and (d) have not been rescaled for a better comparison with Figs. 1 and 5.

reduce the error coming from the theoretical average number
of collisions and to eliminate the second- and the fourth-order
moment errors, we match these moments to the corresponding

moments measured directly from the MD simulations. We
derive the mean-squared displacement from the second-order
Gaussian integral

μ2 =
∫ ∞

−∞
PWSG(δx)(δx)2 dδx =

∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(δx)2 dδx (37)
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and the fourth-order moment from the fourth-order Gaussian
integral

μ4 =
∫ ∞

−∞
PWSG(δx)(δx)4 d (δx)

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉

× exp

[
− (λ + 1)(δx − u�t )2

2(c + 1)〈(δx)2〉
]

(δx)4 dδx

= 3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1]. (38)

This ensures that the μ2 and μ4 moments are fully recovered
from the WSG model. Now, we can express λ as a function of
these parameters and solve the resulting quadratic equation

3μ2
2

(λ + 1)2
[λ2 + 3λ + 1] − μ4 = 0 (39)

with μ2 = 〈(δx)2〉 for brevity. The quadratic equation has the
following solutions:

λ1,2 =
−9μ2

2 ±
√

3
[
15μ4

2 − 4μ2
2μ4

]+ 2μ4

2
[
3μ2

2 − μ4
] . (40)

Details of the derivation are omitted but they can be found in
Appendix B.

Since the mean-squared displacement and the fourth-order
moment depend wholly on the time step, we plot λ1(�t ),
λ2(�t ), and λ(�t ) from Eq. (35) as a function of �t , which
is depicted in Fig. 8. We see that the analytical expectation
for λ from Eq. (35) is in better agreement with λ2 for large
�t , while for small �t it is in better agreement with λ1. This
is intriguing, and we do not fully understand the significance
of this result. However, we should note here that both limits
�t → 0 and �t → ∞ lead to a simple Gaussian distribu-
tion. For small �t this is the case because there is only the
c = 0 term in the Poisson distribution matters, and for large
�t because the Poisson distribution will be sharply peaked
around c = λ, leading again to a simple Gaussian distribution
function.

PWSG-M (Xi ) has zero second- and fourth-order moment er-
rors by construction, because these moments have been fitted
to the MD simulation data.

The Kullback-Leibler divergence per element Xi for
PWSG-M

λ1
(Xi ) and PWSG-M

λ2
(Xi ) is illustrated in Figs. 7(b)–7(d).

In each figure, K (PMD ‖ PWSG-M
λ1

) and K (PMD ‖ PWSG-M
λ2

) are
depicted for different time step. Figure 7(b) shows the er-
ror of K (PMD ‖ PWSG-M

λ2
) for �t = 0.01 where the error is

very small and is dominated by noise due to the averaging
procedure. For the coarse-grained time step of �t = 0.1, the
error becomes larger and one sees small structures building;
however, the noise is still dominant in the error contribu-
tion. In Fig. 7(d), we show the K (PMD ‖ PWSG-M

λ2
) results for

�t = 3.2. There is a clear structure of the error for both
WSG-M probability distribution functions. In comparison to
the Gaussian and the ballistic-diffusive mixture models, the
WSG model with average number of collisions λ1 and λ2

shows much smaller error.

FIG. 8. Average number of collisions depending on the coarse-
grained time step �t . λ denotes the number of collisions obtained
from the velocity autocorrelation theory given in Eq. (35), which
is used for the calculation of the PWSG-T (Xi ) distribution func-
tion. λ1 and λ2 are solutions of the quadratic equation given in
Eq. (39). These values are used for the calculation of PWSG-M

λ1
(Xi )

and PWSG-M
λ2

(Xi ) distribution functions, respectively. λ1 and λ2 are
obtained using the second and the fourth-order moments measured
directly from the MD simulations.

For better comparison, we calculate the Kullback-Leibler
divergence for PWSG-M

λ1
(Xi ) and PWSG-M

λ2
(Xi ) and display the re-

sults in Fig. 3. The KL divergence for λ1 shows reduced error
for the transition regime. The second solution of Eq. (39) λ2,
however, shows KL divergence close to zero for all time steps.
This is a significant improvement comparing the results using
a single Gaussian or a mixture of two Gaussian distribution
functions.

The WSG probability distribution function strongly de-
pends on the calculation of the average number of collisions.
By using the theoretical average number of collisions obtained
from the velocity autocorrelation function, the KL divergence
DKL(PMD ‖ PWSG-T ) is almost as large as DKL(PMD ‖ PG)
for the Gaussian models. Even fitting the second- and the
fourth-order moments is not sufficient to obtain a good esti-
mation of the PDF obtained from the MD simulation. The KL
divergence for the WSG model with λ1 shows an improvement
by about a factor of 6 but it still large in the transition regime.
PWSG-M (Xi ) with λ2 gives a unique close to zero Kullback-
Leibler divergence owing to the WSG model and the correct
choice of the average number of collisions.

VII. CONCLUSIONS

In this article we have shown that displacement distribu-
tions are only of a Gaussian form for either very small times
or for long times. The transition region, where a different
distribution function is found roughly corresponds to the re-
gion where the motion of particles transitions from ballistic
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to diffusive regime. One signal of the deviation is the fourth-
order moment of the probability distribution function of
displacements.

By allowing for the distribution to be a mixture of two dis-
tribution functions, one corresponding to the ballistic regime,
and a second one to be selected to give the correct second- and
fourth-order moments gives a PDF that agrees better with the
MD distribution function, by about a factor of 3 measured by
the Kullback-Leibler divergence.

Using the same amount of information, i.e., the second-
and fourth-order moments, we found a different distribution
function that gives a nearly perfect fit. This distribution was
motivated by considering the distribution function as a mix-
ture of Gaussian distributions that have undergone a number
of collisions, which are given by a Poisson distribution.

We would like to add a small note of caution here, because
both in internal discussion and in comments from a referee
a pitfall in our thinking has emerged. It is tempting to think
of this transition regime in terms of nonequilibrium phe-
nomena, where non-Gaussian effects are commonly observed.
One might therefore suspect that in this transition regime
there might be a correlation in the velocities of the different
particles that lead to the correlations in the displacements.
However, the system considered in this paper is in equilib-
rium, and there are no correlations (at equal times) between
the momenta of the different particles. Correlations build up
only in time, through the collisions between the particles. So
the distribution of the velocities remains Gaussian at all times,
even when the distribution of the displacements becomes non-
Gaussian in this regime.

This analytical description is very promising for the
MDLG analysis of collision operators in nonequilibrium sys-
tems. It would be very helpful if a theoretical prediction of the
fourth-order moment equivalent to the second-order moment
derived from the velocity time correlation could be achieved,
because then one could obtain the displacement distribution
for all time steps through one measurement. The current ap-
proach still needs measurements of the fourth-order moment
for each time step. Furthermore, the current study was done
for a semidilute system. In future research, we anticipate to
establish up to what density the distribution with Poisson
weighted sum of Gaussians remains a valid description for the
displacement distribution.
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APPENDIX A: BALLISTIC-DIFFUSIVE DISTRIBUTION
FUNCTION

The BDM probability distribution function is defined in
Eq. (27). We derive the standard deviation σdiff from the
second-order Gaussian integral

μ2 =
∫ ∞

−∞
PBDM(δx)(δx)2 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)2 dδx +

∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)2 dδx

=
∫ ∞

−∞

exp
(−�t

τ

)
[2πkBT (�t )2]d/2

exp

[
− (δx)2

2kBT (�t )2

]
(δx)2 dδx +

∫ ∞

−∞

[
1 − exp

(−�t
τ

)]
[
2πσ 2

diff

]d/2 exp

[
− (δx)2

2σ 2
diff

]
(δx)2 dδx

= exp

(
−�t

τ

)
kBT (�t )2 +

[
1 − exp

(
−�t

τ

)]
σ 2

diff (A1)

for one dimension (d = 1). Now, we express the standard deviation of Pdiff (δx) as

σdiff =
√

μ2 − exp
(−�t

τ

)
kBT (�t )2[

1 − exp
(−�t

τ

)] . (A2)

This completes the definition of PBDM−T(Xi ) using μ2 and σdiff recovered by Eqs. (21) and (20), respectively.
In the second version of the BDM model, we match the second- and the fourth-order moments measured directly from

the MD simulations to the probability distribution function. The mean free time τ is not anymore a function of the velocity
autocorrelation function but a free parameter. The derivation of σdiff in Eqs. (A1) and (A2) is still valid. In addition, we fit the
fourth-order moment μ4 using the fourth-order Gaussian integral

μ4 =
∫ ∞

−∞
PBDM(δx)(δx)4 dδx

=
∫ ∞

−∞
exp

(
−�t

τ

)
Pball(δx)(δx)4 dδx +

∫ ∞

−∞

[
1 − exp

(
−�t

τ

)]
Pdiff (δx)(δx)4 dδx
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= 3
√

π

4

⎡
⎢⎣ (2kBT (�t )2)5/2

√
2πkBT (�t )2

exp (− �t
τ )

+
(
2σ 2

diff

)5/2

√
2πσ 2

diff

1−exp (− �t
τ )

⎤
⎥⎦

= 3 exp
(−�t

τ

)
(2kBT (�t )2)2

√
2πkBT (�t )2

4
√

2πkBT (�t )2
+

3
[
1 − exp

(−�t
τ

)](
2σ 2

diff

)2
√

2πσ 2
diff

4
√

2πσ 2
diff

= 3

[
σ 4

diff + exp

(
−�t

τ

)(
(kBT (�t )2)2 − σ 4

diff

)]
. (A3)

Now we derive the mean free time τ as a function of the time step �t , and the second- and the fourth-order moments measured
from the MD simulation

exp

(
−�t

τ

)
=

μ4

3 − σ 4
diff

(kBT (�t )2)2 − σ 4
diff

τ = −�t

ln
[ μ4

3 −σ 4
diff

(kBT (�t )2 )2−σ 4
diff

] . (A4)

Equations(A2) and (A4) define a system of linear equations with two unknowns. After substituting Eq. (A2) in Eq. (A4), we
found a unique solution for τ given by

exp

(
−�t

τ

)
= μ2

2 − μ4

3

kBT (�t )2[2μ2 − kBT (�t )2] − μ4

3

τ = −�t

ln
{

μ2
2− μ4

3

kBT (�t )2[2μ2−kBT (�t )2]− μ4
3

} . (A5)

The mean free time τ is a function of μ2, μ4, �t and the temperature of the gas given in LJ units. The standard deviation σdiff is
recovered using Eq. (A2).

APPENDIX B: POISSON WEIGHTED SUM OF GAUSSIAN DISTRIBUTION FUNCTIONS

Without collisions particles will move with a constant velocity drawn from a Gaussian distribution function. In this case, the
distribution of displacements is given by Pball(Xi ) in Eq. (14). If we ought to calculate the distribution of particle displacements
for particles that undergo a single collision at a random time 0 < tc < �t , we would define a sum of two Gaussian distributed
random numbers with a second moment given by

t2
c kBT + (�t + tc)2kBT = (

�t2 + 2t2
c − 2tc�t

)
kBT, (B1)

which is less than the collisionless case except for tc = 0 and tc = �t . The full distribution function in one dimension (d = 1) is
then

Pδxc (δx) =
∫ ∞

−∞

1[
2πkBT t2

c

]d/2 exp

[
− (δxc)2

2kBT t2
c

]
1[

2πkBT
(
�t2 − 2�t tc + 2t2

c

)]d/2 exp

[
− (δx − δxc)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)]dδδxc

= 1√
2πkBT

(
�t2 − 2�t tc + 2t2

c

) exp

[
− (δx)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)], (B2)

where δxc is the displacement for time 0 to tc, and (δx − δxc) for time tc to �t . This results to a Gaussian distribution function
with total displacement δx for a collision taking place at time tc. To ensure that the time tc is arbitrary and collisions at any time
will be uniformly likely, we average over all possible collision times given by

Pδtc (δx) = 1

�t

∫ �t

0
Pδxc (δx) dtc

= 1

�t

∫ �t

0

1√
2πkBT

(
�t2 − 2�t tc + 2t2

c

) exp

[
− (δx)2

2kBT
(
�t2 − 2�t tc + 2t2

c

)] dtc. (B3)

It is difficult to evaluate this integral analytically, but it can be solved numerically. However, this is the theory for only one
collision occurring at a random time tc. For the Poisson weighted sum of Gaussians in Sec. VI, we consider multiple collisions
at multiple arbitrary times, which leads to high-dimensional integrals, whose solution is out of the scope of this publication.
In addition to the numerical difficulty that multidimensional integrals pose, the resulting probability distribution functions are
non-Gaussian. To avoid this, we assume that the collisions are evenly distributed which may introduce a small error.
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The WSG probability distribution function is defined in Eq. (36) and recovers the second-order moment given by

μ2 =
∫ ∞

−∞
PWSG(δx)(δx)2 dδx

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx)2

2(c + 1)〈(δx)2〉
]

(δx)2 dδx

=
∞∑

c=0

e−λ λc

c!

(c + 1)〈(δx)2〉
λ + 1

= 〈(δx)2〉 e−λ

λ + 1

( ∞∑
c=0

cλc

c!
+

∞∑
c=0

λc

c!

)

= 〈(δx)2〉e−λ λ

λ + 1

( ∞∑
c=0

λc

c!
+ eλ

λ

)

= 〈(δx)2〉. (B4)

Analogously, one derives the fourth-order moment as

μ4 =
∫ ∞

−∞
P(δx)(δx)4 d (δx)

=
∫ ∞

−∞

∞∑
c=0

e−λ λc

c!

√
λ + 1√

2π (c + 1)〈(δx)2〉
exp

[
− (λ + 1)(δx)2

2(c + 1)〈(δx)2〉
]

(δx)4 dδx

=
∞∑

c=0

e−λ λc

c!

⎧⎨
⎩

3
√

π
[ 2(c+1)〈(δx)2〉

(λ+1)

]5/2

4
√

2π (c+1)〈(δx)2〉
(λ+1)

⎫⎬
⎭

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=0

λc(c2 + 2c + 1)

c!

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=0

λcc2

c!
+ 2e−λ

∞∑
c=0

λcc

c!
+ e−λ

∞∑
c=0

λc

c!

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λ

∞∑
c=1

λcc

(c − 1)!
+ 2λe−λ

∞∑
c=1

λc−1

(c − 1)!
+ 1

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λλ

d

dλ

∞∑
c=1

λc

(c − 1)!
+ 2λ + 1

]

= 3〈(δx)2〉2

(λ + 1)2

[
e−λλ

d

dλ
λeλ + λ + 1

]

= 3〈(δx)2〉2

(λ + 1)2
[e−λλ(eλ + λeλ) + 2λ + 1]

= 3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1]. (B5)

This description allows us to adjust λ, such that the fourth-order moment does converge to the measured MD value. We express
λ as a function of �t with mean-squared displacement and fourth-order moment measured directly from the MD simulation

3〈(δx)2〉2

(λ + 1)2
[λ2 + 3λ + 1] − μ4 = 0. (B6)

After solving this quadratic equation, we obtain the following solutions:

λ1,2 =
−9μ2

2 ±
√

3
[
15μ4

2 − 4μ2
2μ4

]+ 2μ4

2
[
3μ2

2 − μ4
] . (B7)
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