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Phase-field lattice Boltzmann model for interface tracking of a binary fluid system
based on the Allen-Cahn equation
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A lattice Boltzmann (LB) model is proposed to track the interface of binary fluid system based on the
conservative-form Allen-Cahn (A-C) equation for phase field. Utilizing an equilibrium distribution function
and a modified LB equation, this model is able to correctly recover the conservative A-C equation through
the Chapman-Enskog analysis. A series of two-dimensional (2D) and three-dimensional (3D) phase-capturing
benchmark tests have been conducted for validation, which include the diagonal translation of a circular interface,
the rigid-body rotation of a Zalesak disk, and the deformation of 2D circular interface and 3D spherical interface
in shear flows, all illustrating better accuracy and stability of the proposed model than the previous models tested.
By coupling the incompressible hydrodynamic equation, a stationary droplet, a spinodal decomposition, and the
Rayleigh-Taylor instability are simulated as well, showing the satisfying performance of the model in dealing
with complex interfaces of binary fluid systems.
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I. INTRODUCTION

Binary fluid flows are universal in both nature and en-
gineering applications. Major challenges in modeling such
flows include dealing with phase segregation and interface dy-
namics. Thus, it is desirable to develop efficient and accurate
methods for interface tracking. The common approaches used
to capture the interface can be classified into two categories:
sharp interface methods [1–3] and diffuse interface methods
[4–8]. In the sharp interface methods, the binary fluid is sep-
arated by the sharp interfaces, and the physical quantities,
including density, viscosity, and pressure, are discontinuous.
In the diffuse interface methods, the sharp interfaces are re-
placed by the transitional layers with finite thickness, across
which fluid properties are continuous, so that this type of
method has great advantage in dealing with binary fluid sys-
tems with the extremely complicated topological variation of
the interfaces [9].

The phase-field method, as a typical diffuse interface ap-
proach, has been of particular attention in recent years and
widely used in conventional Computational Fluid Dynam-
ics (CFD) solver [5,6] and lattice Boltzmann (LB) method
[10–14] to model complicated interfacial dynamics. In the
method, a continuous phase-field variable or so-called order
parameter governed by the advection–diffusion-type equation
is introduced to identify the different phases and calculate
certain properties at the interface such as gradients and cur-
vature, which might be required to model surface tension or
other interfacial properties. And, the thermodynamic behav-
ior of the binary fluid system is described by a free-energy
functional of the order parameter. Generally, there are two
forms of governing equations for the order parameter, i.e.,
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Cahn-Hilliard (C-H) equation [15,16] and Allen-Cahn (A-C)
equation [17,18]. The C-H equation introduces the chemical
potential in the diffusion term. Thus, its diffusion term in-
cludes a spatial derivative of fourth order which, numerically,
may lead to a reduction in the locality and the accuracy
[19,20]. As an alternative, the original Allen-Cahn equation
cannot conserve the mass. The conservative A-C equation was
first proposed by Sun and Beckemann [17] and then improved
by Chiu and Lin [18]. As compared to the C-H equation, the
conservative A-C equation is much easier to solve, especially
in which only a second-order algorithm is required for the
discretization of the diffusion term.

The LB method is a class of mesoscopic approaches
that has been developed into an effective numerical scheme
for simulating multiphase flows [21–25]. As compared to
the conventional CFD [5,6], it has demonstrated numerous
computational advantages, including high parallelization ef-
ficiency and simple boundary treatment [26–37]. In the past
years, some LB models have been proposed for solving C-H
equation and A-C equation. Zheng et al. [8,38] first pro-
posed an LB model that can exactly recover the C-H equation
[5,15,16,39–41]. Later on, Zu and He [42] reported a new LB
model that not only recovered the correct C-H equation but
also showed evident improvement in terms of accuracy and
stability. Liang et al. [12,43,44] also recovered the correct
C-H equation by introducing a time-derivative term in the
source term of the LB equation. It was found that, utilizing
multiple-relaxation-time version of LB model, the stability
and accuracy in the interface capturing can be further im-
proved [12,44]. In the study of Hu et al. [45], the LB model
was developed to solve the modified C-H equation in which a
source term with two Lagrange multipliers was introduced.
The numerical results showed that, for incompressible bi-
nary fluids, the method can preserve the total mass and the
volume of each component at the same time. To solve the
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conservative A-C equation, Geier et al. [46,47] first proposed
an LB algorithm, and showed better accuracy and higher
convergence rate over the C-H equation. Then, they further
presented a simple LB model for the A-C equation in three
dimensions. However, as commented by Ren et al. [48], the
model of Geier et al. [46,47] generated some artificial terms
in the recovered interfacial equation. In order to avoid the
additional terms, Ren et al. [48], Wang et al. [9], and Liang
et al. [49] independently developed three kinds of improved
Allen-Cahn-based LB models on the basis of the similar idea,
i.e., introducing a time-derivative term in the source term of
the LB equation. Moreover, Geier et al. [46], Wang et al.
[9], and Liang et al. [49] independently offered an alternative
algorithm to calculate the gradient of the order parameter
locally but meanwhile brought accuracy losses. In our opin-
ion, calculating the gradient of the order parameter locally, so
far, cannot really improve the efficiency of the MPI parallel
computing for binary fluid systems, because message passing
for the order parameter between the neighboring nodes of
distributed-memory computer is not avoidable for the existing
diffuse-interface models including phase-field LB models. For
an example, Laplacian of the order parameter or equivalent
forms always exists in surface tension force terms in the
existing diffuse-interface models [14,45,48,50–52], leading to
the necessity of such massage passing for the order parameter.
Recently, Begmohammadi et al. [53] conducted a comparative
investigation into the differences between the model proposed
by Geier et al. [46] and those by Ren et al. [48] and Wang
et al. [9], and found that the additional terms caused by the
model of Geier et al. [46] are actually negligible under certain
conditions so that the accuracy of interface tracking is roughly
similar for the different models. Moreover, they derived and
presented axisymmetric formulations for the model of Geier
et al. [46].

In the present work, we propose an LB model that can ex-
actly recover the A-C equation through the Chapman-Enskog
analysis. To solve velocity field, we utilize the velocity-based
incompressible hydrodynamic equation by Zu and He [42].
The accuracy and stability of the present model will be evalu-
ated and, meanwhile, compared with the previous LB models
by simulating a series of benchmark problems.

II. PHASE-FIELD BASED LB MODEL FOR INTERFACE
TRACKING

A. Governing equation: Conservative A-C equation

In the phase-field theory for the binary fluid system, an or-
der parameter φ is used as the indicator of different fluids, and
the thermodynamic behavior of the system can be described
by a Landau free-energy function [54] as

F =
∫

�

[ψ (∇φ) + k|∇φ|2/2]d�, (1)

where ψ (φ) is the bulk free-energy density, k is a positive
coefficient, k|∇φ|2/2 denotes the surface energy, and � rep-
resents the fluid domain of the system. For an isothermal
system, ψ (φ) can be written as [5,40]

ψ (φ) = β(φ − φA)2(φ − φB)2, (2)

where the coefficient β is related to the surface tension force
and the interfacial thickness; φA and φB are the values of φ in
the bulk of fluids A and B respectively [5,40,41,55].

The variation of the free energy leads to a chemical poten-
tial [5,40],

μφ = δF

δφ
=4β(φ−φA)(φ−φB)[φ−(φA+φB)/2]−k∇2φ.

(3)
Then, the equilibrium interface profile can be obtained by

minimizing the free energy with respect to the variations in φ,
i.e., solving μφ = 0. For the one-dimensional plane interface,
μφ = 0 allows an interface solution of the following form
[56]:

φ(ζ ) = φA + φB

2
+ φA − φB

2
tanh

(
2ζ

W

)
, (4)

where ζ is the coordinate along the interface normal n, and W
is the interface thickness given by [5,40]

W = 4

|φA − φB|

√
k

2β
. (5)

The fluid-fluid surface tension σ is given as [39]

σ = |φA − φB|3
6

√
2kβ. (6)

In the time-dependent situations, the evolution of φ can be
related to the phase flux density J as [46]

∂φ

∂t
= −∇ · J, (7)

where t is the time. The flux density J is the sum of the
convective flux density JC , the diffusive flux density JD, and
the phase-separation flux density JS , i.e.,

J = JC + JD + JS, (8a)

JC = φ u, (8b)

JD = −M∇φ, (8c)

where u is the velocity and M is a constant diffusion parameter
named mobility. The phase-separation flux density JS is a
function to suppress the diffusion of φ so that a predefined
interface profile can be reached at the equilibrium state. In
order to achieve the equilibrium profile φ(ζ ) given in Eq. (4),
JS must be used to cancel out the diffusion of φ(ζ ), i.e.,
JS = −JD[φ(ζ )]. Thus,

JS = M∇φ(ζ ). (9)

Substituting Eq. (4) into Eq. (9) yields

JS = M
∂φ(ζ )

∂ζ
n = M(φA − φB)

W

[
1 − tanh2

(
2ζ

W

)]
n, (10)

where the unit normal vector n can be calculated by

n = ∇φ

|∇φ| . (11)

Using Eq. (4), Eq. (10) can be reformulated to be a function
of φ as

JS = JS (φ) = 4M(φA − φ)(φ − φB)

W (φA − φB)

∇φ

|∇φ| . (12)
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Substituting Eqs. (8) and (12) into Eq. (7), the following
conservative form A-C equation for phase field can be ob-
tained [18,46,57]:

∂φ

∂t
+ ∇ · (φ u) = ∇ · [M(∇φ − 
n)], (13)

where


 = 4(φA − φ)(φ − φB)

W (φA − φB)
. (14)

B. LB model for interface tracking

In the present study, the following form of LB equation is
proposed to recover the conservative form A-C equation:

fi(x + ciδt, t + δt ) − fi(x, t )

= − fi(x, t ) − f eq
i (x, t )

τ
+ λ[ f eq

i (x + ciδt, t ) − f eq
i (x, t )],

(15)

where x denotes the space coordinate; fi(x, t ) is the phase-
field distribution function (along the ith direction) with the
local equilibrium state f eq

i (x, t ); ci is the mesoscopic velocity

set; δt is the time step; τ is the relaxation time; and λ is a
constant given by

λ = 2τ − 1 (16)

In order to recover Eq. (13), we define the equilibrium
distribution function f eq

i as

f eq
i =

⎧⎪⎨
⎪⎩

φ − (1−ω0 )�φ

(1−λ)c2
s

, i = 0

ωi
�φ+ci ·(φu+M
n)

(1−λ)c2
s

, i �= 0
(17)

where, cs is the lattice speed of sound; M is the mobility
coefficient given by

M = (τ − 1/2)�δt . (18)

The parameter � can be used to control the mobility coef-
ficient.

Since f eq
i is only a linear function of velocity u, the

simple D2Q5 and D3Q7 lattice models can be used for two-
dimensional (2D) and three-dimensional (3D) problems. In
the commonly used lattice models, the mesoscopic velocity
set ci, the weight factor ωi, and the speed of sound cs can be
given by the following forms.

D2D5:

[c0, c1, c2, c3, c4]

=
[

0 1 0 −1 0
0 0 1 0 −1

]
c

ωi =
{

1/3,

1/6,

i = 0
i = 1, ..., 4 , cs = c/

√
3 (19a)

D2Q9:

[c0, c1, c2, c3, c4, c5, c6, c7, c8]

=
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
c

ωi =
⎧⎨
⎩

4/9,

1/9,

1/36,

i = 0
i = 1, ..., 4
i = 5, ..., 8

, cs = c/
√

3 (19b)

D3D7:

[c0, c1, c2, c3, c4, c5, c6]

=
⎡
⎣0 1 0 0 −1 0 0

0 0 1 0 0 −1 0
0 0 0 1 0 0 −1

⎤
⎦c

ωi =
{

1/8,

1/4,

i = 0
i = 1, ..., 6 , cs = c/2. (19c)

D3Q15:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14]

=
⎡
⎣0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

⎤
⎦c

ωi =
⎧⎨
⎩

2/9,

1/9,

1/72,

i = 0
i = 1, ..., 6
i = 7, ..., 14

, cs = c/
√

3, (19d)

where c ≡ δx/δt is the lattice speed with δx representing the lattice spacing.
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It can be easily proved that the moments of the equilibrium phase-field distribution function satisfy∑
i

f eq
i = φ;

∑
i

f eq
i ci = (φ u+M
n)/(1 − λ);

∑
i

f eq
i cici = �φ/(1 − λ)I. (20)

In order to determine n in the above equation using
Eq. (11), the gradient term should be discretized first with
suitable schemes. In the present study, the following second-
order isotropic discretization [58–60] is adopted to calculate
∇φ,

∇φ = 1

c2
s δt

∑
i �=0

ωiciφ(x + ciδt ), (21)

where ωi, ci, and cs are given by Eq. (19b) for 2D prob-
lems and (19d) for 3D problems. To avoid division by zero
in the calculation of interface normal in Eq. (11), a small
number ε0 = 10−12 is added to the denominator so that n =
∇φ/(|∇φ|+ε0).

The order parameter φ can be updated by taking the zeroth
moment of the distribution function fi after the streaming step.

φ =
∑

i

fi. (22)

Chapman-Enskog analysis (see Appendix A) demonstrates
that the proposed model can recover the A-C equation (13)
with an accuracy of O(δt2). With the similar Chapman-
Enskog analysis, the model of Geier et al. [46,61] recovers
the equation below (see Appendix B):

∂φ

∂t
+ ∇ · (φ u) = ∇ · [M(∇φ − 
n)]

+ M{∂t∇ · (φ u + M
n)

+ ∇ · [∇ · (φ uu)]}/c2
s + O(δt2). (23)

As compared to the A-C equation (13), some additional
terms, i.e., M{∂t∇ · (φ u + M
n) + ∇ · [∇ · (φ uu)]}/c2

s , ex-
ist. Note from Eq. (19) that cs is the sound speed that scales
as c̄sδx/δt , where c̄s is a pure number. The mobility M and
velocity u are assumed to be determined by the physical
problem. As such, they are independent of the chosen time and
space discretization δx and δt . Thus, the additional terms are
proportional to (δt/δx)2 [62]. If taking the limits of δx → 0
and δt → 0 with (δx)2/δt constant, the error is O(δt ), .i.e.,
the accuracy of the scheme is of the first order. But, if tak-
ing δx → 0 and δt → 0 with δx/δt constant, the scheme is
only zeroth-order accurate [62]. If the equilibrium distribution
function for φ is represented as a linear function of velocity
u, the additional term ∇ · [∇ · (φ uu)] can be avoided [62].
Moreover, simple D2Q5 and D3Q7 lattice models can be
used for two-dimensional and three-dimensional problems. In
order to avoid another term ∂t∇ · (φ u), Wang et al. [9] intro-
duce a ∂t (φ u) term (approximated by the first-order Eulerian
scheme) in the source term of the LB equation. Moreover, in
their Chapman-Enskog analysis, the ∂t∇ · (M
n) term was
neglected based on the assumption that n is of O(ε), where
ε is a small expansion parameter. However, in our opinion,
n should be of O(ε) because n = ∇φ/|∇φ| = ε∇1φ/|ε∇1φ|
and therefore the ∂t∇ · (M
n) term could not be avoid by the
model of Wang et al. [9] (see Appendixes A and B).

III. INTERFACE-CAPTURING TESTS

In this section, we test the performance of the proposed
interface-capturing LB model using a series of benchmark
cases including the diagonal translation of a circular interface,
the rigid body rotation of a Zalesak disk, a 2D circular inter-
face, and a 3D spherical interface in shear flows. The velocity
fields are specified in advance; hence, only the phase fields
need to be solved.

The numerical results obtained by the present model will
be compared with those of the other two LB models for
the conservative A-C equation: single-relaxation-time (SRT)
model by Geier et al. [46,61] (denoted as model A) and SRT
model by Wang et al. [9] (denoted as model B).

Unless otherwise stated, we adopt the D2Q5 and D3Q7
lattice models for 2D and 3D interfaces, respectively. The
dimensionless parameters, Peclet number, Cahn number, and
Courant-Friedrichs-Lewy (CFL) number are defined as

Pe = U0L0/M, Ch = W/L0, CFL = U0δx/δt, (24)

where U0 and L0 are the reference velocity and reference
length, respectively. To quantitatively evaluate the accuracy of
the present model and compare with the existing LB models,
we introduce the L2-norm relative error of the order parameter
between numerical and analytical results as [46,48]

Eφ =
√∑

x [φ(x, t ) − φ(x, 0)]2∑
x φ2(x, 0)

, (25)

where φ(x, 0) is the initial distribution of the phase field at
t = 0.

A. Diagonal translation of a circular interface

First we use the proposed model to simulate the motion of a
2D circular interface in a uniform velocity field u = (U0,U0)
[9,14,46,48]. Initially, a circular interface with radius R =
L0/5 is located in the middle of a periodic L0 × L0 compu-
tational domain with L0 = 200. The distribution of the order
parameter is initialized by

φ(x) = φA + φB

2
+ φA − φB

2
tanh

(
2

R − |x − x0|
W

)
, (26)

where x0 is the coordinate of the circle center. In the simu-
lation, the CFL number and Cahn number are kept at 0.02
and 0.015, respectively, while the Peclet number varies from
125 to 8000. Theoretically, the interface would return to its
initial location after a period T = L0/U0. The initial shape
of the interface and the shapes after 10T obtained by differ-
ent numerical models are compared in Fig. 1 and Fig. 2 for
Pe = 500 and Pe = 8000, respectively. It can be found from
Fig. 1 that, for Pe = 500, the present model, model A and
model B can all obtain stable interface after 10 time cycles.
However, for a larger Peclet number of Pe = 8000, as shown
in Fig. 2, the interfaces obtained by both model A and model B

053307-4



PHASE-FIELD LATTICE BOLTZMANN MODEL FOR … PHYSICAL REVIEW E 102, 053307 (2020)

FIG. 1. The circular interface translated diagonally at t = 0 (dashed line) and t = 10 T (solid line) for CFL = 0.02, Pe = 500, and Ch =
0.015.

are twisted obviously due to the numerical instability. In
contrast, the present method can still capture the interface
shape stably. It is known that the Peclet number represents
the rate of the fluid convection to diffusion, and determines
the relative contribution of the above two mechanisms to the
interface motion. Therefore, with the raise of Peclet number,
numerical solution could become increasingly unstable due to
the strong convection. To give a quantitative comparison of
different models in accuracy when the numerical results are
stable, the relative errors of three models are calculated and
shown in Table I. From this table, it can be found that the
present model produces more satisfactory results, while the
relative errors of model A and model B almost identical for
this particular case and are both relatively larger as compared
with the present model.

B. Zalesak disk rotation

We then consider the rotational motion of a Zalesak disk
[8,9,14,42,46,48,63]. As illustrated in Fig. 3, a slotted circular
disk is initially located at the center of a periodic computa-
tional domain with L0 × L0 lattice sites where L0 = 200. The
radius of the disk and the width of the slot are set as 80
and 15 lattice units, respectively. The rotation of the disk is
driven by a velocity field of ux = −U0πy/L0, uy = U0πx/L0.
Theoretically, the disk should return to its initial shape and
location after one period T = 2L0/U0. CFL number and Cahn

number are kept at 0.02 and 0.01, respectively, in the present
test. Four values of mobility of 0.05, 0.01, 0.005, and 0.001
are considered so that the corresponding Peclet number are
80, 400, 800, and 4000, respectively. The evolutions with
time of the interface shapes for Pe = 400 and Pe = 4000 are
presented in Fig. 4 and Fig. 5, respectively. It can be found that
the current method can track the interface accurately. Both
model A and model B produce very similar results; therefore,
the interfaces obtained by these two models are not plotted
here. To quantitatively evaluate the performance of different
models in the interface tracking, the relative errors of present
results are compared with model A and model B as shown
in Table II. The relative errors for model A and model B are
almost identical for the case examined here, while the present
model gives relatively lower errors, especially at the large
Peclet numbers.

C. Circular interface in a smoothed shear flow

Neither of the above two cases deal with large topological
change since the interface shapes remain unchanged during
the evolution process. In order to check the capability of the
present model in capturing interface deformation, we consider
another test about the deformation of circular interface in a
smoothed shear flow, which is regarded as one of the most
stringent benchmarking problems as the interface undergoes a
severe deformation [9,12,14,46]. Initially, a circular interface

FIG. 2. The circular interface translated diagonally at t = 0 (dashed line) and t = 10 T (solid line) for CFL = 0.02, Pe = 8000, and Ch =
0.015.
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TABLE I. Relative error for diagonal translation of a circular
interface at t = 10 T for CFL = 0.02 and Ch = 0.015.

Pe

Model 125 500 2000

Present 0.0032 0.0021 0.0084
Model A 0.0363 0.0107 0.0600
Model B 0.0359 0.0106 0.0596

with radius R = L0/5 is placed in the middle of a periodic
[0, L0] × [0, L0] computational domain where L0 = 512. The
distribution of the order parameter is initialized by Eq. (26).
The velocity field is time dependent and strongly nonlinear:

ux(x, y, t ) = −U0 sin(4πx/L0) sin(4πy/L0) cos(πt/T ),
(27a)

uy(x, y, t ) = −U0 cos(4πx/L0) cos(4πy/L0) cos(πt/T ),
(27b)

where U0 is the reference velocity, T = L0/U0 is period. For
CFL = 0.02, Pe = 10 240 and Ch = 1/256, the topological
changes of the interface during one period T can be found
in Fig. 6. As seen from the figure, the interface undergoes
transfiguration in the first half period and then reconstruction
in the next half period. The largest topological change of
the interface takes place at t = T/2, when thin filamentary
structures are formed. After one period, the interface retunes
to its original location with a relative error of 0.0125. For the
same case, the relative errors of model A and model B are
0.0136 and 0.0139, respectively.

D. 3D spherical interface in a shear flow

In this section, we consider a 3D problem, a spherical inter-
face in a shear flow [48,61,64]. Initially, a spherical interface
with radius R = L0/5 is located at (3L0/10, 3L0/10, L0/2)
in a periodic domain of [0, L0] × [0, L0] × [0, L0] with L0 =
100. The distribution of the order parameter is initialized by

FIG. 3. Initial shape of the Zalesak disk.

Eq. (26), in which x0 stands for the coordinate of the sphere
center here. The velocity field is given by

ux = U0π cos (πx/L0 − π/2)[sin (πz/L0 − π/2)

− sin (πy/L0 − π/2)] cos (πt/T ), (28a)

uy = U0π cos (πy/L0 − π/2)[sin (πx/L0 − π/2)

− sin (πz/L0 − π/2)] cos (πt/T ), (28b)

uy = U0π cos (πz/L0 − π/2)[sin (πy/L0 − π/2)

− sin (πx/L0 − π/2)] cos (πt/T ), (28c)

where the period T = 2L0/U0. Theoretically, for this velocity
field, flow direction will be reversed after t = T/2 so that the
interface will return to its original position at t = T . (See the
evolution of the interface shape for CFL = 0.02, Pe = 200,
and Ch = 0.03 shown in Fig. 8.) The clear topology of the
interface can be captured successfully, even at the thin tails.
Although the original spherical shape cannot be fully recov-
ered after one period, as shown in Fig. 7(h), the error is
relatively small. The relative error of the order parameter after
one period equals 0.0253.

IV. BINARY FLOW TESTS

In this section, the proposed model is used to capture the
interface in the immiscible binary flow. The velocity fields are
calculated with the model of Zu and He [42], in which D2Q9
and D3Q15 models are used for hydrodynamic properties in
2D and 3D, respectively. In the LB model of Zu and He
[42], the following hydrodynamic equations for incompress-
ible multiphase flows are recovered:

∇ · u = 0, (29a)

ρ
∂u
∂t

+ ρ∇ · (uu) = −∇p + ∇ · [μ(∇u + u∇)] + Fs + Fb,

(29b)

where p is the hydrodynamic pressure; Fb is the body force;
Fs denotes the surface tension which is evaluated in a potential
form as Fs = −φ∇μφ ; ρ and μ are the density and dynamic
viscosity, respectively. Let ρA and ρB be the densities in the
bulk of fluids A and B, respectively; then ρ and μ can be
calculated on the basis of phase-field variable φ as [42]

ρ = φ − φB

φA − φB
(ρA − ρB) + ρB (30a)

μ = μAμB(φA − φB)

(φ − φB)μB + (φA − φ)μA
. (30b)

A. Stationary droplet

The stationary droplet is a widely used test for verify-
ing multiphase models, especially for the evaluation of the
spurious currents [38,53,55,59]. Here, we simulate this prob-
lem with the proposed model. Initially, a 2D circular droplet
with radius R = L0/4 is located at the center of a peri-
odic [−L0/2, L0/2] × [−L0/2, L0/2] computational domain
with L0 = 100. The interface thickness is set as W = 5. The
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FIG. 4. Evolution of the interface shape at Pe = 400, Ch = 0.01.

distribution of the order parameter is initialized as

φ(x) = φA + φB

2
+ φA − φB

2
tanh

(
2

R − |x − x0|
W

)
, (31a)

where x0 is the coordinate of the droplet center. According to
Eq. (30a), the initial density distribution can be given as

ρ(x) = ρA + ρB

2
+ ρA − ρB

2
tanh

(
2

R − |x − x0|
W

)
. (31b)

The density ratio and viscosity ratio are set as ρA/ρB =
1000 and μA/μB = 50, respectively. The other parameters are
given as φA = 1, φB = −1, M = 0.001.

Incompressible phase-field models usually suffer from the
presence of the spurious currents at the fluid-fluid interface,
especially when the densities of the fluids are unequal [65].
Generally, these spurious currents can be systematically sup-
pressed by using the potential form of the surface tension
and suitable discrete schemes [66]. To check the effects of
the surface tension on the spurious currents, four values,
σ = 10−2, 10−3, 10−4, and 10−5, are used for the tests. After
106 iterations, Figs. 8(a) and 8(b) show the interface locations
and velocity fields for σ = 10−2 and 10−5, respectively. The
solid lines represent the interface locations, the arrowed lines
show the streamlines, and the background of the figures is
colorized with the velocity magnitude |u|. It can be seen from
the figures that, due to the interfacial force applied, unphysical
velocities occur in the flow fields and form vortices around
the interfaces. The velocities in the direction normal to the

interface are rather small so that the spurious currents across
the interface are suppressed effectively.

For the different values of the surface tensions,
Table III presents the maximum velocity magnitudes
|u|max and the relative errors of the densities Eρ =√∑

x [ρ(x, t ) − ρ(x, 0)]2/
∑

x ρ2(x, 0) at t = 106 δt , where
ρ(x, 0) is given by Eq. (31b). Obviously, the spurious
velocities increase with the surface tension. But, the values
of Eρ are always very small and basically independent of
the change of the surface tension, which indicates that the
interfacial currents are limited to a rather small quantity so
that the local and global mass can be well conserved.

B. Spinodal decomposition

The spinodal decomposition [14,49,67–70] is a process of
unmixing, i.e., phase separation, which usually takes place
when imposing a small perturbation on the emulsifiers of two
immiscible fluids. Here, in order to test the proposed model in
dealing with phase separation, a 2D spinodal decomposition
process is simulated using the model. In the simulation, a
periodic computational domain of L0 × L0 = 150 × 150 is
adopted. The order parameter is initialized with a small (1%)
random perturbation,

φ(x) = φA + φB

2
+ (φA − φB)

[
rand(x) − 1

6

]
, (32)

where rand(x) is a random function with the maximum am-
plitude of 0.01. The other parameters are given as ρA = 10,

FIG. 5. Evolution of the interface shape at Pe = 4000, Ch = 0.01.
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TABLE II. Relative error for the rotating Zalesak disk at t = T
for CFL = 0.02 and Ch = 0.01.

Pe

Model 80 400 800 4000

Present model 0.1226 0.1186 0.1170 0.1194
Model A 0.1307 0.1224 0.1209 0.1472
Model B 0.1307 0.1224 0.1209 0.1471

ρB = 0.5, μA = 5/3, and μB = 1/12, where ρA and ρB are
the density of fluids A and B; μA and μB are the dynamic
viscosity of fluids A and B, respectively. The reference time
and velocity are defined as T0 = μAL0/σ and U0 = σ/μA,
respectively. Figure 9 shows the phase distribution at various
dimensionless time t∗ = t/T0 for CFL = 0.012, Pe = 180,
and Ch = 4/150, where the phase separation process can be
observed. At the early stage, small fluctuations in density
evolve into large-scale heterogeneities and the interfaces be-
gin to separate different phases. Then, some tiny droplets with
irregular shapes are formed in the system. These droplets
coalesce with some of the others and grow in size, which
eventually leads to the phase separation, as expected.

C. Rayleigh-Taylor instability

The Rayleigh-Taylor instability is a type of flow instability
that takes place when a heavier fluid A rests on top of a
lighter fluid B with an initial perturbation at the interface.
This benchmark has been extensively investigated by many
numerical approaches [7,27,41,71–76].

FIG. 6. Deformation of a circular interface in a smoothed shear
flow at Pe = 10 240, Ch = 1/256.

FIG. 7. Evolution of a spherical interface under shear flow for
CFL = 0.02, Pe = 200, and Ch = 0.03.

We first consider a typical 2D Rayleigh-Taylor instability
in a rectangular computational domain of [−L0/2, L0/2] ×
[−2L0, 2L0] with no-slip condition on the top and bottom
walls and periodic boundary condition on the sides. Ini-
tially, two layers of the fluids at rest have an interface
located at y = 0.1L0 cos(2πx/L0). In order to characterize the
Rayleigh-Taylor instability problem, Atwood number At =
(ρA − ρB)/(ρA + ρB), Reynolds number Re = ρAL0U0/μA,
and capillary number Ca = μAU0/σ are introduced, where
U0 = √

gL0 is the reference velocity. To be consistent with
the previous study [7,41,42,73,74], the dimensionless time
t∗ = t/

√
L0/gAt is introduced. A 200 × 800 grid is used for

the simulation, i.e., L0 = 200. The other parameters are set as
At = 0.5, Re = 3000, Ca = 100, CFL = 0.0707, Pe = 1000,
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FIG. 8. Velocity field at t = 106 δt (solid line: fluid-fluid interface; lines with arrow: streamlines; background color: velocity magnitude).

and Ch = 0.025. The viscosity ratio is μA/μB = 1. The time
evolution of the interface for t∗ = 0 ∼ 3.0 is depicted in
Fig. 10. It can be observed that the heavier fluid penetrates
symmetrically into the lighter fluid to form a shape of “spike,”
with the generation of counter-rotating vortices. Meanwhile,
the fingers of lighter fluid, named as “bubbles” here, are gen-
erated. The same flow regime can also be found in the work
of Refs. [7,41,42,73,74]. Figure 11 shows the quantitative
comparisons in the time evolution of dimensionless positions
of the bubble and spike fronts. It is clear that the present
results are in good agreement with the previously published
data [7,41,42,73,74].

In order to demonstrate the accuracy and stability of the
proposed model in dealing with a 3D binary fluid system,
a simulation of a 3D Rayleigh-Taylor [27,42] is conducted.
The computational domain for this case consists of a rectan-
gular box of [−L0/2, L0/2] × [−L0/2, L0/2] × [−2L0, 2L0].
The interface between the two fluids is initially located at z =
0.05L0[cos(2πx/L0) + cos(2πy/L0)]. The reference time and
velocity are defined as T0 = √

L0/g and U0 = √
gL0, respec-

tively. The kinetic viscosity, ν, of the two fluids are set to
be identical. The Reynolds number Re = U0L0/ν and the
Atwood number At = (ρA − ρB)/(ρA + ρB) are set to be 128
and 0.5, respectively. A 64 × 64 × 256 grid is used for the
simulation, i.e., L0 = 64. The other parameters are set as Ca =
960, CFL = 0.08, Pe = 1024, and Ch = 5/64. The evolution
of the interface is shown in Fig. 12 at t∗ = t/T0 = 0 ∼ 4.5.
Under the action of gravity, the heavy fluid falls to generate
a spike and the light fluid rises to form a bubble. Meanwhile,
four saddle points are formed at the middle of the four sides
of the computational domain. The definitions of the points

TABLE III. The maximum spurious velocities and the relative
errors of the densities at different surface tensions.

Surface tension σ

10−2 10−3 10−4 10−5

|u|max 9.86 × 10−7 1.01 × 10−7 1.02 × 10−8 1.02 × 10−9

Eρ 2.23 × 10−4 2.19 × 10−4 2.21 × 10−4 2.23 × 10−4

tracked in the simulation can be observed in Fig. 12(c). Qual-
itatively, similar processes of interfacial deformation to those
in Refs. [27,42] are obtained. A quantitative comparison is
carried out by tracking the dimensionless positions of the
spike, bubble, and saddle points. Figure 13 plots the current
results and those reported in Ref. [27], which shows a close
agreement. This indicates that the proposed model is able to
simulate practical binary fluid systems with satisfying accu-
racy and stability.

V. CONCLUSIONS

In this study, we propose an LB model based on the conser-
vative form A-C equation for phase field to track the interface
of binary fluid systems. Chapman-Enskog analysis shows that
the A-C equation can be correctly recovered by this model
with second-order accuracy.

The model is benchmarked and validated against 2D and
3D interface tracking tests with known velocity fields and the
binary flows problems, including the Zalesak disk rotation,
the deformation of 2D circular interface and the 3D spherical
interface in shear flows, the stationary droplet, the spinodal
decomposition, and the 2D and 3D Rayleigh-Taylor insta-
bility. In the interface tracking tests, the currently proposed
model shows better accuracy and stability than the previous
models tested especially at higher Peclet numbers. In the bi-
nary flow tests, the present model is coupled with the model of
Zu and He [42] for the velocity fields, and shows the satisfying
performance in dealing with complicated situations.

It should be pointed out that in the present model, a 1 − λ

term is introduced into the denominator of equilibrium dis-
tribution function, which may lead to large rounding error
when τφ approaches 1.0, since λ = 2τφ − 1. However, the τφ

that approaches 1.0 is absolutely unnecessary in the model.
Therefore, in the simulation, such τφ should be avoided to
eliminate the rounding error. A recommended range of τφ is
from 0.6 to 0.9.
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FIG. 9. Separation of binary fluid for CFL = 0.006, Pe = 180, and Ch = 4/150.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS OF THE
PRESENT MODEL

In this appendix, a Chapman-Enskog analysis [77–79] is
performed by introducing the following expansions of distri-
bution function, time, and space derivatives:

fi = f (0)
i (x, t ) + ε f (1)

i (x, t ) + ε2 f (2)
i (x, t ), (A1)

∂t = ε∂t1 + ε2∂t2; ∇ = ε∇1, (A2)

where ε is a small expansion parameter proportional to the
ratio of the lattice spacing to a characteristic macroscopic
length [77,78,80].

Taylor expansion of Eq. (15) gives

(
δtDi + δt2

2
D2

i

)
fi = − fi(x, t ) − f eq

i (x, t )

τ

+ λ

(
δt∇i + δt2

2
∇2

i

)
f eq
α + O(δt3),

(A3)

FIG. 10. Snapshots of the interface patterns of 2D Rayleigh-Taylor instability.
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FIG. 11. Time evolution of the bubble and spike fronts; compar-
ative data are extracted from Refs. [7,41,42,73,74].

where ∇i = ci · ∇ and Di = ∂t + ∇i. Substituting Eqs. (A1)
and (A2) into Eq. (A3) and rearranging each item based on
the power of ε, we have

O(ε0) : f (0)
i = f eq

i + O(δt3), (A4)

O(ε1) : δt (D1i − λ∇1i ) f (0)
i = − f (1)

i /τ, (A5)

O(ε2) : δt
(
∂t2 f (0)

i +D1i f (1)
i

)+ δt2

2

(
D2

1i−λ∇2
1i

)
f (0)
i = − f (2)

i /τ,

(A6)

where ∇1i = ci · ∇1 and D1i = ∂t1 + ∇1i. Then, substitution
of Eq. (A5) into Eq. (A6) gives

δt∂t2 f (0)
i − τδt2D1i(D1i − λ∇1i ) f (0)

i + δt2

2

(
D2

1i − λ∇2
1i

)
f (0)
i

= − f (2)
α /τ. (A7)

Note that, in the derivation of Eq. (A4), the interface nor-
mal n in f eq

α [see Eq. (17)] has been regarded as O(ε0) because
n = ∇φ/|∇φ| = ε∇1φ/|ε∇1φ|.

According to the expansions (A1), (A2), and (A4),
Eq. (A5) ×ε + Eq. (A7) ×ε2 yields

[∂t + (1 − λ)ci · ∇] f (0)
i

= δt[(τ − 1/2)∂2
t + (2τ − τλ − 1)ci · ∇∂t

+ (1 − λ)(τ − 1/2)cici∇2] f (0)
i − fi − f eq

i

τδt
+ O(δt2).

(A8)

Combining with
∑

i fi = ∑
i f eq

i given by Eqs. (20) and
(22), summation of Eq. (A8) over i gives

∂t

∑
i

f (0)
i + (1 − λ)∇ ·

∑
i

f (0)
i ci

= δt

[
(τ − 1/2)∂2

t

∑
i

f (0)
i + (2τ − τλ − 1)∂t∇

·
∑

i

f (0)
i ci + (1 − λ)(τ − 1/2)∇ ·

(
∇ ·

∑
i

f (0)
i cici

)]

+ O(δt2), (A9)

which indicates

∂t

∑
i

f (0)
i + (1 − λ)∇ ·

∑
i

f (0)
i ci = O(δt ). (A10)

Therefore, Eq. (A9) can be rewritten as

∂t

∑
i

f (0)
i + (1 − λ)∇ ·

∑
i

f (0)
i ci

= δt

[
(τ − λ/2 − 1/2)∂t∇ ·

∑
i

f (0)
i ci

+ (1 − λ)(τ − 1/2)∇ ·
(

∇ ·
∑

i

f (0)
i cici

)]
+ O(δt2).

(A11)

According to Eq. (16), the (τ − λ/2 − 1/2)∂t∇ · ∑
i

f (0)
i ci

term in Eq. (A11) equals zero. Then, substituting Eqs. (18)
and (20) into Eq. (A11) leads to

∂φ

∂t
+ ∇ · (φ u) = ∇ · [M(∇φ − 
n)] + O(δt2). (A12)

In other words, the conservative form Allen-Cahn equation
(13) can be recovered by LB equation (15) with an accuracy
of O(δt2).
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FIG. 12. Snapshots of 3D Rayleigh-Taylor instability

APPENDIX B: CHAPMAN-ENSKOG ANALYSIS OF
GEIER’S MODEL

The LB equation of Geier’s model [46] is written as

hi(x + ciδt, t + δt ) − hi(x, t ) = −hi(x, t ) − heq
i (x, t )

τ
,

(B1)

where the equilibrium distribution function heq
i is given by

heq
i = ωiφ

[
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

]
+ ωi

M
ci · n
c2

s

.

(B2)

It can be proved that the moments of the equilibrium dis-
tribution function satisfy∑

i

heq
i = φ;

∑
i

heq
i ci = (φ u+M
n);

FIG. 13. Time evolution of the of bubble, saddle, and spike points.

∑
i

heq
i cici = φc2

s I + φ uu (B3)

A multiscaling analysis is carried out by introducing the
following expansions:

hi = h(0)
i (x, t ) + εh(1)

i (x, t ) + ε2h(2)
i (x, t ), (B4)

∂t = ε∂t1 + ε2∂t2; ∇ = ε∇1. (B5)

Taylor expansion of Eq. (B1) yields(
δtDi + δt2

2
D2

i

)
hi = −hi(x, t ) − heq

i (x, t )

τ
, (B6)

where Di = ∂t + ci · ∇. Substituting Eqs. (B4) and (B5) into
Eq. (B6) and treating the terms in the zeroth-, first-, and
second order of ε separately, we have

O(ε0) : h(0)
i = heq

i + O(δt3), (B7)

O(ε1) : δtD1ih
(0)
i = −h(1)

i /τ, (B8)

O(ε2) : δt
(
∂t2h(0)

i + D1ih
(1)
i

) + δt2

2
D2

1ih
(0)
i = −h(2)

i /τ, (B9)

where D1i = ∂t1 + ci · ∇1. Substitution of Eq. (B8) into
Eq. (B9) gives

δt∂t2h(0)
α + (1/2 − τ )δt2D2

1ih
(0)
i = −h(2)

i /τ. (B10)

Using Eqs. (B4), (B5), and (B7), Eq. (B8) ×ε + Eq. (B10)
×ε2 yields

[∂t + ci · ∇]h(0)
i = − hi − heq

i

τδt

+ δt (τ − 1/2)(∂t + ci · ∇ )2h(0)
i + O(δt2).

(B11)
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Summation of Eq. (B11) over i and using
∑

i
hi = ∑

i
heq

i =
φ [46], one gets

∂t

∑
i

h(0)
i + ∇ ·

∑
i

h(0)
i ci

= δt (τ − 1/2)

[
∂2

t

∑
i

h(0)
i + 2∂t∇ ·

∑
i

h(0)
i ci

+ ∇ ·
(

∇ ·
∑

i

h(0)
i cici

)]
+ O(δt2), (B12)

which indicates

∂t

∑
i

h(0)
i + ∇ ·

∑
i

h(0)
i ci = O(δt ). (B13)

Using Eq. (B13), the first term and a part of the second term
in square brackets in Eq. (B12) can be neglected as O(δt2).
Thus,

∂t

∑
i

h(0)
i + ∇ ·

∑
i

h(0)
i ci

= δt (τ − 1/2)

[
∂t∇ ·

∑
i

h(0)
i ci

+ ∇ ·
(

∇ ·
∑

i

h(0)
i cici

)]
+ O(δt2). (B14)

Then, substituting Eqs. (B3) into Eq. (B14) gives

∂φ

∂t
+ ∇ · (φ u + M
n)

= δt (τ − 1/2)
{
∂t∇ · (φ u + M
n)

+ ∇ · [∇ · (
φc2

s I + φ uu
)]} + O(δt2). (B15)

Noting that M = c2
s (τ − 1/2)δt [46], Eq. (B15) can be

rewritten as
∂φ

∂t
+ ∇ · (φ u)

= ∇ · [M(∇φ − 
n)] + M{∂t∇ · (φ u + M
n)

+ ∇ · [∇ · (φ uu)]}/c2
s + O(δt2) (B16)

which is the equation recovered by Geier’s model.
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