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Linear stability and isotropy properties of athermal regularized lattice Boltzmann methods
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The present work proposes a general methodology to study stability and isotropy properties of lattice Boltz-
mann (LB) schemes. As a first investigation, such a methodology is applied to better understand these properties
in the context of regularized approaches. To this extent, linear stability analyses of two-dimensional models are
proposed: the standard Bhatnagar-Gross-Krook collision model, the original precollision regularization, and the
recursive regularized model, where off-equilibrium distributions are partially computed thanks to a recursive
formula. A systematic identification of the physical content carried by each LB mode is done by analyzing the
eigenvectors of the linear systems. Stability results are then numerically confirmed by performing simulations of
shear and acoustic waves. This work allows drawing fair conclusions on the stability properties of each model.
In particular, among the aforementioned models, recursive regularization turns out to be the most stable one
for the D2Q9 lattice, especially in the zero-viscosity limit. Two major properties shared by every regularized
model are highlighted: (1) a mode filtering property and (2) an incorrect, and broadly anisotropic, dissipation
rate of the modes carrying physical waves in under-resolved conditions. The first property is the main source of
increased stability, especially for the recursive regularization. It is a direct consequence of the reconstruction
of off-equilibrium populations before each collision process, decreasing the rank of the system of discrete
equations. The second property seems to be related to numerical errors directly induced by the equilibration
of high-order moments. In such a case, this property is likely to occur with any collision model that follows such
a stabilization methodology.
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I. INTRODUCTION

The lattice Boltzmann (LB) method is a powerful numeri-
cal approach for computational fluid dynamics (CFD) [1–4].
Based on a velocity-space discretization of the Boltzmann
equation (BE) [5] followed by an appropriate time and space
discretization, its “collide & stream” algorithm offers several
advantages compared to its Navier-Stokes (NS) counterparts.
Its natural Cartesian mesh generation allowing to easily deal
with complex geometries [6], together with a low-dissipative
scheme [7] and an efficient and easily parallelizable algorithm
[8] have made it appealing for aeronautical applications [9].

Yet simulations of compressible flows, even for subsonic
cases, and flows with large temperature variations are still
challenging with a LB approach. This is due to two dis-
tinct phenomena. First, the reduction of the velocity space
of the BE, together with an adapted choice of equilibrium
distribution function toward which the collision process is
done, leads to a Galilean invariance error in the equations.
On standard lattices (e.g., the well-known D2Q9 lattice [10]),
this error has a macroscopic effect on the Navier-Stokes
equations, involving an incorrect energy equation and a
cubic error in Mach number in the viscous terms of the
momentum equation [11,12]. The latter is at the origin of
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an antidissipative behavior which can lead to negative vis-
cosity when the Mach number becomes too large [7,13]
and makes the system of equations unstable. However, re-
cent work demonstrated that these so-called cubic defects
only alter the stability of the model for relatively large
values of the Mach number Ma (Ma > 0.73) [14]. This
indicates that there is another primary origin of the stabil-
ity issues: the numerical errors induced by the time and
space discretization. The most simple LB scheme, based on
a Bhatnagar-Gross-Krook (BGK) collision model [15], is
indeed subject to severe numerical instabilities in the zero-
viscosity limit, even for low values of the Mach number
[16,17]. There is some numerical evidence that the presence
of nonhydrodynamic modes, i.e., unphysical waves inherited
by the BE and unexpected by the NS equations, are respon-
sible for unfortunate instabilities [18,19]. Modal interactions
occurring between these waves and hydrodynamic ones are
consequent of numerical errors in the time and space dis-
cretization, and a so-called eigenvalue collision phenomenon
can lead to severe linear instabilities even for well-resolved
cases [13].

In order to handle the first problem due to a reduction of
the velocity space, several approaches have been proposed in
the literature. Since the error done at the macroscospic level
can be explicitly known, e.g., thanks to a Chapman-Enskog
expansion [20], it can be corrected by appropriate changes
in the LB scheme. For instance, one can add a correction as
a body-force term [21] or by modifying the relaxation time
of the collision model [22]. Another solution is to increase

2470-0045/2020/102(5)/053305(26) 053305-1 ©2020 American Physical Society

https://orcid.org/0000-0001-8012-8546
https://orcid.org/0000-0002-0711-9819
https://orcid.org/0000-0002-6338-6954
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.053305&domain=pdf&date_stamp=2020-11-13
https://doi.org/10.1103/PhysRevE.102.053305


WISSOCQ, COREIXAS, AND BOUSSUGE PHYSICAL REVIEW E 102, 053305 (2020)

the number of discrete velocities of the lattice, so that the
Galilean invariance error does not impact the fluid modeling
at the NS level [23]. However, the numerical stability issue is
even more prominent in that case because of the large number
of nonhydrodynamic modes [24,25].

In any case, the numerical issues remain the primary cause
of instability, especially in the zero-viscosity limit. In order
to try to get rid of them, many authors have turned to the
development of more sophisticated collision models than
the BGK one, since the only numerical errors arise during the
discretization of the collision term. These models can be clas-
sified into three main families. First, noticing that numerical
issues are due to the presence of nonhydrodynamic modes,
several models were built in order to damp them in a sim-
ulation. It is the purpose of multiple-relaxation-time (MRT)
models, which rely on a specific relaxation time applied to
each nonhydrodynamic moment. Various models therefore
exist, depending on the adopted definition of moments and
the choice of relaxation parameters. The original MRT models
are based on a raw-moments formulation [16,26,27]. How-
ever, finding optimal values for each relaxation time rapidly
became a tedious task [28,29]. That is why two-relaxation-
time (TRT) models [30,31] have later been proposed, where
odd and even parts of the distribution functions are relaxed
at a specific characteristic time. Other models are based on
a definition of central moments, which consists in a shift
of the discrete velocities by the local flow velocity, and are
also referred to as cascaded models [32–37]. Finally, the
collision process can also be performed on other macroscopic
quantities called cumulants [38], which can be expressed as
nonlinear combination of the standard moments [39]. The
second family of collision models is based on a completely
different observation: there is no equivalent of the famous
Boltzmann’s H theorem for the LB method. Indeed, if a H
function had a monotonous increase during a simulation, then
it could be considered as an entropy, and numerical stability
in the sense of Lyapunov would be ensured [40]. The purpose
of the so-called LB entropic models is therefore to restore
an equivalent of the H theorem [41–46]. They are based on
(1) an adapted choice of equilibrium distribution function as
the maximal state of a pseudoentropy H and (2) a modified
collision step ensuring the monotony of H . The third collision
family is referred to as regularized models, which is of in-
terest in the present article. The original model was formerly
used by Skordos [47] as a way to (re)construct populations
in the context of initial and boundary conditions. Ladd and
Verberg [48] further relied on this approach to reduce memory
consumption by only storing macroscopic quantities and their
gradients. It is only with the work of Latt and Chopard [49]
that its stability properties were highlighted. It aims at filtering
out the nonhydrodynamic content in off-equilibrium distri-
bution functions before each collision process. In a sense, it
can be viewed as a particular MRT model where relaxation
parameters of high-order Hermite moments are set so that they
are imposed at their equilibrium value at each collision step
[50]. This approach has later been extended by Malaspinas
[51], who proposed to reconstruct high-order off-equilibrium
moments at each iteration thanks to a recursive relation ob-
tained by a Chapman-Enskog expansion. Such an approach
was further assessed on high-order lattices, leading to an

increase in numerical stability [24]. Interestingly, the latter
recursive approach is equivalent to equilibrating high-order
contributions of populations in the central Hermite [52] and
temperature-scaled central Hermite [53] moment spaces for
isothermal and thermal models respectively [39,54,55]. Even-
tually, Jacob et al. [56] proposed a hybrid formulation of
this recursive regularization, where the second-order off-
equilibrium moment was partially reconstructed thanks to a
finite-difference estimation of the shear stress tensor.

Some of these sophisticated collision models have since
proven their worth to increase the numerical stability of
standard LB models and seem able to overcome the com-
pressible and transonic limit [57,58]. However, and despite
recent approaches aiming to compare and drawing links be-
tween different collision models [39], the reasons that provide
greater numerical stability properties to a given model are
still unclear. As an example, this question can be raised in
the case of the recursive regularized models. Indeed, one can
wonder how enriching off-equilibrium distribution functions
with high-order moments might lead to an enhanced stability,
while the added terms are not supposed to contribute to the NS
physics. To the author’s knowledge, no convincing explana-
tion has been provided so far regarding this question, and for
good reasons: There is some evidence that the effect of a given
model is mainly numerical, which makes the understanding of
these phenomena very difficult.

A fairly simple method can be systematically employed to
study the numerical properties of a given scheme, referred to
as linear stability analyses. They rely on a linearization of
the algorithm about a mean flow and an investigation of the
behavior of linear waves in the spectral space, in terms of
propagation and dissipation. Initially proposed by von Neu-
mann [59], this method was first adapted to the LB formalism
by Sterling and Chen [60]. It was later widely used to exhibit
the linear properties of the BGK collision model [61], its order
of precision compared to NS-based solvers [7], to optimize
the choice of parameters of MRT models [16,29,62,63], and
to evaluate the impact of collision models [34,54], numeri-
cal discretizations [64], or lattice shifting [65,66] on linear
stability domains. An extended linear analysis has been re-
cently proposed [13], allowing a systematic identification of
the linear modes thanks to the information contained by the
eigenvectors of the linear problem. Such a technique high-
lighted two kinds of modal interactions occurring with the
BGK collision model, namely a curve veering phenomenon
and an eigenvalue collision. The former is responsible for
the fact that each linear mode of the LB scheme can carry
a superposition of physical waves (acoustics and shear), while
the latter is the source of severe instabilities of the BGK
model. Such analyses are crucial for a better understanding
of some local numerical phenomena, for instance, occurring
at mesh refinement interfaces [67].

The aim of the present article is to perform such linear
stability analyses to the aforementioned regularized collision
models in two dimensions. The objectives are multiple: (1)
draw fair conclusions regarding the numerical stability of
each model, (2) clearly identify the behavior of the physical
(acoustic and shear) waves expected by the NS equations in
every spatial direction, and (3) provide a better understanding
of the stability properties of each collision model. Especially,
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the effect of the precollision regularization on the modal in-
teractions highlighted on the BGK model will be of particular
interest.

The present article is divided as follows. In Sec. II, the
LB scheme is recalled and the regularized schemes of in-
terest in this work are introduced. In Sec. III, the principle
of linear stability analyses is recalled and applied to regular-
ized collision models, involving the matrices of each linear
system derived in Appendix B. In Sec. IV, the main results
obtained with the D2Q9 and D2V17 lattices are provided (see
Appendix A for their structure). They are further numerically
validated thanks to simulations of shear and acoustic waves
in a two-dimensional LB solver in Sec. V. Finally, Sec. VI
summarizes two major properties exhibited by the linear anal-
yses and aims at providing theoretical explanations for the
observed phenomena. These properties are further highlighted
by considering a so-called analytically regularized scheme.

II. THE LATTICE BOLTZMANN METHOD

In the following, LB schemes will be recalled for the
very standard BGK collision model and regularized ones. All
studies will be restricted to athermal LB methods on two-
dimensional lattices of V velocities (ei )i∈�1,V �. Note that in
all the following, every vector and tensor will be written in
bold. Eventually, if not otherwise stated, the LB unit system
is adopted for all formulas below [3].

A. BGK collision model

The BGK-LB scheme relies on a particular time and space
discretization of the BGK discrete-velocity Boltzmann equa-
tions. The resulting numerical scheme, in its dimensionless
form, can be decomposed into a collision and a streaming
steps [3]

f ∗
i (x, t ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq

i (x, t )
]
, (1)

fi(x + ei, t + 1) = f ∗
i (x, t ), (2)

where ( fi )i∈�1,V � is the set of distribution functions asso-
ciated to the lattice velocities (ei )i∈�1,V �, ( f eq

i )i∈�1,V � is its
equilibrium counterpart and ( f ∗

i )i∈�1,V � are the postcollision
distributions. In Eqs. (1) and (2), t and x respectively stand
for the time and spatial coordinates and τ is the dimensionless
relaxation time of the BGK collision model. Macroscopic
quantities, such as the density field ρ and the velocity field
u, can be defined as discrete moments of the distribution
function:

ρ =
V∑

i=1

fi, ρu =
V∑

i=1

ei fi. (3)

Regarding the equilibrium distribution functions ( f eq
i )i∈�1,V �,

they are usually built so that their discrete moments match that
of the Maxwell-Boltzmann distribution function f eq [68]:

f eq(ξ) = ρ(
2πc2

s

)D/2 exp

(
−||ξ − u||2

2c2
s

)
, (4)

D being the number of spatial dimensions, ξ is the con-
tinuous velocity variable, and cs is the lattice constant

(cf. Appendix A). However, one cannot match an infinite
number of continuous equilibrium moments with a discrete set
of velocities. It is therefore necessary to restrict the number of
preserved moments to a finite number N , whose impact on the
simulated physics will be further discussed in this section. A
systematic way to exactly impose the first N equilibrium mo-
ments relies on a Gauss-Hermite quadrature together with a
Hermite polynomial expansion of the equilibrium distribution
function [23,69–71]:

f eq,N
i = wi

N∑
n=0

1

n!c2n
s

a(n)
eq : H(n)

i . (5)

In the above equation; “:” stands for the full contraction of
indices of two nth-order tensors, H(n)

i = H(n)(ei ) where H(n)

is the nth-order Hermite polynomial defined as

H(n)(ξ) =
( − c2

s

)n

w(ξ)

∂nw

∂ξn , w(ξ) = 1(
2πc2

s

)D/2 exp

(−ξ 2

2c2
s

)
,

(6)

where ξ 2 = ||ξ||2 and ξn denotes the nth-rank tensor built by n
tensor products of ξ. Moreover, a(n)

eq are the so-called Hermite
moments of the Maxwell-Boltzmann equilibrium distribution

a(n)
eq =

∫
H(n)(ξ) f eq(ξ) dξ. (7)

Finally, N stands for the highest-order Hermite equilib-
rium moment that can be recovered with such a polynomial
expansion. It should obey 2N � Q, where Q is the order of
quadrature of the lattice (recalled in Appendix A). Note that,
regarding the D2Q9 lattice, even if the quadrature order is
Q = 5 (thus N � 2), a partial polynomial expansion up to
the third and fourth orders can be performed by including the
following Hermite polynomials:

H(3)
i,xxy, H(3)

i,xyy, H(4)
i,xxyy, (8)

leading to improved stability properties [13,17,18,24,51]. The
latter expansions will be referred to as N = 3∗ and N = 4∗ in
the following.

Hydrodynamic limits of the lattice Boltzmann equations
solved by the LBM can be glimpsed by performing a so-
called Chapman-Enskog (CE) expansion [20]. It consists in
expanding the distribution functions around their equilibrium
value

fi = f eq,N
i + f (1)

i + f (2)
i + f (3)

i + · · · , (9)

where each component f (k)
i is sought in the order O(εk ),

where ε is a smallness parameter assumed to be the Knud-
sen number. Such an expansion allows linking the maximal
equilibrium moment order N with the simulated macroscopic
physics. For instance, with N = 2, the athermal Navier-Stokes
equations are modelled with a well-known cubic Mach error
in the momentum equation [10,23], while for N � 3 no such
error remains. Furthermore, a CE expansion yields a relation
between the relaxation time τ and the dimensionless fluid
kinematic viscosity ν [72]:

ν = (
τ − 1

2

)
c2

s . (10)
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B. Regularized collision models

The principle of regularized collision models is based on
the observation that a CE expansion up to the first-order in
Knudsen number is sufficient to recover the Navier-Stokes
fluid behavior. Hence, the distribution functions can be recon-
structed before each collision step as

f reg
i = f eq,N

i + f (1)
i , (11)

where f (1)
i is a first-order term in Knudsen number that needs

to be defined. Assuming a single relaxation time collision
model, it leads to the following regularized collision step,
replacing Eq. (1):

f ∗
i = f reg

i − 1

τ

(
f reg
i − f eq,N

i

)
(12)

= f eq,N
i +

(
1 − 1

τ

)
f (1)
i . (13)

The remaining question relies on the way f (1)
i is computed.

This is where different methodologies arise. Two approaches
will be adopted in the following: the regularization by projec-
tion and the recursive regularization.

1. Regularization by projection

In the original model proposed by Skordos [47], and fur-
ther investigated by Latt and Chopard [49] for its stability
properties, it is noticed that, due to mass and momentum con-
servation, only the second-order moment of f (1)

i is required
to recover the athermal Navier-Stokes behavior. For this rea-
son, it is reduced to its second-order Hermite polynomial
expansion:

f (1)
i = wi

1

2c4
s

a(2)
1 : H(2)

i , (14)

where a(2)
1 is the expansion coefficient at first order in Knud-

sen number. It can be approximated by its off-equilibrium
counterpart,

a(2)
1 ≈ a(2)

neq ≡
V∑

i=1

H(2)
i

(
fi − f eq,N

i

)
. (15)

Based on the orthogonality properties of the Hermite polyno-
mials [23,69,70], this regularization procedure can be viewed
as an orthogonal projection, before each collision step, of the
off-equilibrium distribution functions onto the second-order
Hermite polynomials, so as to cancel their higher-order con-
tribution. For this reason, it will be referred to as the projected
regularization (PR) in the rest of the paper.

2. Recursive regularization

Instead of a regularization involving the second-order mo-
ments of f (1)

i only, Malaspinas [51] proposed a procedure
based on a reconstruction of as many off-equilibrium mo-
ments as possible. It starts by expanding f (1)

i in Hermite
polynomials:

f (1)
i = wi

Nr∑
n=2

1

n!c2n
s

a(n)
1 : H(n)

i , (16)

where Nr is the order of the regularization. Note that the
sum starts at n = 2 since a(0)

1 = a(1)
1 = 0 (collision invariants).

Thanks to a CE expansion, it can be shown that coefficients
a(n)

1 are linked with each other through the following recursive
relation:

a(n)
1,α1..αn

= uαn a(n−1)
1,α1..αn−1

+ [
uα1 ..uαn−2 a(2)

1,αn−1αn
+ perm(αn)

]
,

(17)

where “perm(αn)” stands for all the cyclic permutations of in-
dexes from α1 to αn−1. As with the PR collision, a(2)

1 , required
to initialize the recurrence, is approximated by the projec-
tion of the off-equilibrium part provided in Eq. (15). This
approach was later extended to high-order lattices [24]. The
corresponding collision model will be referred to as recursive
regularization at order Nr (RRNr) in the following. Note that
Nr obeys the same condition as N , i.e., 2Nr � Q, and one can
define partial third and fourth orders with the D2Q9 lattice
(respectively, Nr = 3∗ and Nr = 4∗).

III. LINEAR STABILITY ANALYSES

This section is dedicated to the linear analyses, in the
von Neumann formalism, of the aforementioned BGK and
regularized collision models. Moreover, a systematic modal
identification will be performed through the information pro-
vided by the eigenvector of each linear mode.

A. Von Neumann formalism

Sterling and Chen [60] were among the firsts to propose
a von Neumann linear analysis of the LB scheme through a
linear decomposition of any distribution function as

fi = fi + f ′
i , (18)

where the global populations fi are constants (no variation in
space and time) and f ′

i are fluctuating populations, assumed to
be very small compared to the global populations. A lineariza-
tion about the global equilibrium state is then performed. In
the LB scheme, nonlinearities come from the collision step
while the streaming step is fully linear in f ′

i . Hence, postcol-
lision distribution functions f ∗

i are linearized as

f ∗
i ( f j ) = f ∗

i ( f j ) + ∂ f ∗
i

∂ f j

∣∣∣∣
f j= f j

f ′
j + O

(
f ′

j
2)

, (19)

where Einstein’s summation convention is adopted on index j.
Injecting Eq. (18) into the lattice Boltzmann scheme, keeping
the zeroth-order in fluctations and canceling any spatial and
temporal derivatives leads to

fi = f eq
i (ρ, u), (20)

where ρ and u are respectively the mean flow density and the
mean flow velocity. On the other hand, keeping the first-order
equation in populations yields

f ′
i (x + ei, t + 1) = ∂ f ∗

i

∂ f j

∣∣∣∣
f j= f j

f ′
j . (21)

In the von Neumann analysis, fluctuating populations are
sought as complex plane monochromatic waves

f ′
i (x, t ) = f̂i exp (i(k · x − ωt )), (22)
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where i2 = −1, ( f̂i ) ∈ CV , k is the dimensionless wave num-
ber vector, and ω is the dimensionless pulsation of the wave.
In the case of a temporal analysis, k ∈ RD and ω ∈ C. Finally,
injecting Eq. (22) into the general linearized equations of
Eq. (21) yields a linear system of size V that can be written
under the following matricial form:

e−iωF̂ = MF̂, (23)

where F̂ = ( f̂i )i∈�1,V � and M is a square (V × V )-size matrix.
For the collision models introduced in Sec. II, the expressions
of this matrix can be found, e.g., in Refs. [62,65], and are
derived in a general way in Appendix B, as

(i) BGK collision model:

MBGK
i j = e−ik·ei

[
δi j − 1

τ

(
δi j − Jeq,N

i j

)]
, (24)

with

Jeq,N
i j = wi

N∑
n=0

1

n!c2n
s

�
(n)
eq, j : H(n)

i , (25)

and where coefficients �eq, j are provided in Appendix B,
(ii) PR:

MPR
i j = e−ik·ei

[
Jeq,N

i j +
(

1 − 1

τ

)(
δk j − Jeq,N

k j

)
hik

]
, (26)

with

hik = wi

2c4
s

H(2)
i : H(2)

k , (27)

(iii) RRNr :

MRRNr
i j = MPR

i j + e−ik·ei

(
1 − 1

τ

) Nr∑
n=3

wi

n!c2n
s

�
(n)
1, j : H(n)

i ,

(28)

where coefficients �
(n)
1, j can be found in Appendix B.

Note that none of the above expressions involves the mean
flow density ρ, so that M depends on the dimensionless relax-
ation time τ , the mean flow velocity u and the wave number
vector k only.

Regarding the possible values of k, a short discussion has
to be made. First, according to the Nyquist-Shannon sampling
theorem [73,74], it is sufficient to study wave numbers for
which |kx| � π , |ky| � π , which corresponds to considering
waves discretized with more than two points per wavelength
in each direction. Moreover, only the real part of the fluctuat-
ing populations given in Eq. (22) is of interest:

Re( f ′
i ) = | f̂i| cos[k · x − ωrt + arg( f̂i )]e

ωit , (29)

where ωr = Re(ω) is related to the wave propagation, ωi =
Im(ω) to its amplification rate, and arg( f̂i ) is the argument of
the complex amplitude f̂i. Thanks to parity properties of the
cos function, it is perfectly equivalent to study:

(k, ω, f̂i ) or (−k,−ω†, f̂i
†
), (30)

where the “†” superscript stands for the conjugate of a com-
plex number. Hence, it is sufficient to restrict the problem
to half of the possible wave number vectors k, e.g., kx ∈
[−π, π ], ky ∈ [0, π ] in two dimensions.

In practice, physical phenomena of interest are rarely re-
solved with less than eight points per wavelength, meaning
that investing cases for which ||k|| < π/4 should be sufficient
for common purposes. However, any wave with more than two
points per wavelength is naturally considered in a numerical
simulation. If such under-resolved wave is linearly amplified,
then the numerical scheme is found unstable. This is why the
full range of possible wave numbers, including under-resolved
ones, has to be considered in the stability analyses.

B. Modal identification through eigenvectors

In the common von Neumann approach, the eigenvalue
problem of Eq. (23) is solved for each value of k, providing
V eigenvalues, then V complex pulsations ω whose imaginary
part ωi provides information on the amplification rate of the
mode, and its real part ωr on the propagation of the mode.
Especially, phase velocity vφ and group velocity vg can be
defined as

vφ = ωr

||k|| , vg = ∂ωr

∂||k|| . (31)

However, the eigenvectors F̂ are usually not exploited,
whereas they contain interesting information on the quantity
carried by a given mode of the LB method. In the present
linear stability analyses, the methodology introduced in a
previous article [13] will be adopted to systematically identify
each mode by its macroscopic content. The main steps of this
procedure are as follows:

(a) Compute the macroscopic moments of a given eigen-
vector:

ρ̂ =
∑

i

f̂i, ρ̂u =
∑

i

ei f̂i, (32)

to identify the considered mode as either a non observable one
[(̂ρ, ρ̂u) = (0, 0)] or an observable one [(̂ρ, ρ̂u) �= (0, 0)];

(b) perform a von Neumann analysis of the NS equations,
in order to obtain the eigenvectors of the physical (acoustic
and shear) waves

V̂ac+, V̂ac−, ̂Vshear, (33)

expressed in the basis of the macroscopic moments (̂ρ, ρ̂u);
(c) find the coefficients of the linear decomposition

V̂ = (̂ρ, ρ̂u)T

= α1V̂ac+ + α3V̂ac− + α3̂Vshear, (34)

thanks to the passage matrix composed of the NS eigenvec-
tors;

(d) normalize the coefficients αi so that
∑

i |αi| = 1,
and then systematically identify the physical information
carried if

|αi| > η, (35)

where η � 1 is an arbitrary threshold.

Note that in the rest of the article, the following distinction
between modes and waves will be adopted:

(i) the denomination mode will refer to the continuous
curves (as function of the wave number k) of the LB linear
analyses,
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(ii) the denomination wave will refer to the physical waves
expected by NS analyses (acoustics and shear).

In particular, as highlighted in a previous work [13] and
due to modal interactions occurring in the numerical scheme,
a given LB mode can carry different physical waves according
to the considered range of wave numbers k. This particular
property will be illustrated in the analyses of the next section.

IV. MAIN RESULTS

The eigenvalue problems detailed in the previous section
are discretized for any value of kx ∈ [−π, π ] and ky ∈ [0, π ]
with a step �k = 0.001. Each eigenvalue problem is then
solved with the NumPy Python library [75]. Note that in the
case of a mean flow aligned with the horizontal or vertical di-
rection, lattice symmetry properties allow reducing the study
parameters to kx ∈ [0, π ]. For each problem, a systematic
modal identification thanks to the moments of the eigenvec-
tors, as described above, is performed. For this purpose, the
parameter η is set to η = 0.9 in order to identify modes carry-
ing more than 90% of a physical wave. Moreover, a validation
of every linearized system has been done by initializing a
two-dimensional LB solver with the superposition of a mean
flow f eq

i (ρ, u) and a fluctuating part given by Eq. (29), where
f̂i are the populations provided by an eigenvector of the linear
analysis. Observing a monochromatic plane wave behavior
allows qualitatively validating a correct linearization of the LB
scheme.

In the following, the focus will be put on two lattices:
the standard D2Q9 [10] and the multispeed D2V17 lattices
[71,76], both described in Appendix A. Comparisons will be
drawn with linear analyses of the NS equations, which lead to
(cf. Refs. [13,77]):

ωshear = k · u − iν||k||2,
ωac+ = k · u + ||k||cs − iν||k||2 + O(k3), (36)

ωac− = k · u − ||k||cs − iν||k||2 + O(k3).

Note that these solutions correspond to a fluid modeling in-
cluding a bulk viscosity νb = ν, as usual in two-dimensional
athermal LB methods [78]. In all the cases presented below, a
dimensionless relaxation time will be defined as

τ = τ − 1/2 = ν/c2
s . (37)

A. Standard D2Q9 lattice

In this section, the linear behavior of the D2Q9 lattice is
investigated. First, reminders are given on the BGK collision
model, then regularized ones are investigated. For a sake of
clarity and compactness, all the studies of this section are per-
formed with a partial fourth-order equilibrium (N = 4∗), since
it is known that including higher-order equilibrium moments
can enhance numerical stability [18,25,79]. It is all the more
noticed that other forms of Gauss-Hermite based polynomial
equilibria (with N = 2 or N = 3∗) do not affect the main
conclusions drawn below [25].

1. BGK collision model

Linear stability analyses of the BGK collision model have
been extensively studied in the litterature, and the interested
reader may refer to previous work for more in-depth studies
[7,13,60,61,80]. Thus, this section mainly focuses on key
points that should be kept in mind when studying regularized
models.

Figure 1 displays the propagation [ωr = f (kx )] and dis-
sipation [ωi/ν = f (kx )] curves of the D2Q9 lattice for
horizontal plane waves (ky = 0) with three horizontal mean
flows: Ma = 0.2, Ma = 0.4, and Ma = 0.6, where Ma = u/cs

is the mean flow Mach number. The dimensionless relaxation
time is set to τ = 10−5, which is a commonly encountered
value for air flow simulations when an acoustic scaling, link-
ing space and time steps, is adopted [3].

Several observations are worth noting. First, nine modes
can be identified: three of them carry no macroscopic infor-
mation whatever the wave number kx (identified with “+”),
while six modes are observable. Among the latter, three modes
carry a shear information (i.e. a transverse velocity only, iden-
tified with “o”). The other three modes either carry upstream
(“�”) and downstream (“�”) acoustics, or a non identified
macroscopic information (“–”), which is necessarily a linear
superposition of physical waves (shear and acoustics). More
dedicated studies indicate that the latter mode is nothing more
than a linear combination of acoustic waves, referred to as
“spurious acoustics” [67]. Furthermore, a modal interaction
exhibited in Ref. [13] as a curve veering, or avoided crossings
phenomenon is evidenced on the Ma = 0.6 case: two eigen-
curves repel each other and a swap of the continuous mode
carrying the downstream acoustic information is noticed. All
in all, for the well-resolved wavelengths – at least 8 points
per wavelength (kx � π/4) – the linear behavior of any mode
carrying physical waves is consistent with the NS expecta-
tions both in propagation and dissipation, and no instability
region (ωi > 0) is noticed in the horizontal direction for these
cases.

In order to investigate more precisely the linear stability
of the case Ma = 0.2 (in the horizontal direction), a spectral
map of the maximal amplification rate ωi/ν for any value of
kx and ky is displayed on Fig. 2. A very thin instability zone
[max(ωi )/ν > 0] can be observed in the region kx ≈ 2.11,
ky ≈ 2.13. Looking at the propagation and dissipation curves
of the waves traveling in the corresponding direction allows
highlighting another kind of modal interaction, referred to as
eigenvalue collision in Ref. [13]. The latter consists in a local
degeneracy of two eigencurves carrying a macroscopic infor-
mation, leading to a severe instability peak. As a consequence,
any LB simulation run under these conditions is expected
to become unstable because of a strong amplification of the
corresponding wave numbers.

To complete these analyses, spectral maps of the effec-
tive viscosity of any mode carrying a given physical wave
(shear, downstream and upstream acoustics) are displayed
on Fig. 3 for cases Ma = 0.2 and Ma = 0.6. When several
modes eventually carry a similar macroscopic information
(e.g., the three modes carrying shear on Fig. 1), only the one of
maximal amplification rate (ωi) is displayed. In any case, the
effective viscosity is computed as νe = −ωi/||k||2 and further

053305-6



LINEAR STABILITY AND ISOTROPY PROPERTIES OF … PHYSICAL REVIEW E 102, 053305 (2020)

ωr

π

π/2

0

−π/2

−π

ωi/ν

0

−2

−4

−6

−8

−10

−12

kx

0 π/4 π/2 3π/4 π

kx

0 π/4 π/2 3π/4 π

kx

0 π/4 π/2 3π/4 π

FIG. 1. Propagation (top) and dissipation (bottom) curves of the nines modes of the BGK-D2Q9 lattice with τ = 10−5, N = 4∗, ky = 0 and
three values of the horizontal mean flow: Ma = 0.2 (left), Ma = 0.4 (middle), and Ma = 0.6 (right). Modes carrying more than η = 90% of a
physical wave are identified: (o) shear, (�) downstream acoustics, (�) upstream acoustics, (−−) non identified wave, and (+ ) non observable
mode. Navier-Stokes reference curves are displayed as ( ) shear, ( ) downstream acoustics, and ( ) upstream acoustics.

dimensionalized by the expected viscosity ν. For Ma = 0.2
a rather isotropic behavior is observed for any well-resolved
wavelength (||k|| < π/4). However, when increasing the
Mach number of the mean flow to Ma = 0.6, the dissipation
rate becomes anisotropic, especially regarding the acoustics
and even in the most-resolved wavelengths. This unphysical
observation can be attributed to the O(Ma3) error induced by
the truncation of the equilibrium distribution function, which

is known to be responsible for an antidissipative behavior
[7,22], yielding νe/ν < 1. Yet, no instability of any mode
carrying more than 90% of a physical wave can be identified
on these figures.

To summarize these investigations, all the results carried
in the current work, as well as previous analyses of the BGK
collision model [14,25], exhibit two main sources of instabil-
ity for the D2Q9 lattice:
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kx

0

π/4

π/2

3π/4

π
−10 −8 −6 −4 −2 0
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ν

FIG. 2. Linear stability analysis of the BGK-D2Q9 LB scheme with τ = 10−5, N = 4∗ and a horizontal mean flow at Ma = 0.2. Left:
Maximal amplification rate for any wave number vector k. The dashed line indicates plane waves for which θk = arctan(ky/kx ) = 45.5◦. Right:
propagation (ωr) and dissipation (ωi) curves of these plane waves. Symbols are identical to Fig. 1. An eigenvalue collision is highlighted as
the instability cause.
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FIG. 3. Effective viscosity νe/ν of the modes carrying physical waves with D2Q9 lattice, BGK collision, τ = 10−5, N = 4∗. Top: Ma =
0.2, bottom: Ma = 0.6. Left: Shear; middle: downstream acoustics; right: upstream acoustics. Gray indicates zones where no physical wave
could be identified with η = 90%.

(a) for Ma >
√

3 − 1 ≈ 0.73, the negative dissipation due
to the O(Ma3) error is a cause of instability.

(b) for Ma <
√

3 − 1 ≈ 0.73, the only linear instabilities
are due to destructive modal interactions occurring in the form
of eigenvalue collision.

The first error is inherent to the discretization of the ve-
locity space and the corresponding equilibrium distribution
truncation. Note that the critical value

√
3 − 1 is, in theory,

only valid in the low-Knudsen number limit [14], which is the
range of application of the NS equations. The second cause
is a purely numerical instability, consequent of the space and
time discretization of the LB scheme. It is the only source of
instability when Ma < 0.73, a fortiori in the validity range of
the athermal approximation.

2. Regularized collision models

Similar analyses are now performed on the regularized
collision models. Three of them are of particular interest in
this section: the PR, RR3∗, and RR4∗ models.

Figure 4 displays the propagation and dissipation curves
for τ = 10−5 and a horizontal mean flow at Ma = 0.2. Only
monochromatic plane waves traveling in the horizontal direc-
tion (ky = 0) are considered here. To avoid a numerical noise
in the solutions due to a lack of accuracy in the eigenvalue
problem resolution, modes for which |eiω| < 10−15 have not
been plotted on the figure. A first observation can be made:
instead of the nine modes observed with the BGK collision

model (consistent with the nine velocities of the lattice), six
modes are present with the PR, RR3∗, and RR4∗ models.
A very interesting property of the regularization can imme-
diately be suggested: By reducing the number of modes,
the destructive interactions occurring with the BGK collision
model, and responsible for strong instability issues, are likely
to be less frequent. This mode filtering property will be par-
ticularly investigated in Sec. VI.

Let us now look closer at the spectral curves for each
case of Fig. 4. In the PR case, one mode is non observable
whatever the wave number (identified with “+”), two modes
carry the acoustic information, at least for the more resolved
wavelengths (“�” and “�”) and two modes carry a shear
information (“o”). Note that one of the latter has such a large
attenuation rate (ωi/ν ≈ −105) that it cannot be observed on
the dissipation curve. Surprisingly, the other one has a positive
amplification rate for any wave number kx ∈ [0, π ]. As a
consequence, in a LB computation, a shear wave is expected
to grow with time, leading to an unavoidable instability. A
very important point is that, unlike the BGK collision model,
this instability does not seem to be related to any eigenvalue
collision. This mode carrying shear seems indeed to be intrin-
sically unstable. This specificity will be further discussed in
Sec. VI.

RR3∗ and RR4∗ models are perfectly equivalent in the
horizontal direction. The physical content of the six modes is
the same as with the PR model: One mode is non observable,
two modes carry shear (one of which is very damped), and
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FIG. 4. Propagation (top) and dissipation (bottom) curves of the D2Q9 lattice with τ = 10−5, N = 4∗, Ma = 0.2, ky = 0 and four
regularized collision models, from left to right: PR, RR3∗, and RR4∗. Modes carrying more than η = 90% of a physical wave are identified: (o)
shear, (�) downstream acoustics, (�) upstream acoustics, (−−) non identified wave, and (+ ) non observable mode. Navier-Stokes reference
curves are displayed as ( ) shear, ( ) downstream acoustics, and ( ) upstream acoustics.

two modes carry the acoustics. However, unlike the PR model,
the shear mode of larger amplification rate is not unstable.
On the contrary, it is rather very attenuated compared to the
NS expectations. For instance, for kx = π/4, the effective
viscosity of this mode is about 15ν. Acoustic modes traveling
in the horizontal direction, for their part, do not seem to suffer
from an attenuation compared to the BGK case of Fig. 1.

A better overview of the dissipative and isotropy property
of every model is displayed on Fig. 5, where νe/ν is plot-
ted over all the possible wave number vectors k, for each
identified physical information. Similar flow conditions as
previously are simulated (τ = 10−5, Ma = 0.2). It immedi-
ately highlights an overall more dissipative behavior of all the
considered regularized models, for any physical wave and in
every direction, as well as some unstable regions.

More specifically, regarding the PR model, a large insta-
bility zone of the shear mode is highlighted, as it could be
guessed from Fig. 4. While the acoustic waves traveling along
the horizontal direction have a correct dissipation rate for
kx � π/2, the downstream ones are unstable in all other direc-
tions. Moreover, a strong anisotropic behavior makes the up-
stream one significantly attenuated in the diagonal directions.

The RR3∗ model is actually unstable under these flow
conditions, which could not be guessed from Fig. 4. This is
due to a small instability zone exhibited for the shear waves in
the diagonal direction. The two acoustic waves remain stable,
but they suffer from the same kind of anisotropy as the PR
model. This is also the case of the RR4∗ model, which has
very similar properties as the RR3∗ one, while remaining
stable.

To summarize these observations, strong anisotropic devia-
tions are observed on the spectral dissipation of all regularized
models. The latter do not seem to have a physical meaning,
but on the contrary, they might be related to the numerical
discretization of the regularized schemes. To investigate this
aspect, the numerical properties of regularized approaches
will be numerically emphasized in Sec. V, then possible ex-
planations will be provided in Sec. VI.

B. D2V17 lattice

To complete these analyses, similar investigations are now
performed on the D2V17 lattice whose features are recalled in
Appendix A. The order of quadrature of this lattice is Q = 7,
so that the equilibrium distribution function can be expanded
up to N = 3, which allows recovering the athermal NS be-
havior without any Mach error in the momentum equation
[23]. For the same reason, the order of regularized schemes
cannot exceed Nr = 3. The choice N = 3 is adopted for all
the analyses of this section.

Figure 6 displays propagation and dissipation curves of
the D2V17 lattice for τ = 10−5, a horizontal mean flow at
Ma = 0.2 and three collision models: the BGK, PR, and RR3
collision models.

With the BGK collision model, 17 modes can be identified,
which is in agreement with the (17×17)-shape matrix of the
linear system. Due to their large number, modal interactions
in the form of curve veering phenomena frequently occur.
Yet, no positive amplification rate is captured for the waves
traveling in the horizontal direction. Further analyses over the
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FIG. 5. Dissipation properties of the modes carrying physical waves with the D2Q9 lattice, τ = 10−5, N = 4∗ and a horizontal mean flow
at Ma = 0.2. Hatched areas indicate zones where ωi > 0 (unstable wave numbers). From top to bottom: PR, RR3∗, and RR4∗ collision models.
Left: Shear; middle: downstream acoustics; right: upstream acoustics. Gray indicates zones where no physical wave could be identified with
η = 90%.

full set of possible wave number vectors k, not shown here,
highlight severe instability zones for non horizontal plane
waves due to eigenvalue collision phenomena.

PR and RR3 models have a rather similar behavior with
only six modes remaining, exactly like with the D2Q9 lattice
(cf. Fig. 4). Two modes carry a shear information, two modes
carry the acoustics (at least for kx < 2π/3), and the last two
modes advect a non identified macroscopic information. Note
that contrary to the RR3 model, the PR one is unstable because
of a positive amplification rate of the shear mode whatever the
wave number, and a small instability zone of the downstream
acoustic mode.

Ratio of effective viscosities νe/ν are displayed on Fig. 7
over all the possible wave number vectors k, for each identi-
fied macroscopic information (shear or acoustics) and for the
three following collision models: BGK, PR, and RR3. Several
observations are worth noting:

(i) The BGK collision model has a rather isotropic behav-
ior, at least for the most resolved wavelengths. Its dissipation
rate is in the order of magnitude of the NS expectations,
and no positive amplification of the identified physical waves
is noticed. It confirms the fact that eigenvalue collisions
of non physical modes are responsible for the numerical
instabilities.
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FIG. 6. Propagation (top) and dissipation (bottom) curves of the D2V17 lattice with τ = 10−5, N = 3, Ma = 0.2 and four regularized
collision models, from left to right: BGK, PR, and RR3. Modes carrying more than η = 90% of a physical wave are identified: (o) shear, (�)
downstream acoustics, (�) upstream acoustics, (−−) non identified wave, and (+ ) non observable mode. Navier-Stokes reference curves are
displayed as ( ) shear, ( ) downstream acoustics, and ( ) upstream acoustics.

(ii) As already noticed with the D2Q9 lattice, the regu-
larized models lead to an overdissipation of under-resolved
modes whatever the direction considered.

(iii) Unlike the RR3 model, the PR one is unstable, which
cannot be related to any eigenvalue collision phenomenon.

(iv) Regularized models suffer from a severe anisotropic
dissipation, especially for the shear wave.

C. Linear stability domains

A better insight of the stability properties of each collision
model can be obtained by computing the maximal reachable
Mach number under stable flow conditions. To this extent,
numerical stability analyses are performed for kx ∈ [−π, π ],
ky ∈ [0, π ] and mean flow angles θ ∈ [0◦, 45◦] with a step
�θ = 1◦. Thanks to the lattice symmetry properties, it is not
necessary to investigate mean flows for which θ > 45◦. Re-
garding the value of the wave number step �k, it has to be fine
enough so as to well capture the instabilities of a given model,
especially with the BGK operator, where instability peaks are
likely to be sharp. It is here set to �k = 0.005, which, as
shown in Appendix C, is sufficient to obtain a convergence in
the linear stability results of the BGK model. The mean flow
Mach number Ma = u/cs is progressively increased by a step
0.001 until a critical value Ma

c
is reached.

Critical Mach numbers obtained with the D2Q9 lattice are
displayed on Fig. 8 as function of the dimensionless relaxation
time τ . A monotonous stability increase is evidenced as τ

increases, whatever the adopted collision model. It has two
important consequences:

(i) For a given Mach number, stability can be recovered by
increasing the kinematic viscosity ν, a fortiori by decreasing
the Reynolds number of the simulation.

(ii) With an acoustic scaling [3], for which �x/�t =
c0/cs where c0 is the physical (dimensional) sound speed, the
dimensionless viscosity ν is related to the dimensional one
ν∗ as

ν = ν∗ �t

�x2
= ν∗cs

c0�x
. (38)

Hence, ν can be increased for a given ν∗ by refining the local
mesh size without affecting the simulated Reynolds number,
which therefore helps increasing numerical stability.

Surprisingly, PR models are overall linearly less
stable than the standard BGK model, which is prob-
ably due to their unexpected dissipation properties
exhibited in the previous section. This result may seem
in disagreement with previous simulations showing
better stability of regularized models [49,81–86].
In fact, one should be cautious with the notions of “more
stable” or “less stable” configurations. In the current context,
only maximal reachable Mach numbers ensuring stable
numerical simulations are investigated. The present analyses
do not focus on the value of the amplification rate, which
might be much lower for the PR model than for the BGK
one. For instance, with N = 4, τ = 10−5 and a horizontal
mean flow at Ma = 0.2, one has max(ωi )/τ ≈ 150 and 2000
for the PR and the BGK schemes respectively. Hence, for
the former, it is quite conceivable that instabilities require
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FIG. 7. Dissipation properties of the modes carrying physical waves with the D2V17 lattice, τ = 10−5, N = 3 and a horizontal mean flow
at Ma = 0.2. Hatched areas indicate zones where ωi > 0 (unstable wave numbers). Left: Shear; middle: downstream acoustics; right: upstream
acoustics. Gray indicates zones where no physical wave could be identified with η = 90%.

so many iterations to develop that it is not visible in a real
computation. It would then be considered more stable in
practice than the BGK model for a given Mach number, even
if both models are unstable in theory.

For their part, recursive regularized schemes systemati-
cally increase the maximal stable Mach number whatever the
relaxation time. Most significant gains are observed in the
zero-viscosity limit. This result is in agreement with previous

053305-12



LINEAR STABILITY AND ISOTROPY PROPERTIES OF … PHYSICAL REVIEW E 102, 053305 (2020)

10−6 10−5 10−4 10−3 10−2 10−1

τ = ν/c2s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ma
c

BGK

PR

RR3∗

RR4∗

10−6 10−5 10−4 10−3 10−2 10−1

τ = ν/c2s

BGK

PR

RR3∗

RR4∗

10−6 10−5 10−4 10−3 10−2 10−1

τ = ν/c2s

BGK

PR

RR3∗

RR4∗

(a) N )(b2= N = 3∗ (c) N = 4∗

FIG. 8. Critical mean flow Mach number Ma
c

as function of the dimensionless relaxation time τ for BGK and regularized collision models,
with the D2Q9 lattice and several equilibrium distribution orders N . The dashed line represents the theoretical limit of lattice Boltzmann models
with a second-order equilibrium: Ma

c = √
3 − 1 ≈ 0.73 [14].

numerical simulations which underlined a better stability of
these models [24,25,51,54,79,87]. Among all the investigated
models, the RR4∗ one with an equilibrium distribution func-
tion expanded up to N = 4∗ leads to the best increase in
stability range.

Note finally that, whatever the adopted collision model,
a ceiling cannot be exceeded at Ma = 0.73. This particular
limitation is a consequence of the O(Ma3) error inherent to the
D2Q9 lattice [14,25]. This is also in agreement with previous
analyses dedicated to different collision models and numerical
schemes [54,64].

To conclude this investigation, similar linear stability anal-
yses are applied to the D2V17 lattice. Results are displayed
on Fig. 9 for second- and third-order equilibrium distribu-
tion functions. With N = 2, similar observations as with the
D2Q9 lattice can be drawn: The recursive regularized model

is the most stable one and the maximal Mach number can-
not exceed Ma = 0.73. With N = 3, stability gains can be
effectively achieved for the largest values of τ . The stabil-
ity range can indeed exceed Ma = 0.73, which is due to a
correctly recovered momentum equation without any Mach
error in the shear stress tensor. However, in the low-viscosity
region, no significant effect of the equilibrium order can be
noticed.

V. NUMERICAL VALIDATION

Section IV highlighted the unexpected dissipative behavior
of regularized collision models. Unlike the standard BGK
model, an anisotropic dissipation rate has been exhibited even
for relatively well resolved wavelengths, as well as an overdis-
sipation of some wave numbers and instabilities that could
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FIG. 9. Critical mean flow Mach number Ma
c

as function of the dimensionless relaxation time τ for BGK and regularized collision models,
with the D2V17 lattice and several equilibrium distribution orders N . The dashed line represents the theoretical limit of lattice Boltzmann
models with a second-order equilibrium: Ma

c = √
3 − 1 ≈ 0.73 [14].

053305-13



WISSOCQ, COREIXAS, AND BOUSSUGE PHYSICAL REVIEW E 102, 053305 (2020)

not be related to eigenvalue collision phenomena. For these
reasons, the numerical properties of the regularized collisions
seem very different from that of the BGK one. They are in
perfect agreement with the observations made by Dellar, who
evidenced a dissipation error of MRT models at low Mach
number [88], which will be further discussed in Sec. VI. The
present section aims at performing a numerical validation of
the linear results of the previous section. To this extent, several
plane monochromatic waves will be simulated in a real LB
solver with both the D2Q9 and D2V17 lattices. Two kinds
of waves will be considered in this section: shear waves and
downstream acoustic ones. To be consistent with the previous
analyses, they will be superimposed to a horizontal mean flow
at Ma = 0.2 with a mean dimensionless density ρ = 1. The
relaxation time of the collision models will be set to τ = 10−5.
A partial fourth-order equilibrium (N = 4∗) will be adopted
with the D2Q9 lattice, and a third-order one (N = 3) with the
D2V17 lattice.

A. Shear waves

Numerical simulations of shear waves are performed in
this section. A horizontal one is first considered thanks to the
following initialization of macroscopic fields:

ρ0(x, y) = ρ, (39)

u0x (x, y) = Ma cs, (40)

u0y (x, y) = ε Ma cs cos(kxx), (41)

with ε = 0.001 and kx = 2π/8, so as to simulate a sine
wave with eight voxels per wavelength. Distribution functions
are initialized at the corresponding equilibrium f eq,N (ρ0, u0)
on the D2Q9 and D2V17 lattices, with the BGK and regu-
larized collision models. Computations are performed on a
2D numerical domain of (80×2) voxels with fully periodic
boundary conditions, so as to simulate 10 periods of the shear
wave. Note that a decay of the transverse velocity is expected
by the NS equations as

uy ∼ e−νk2
x t . (42)

On the contrary, with each of the investigated collision mod-
els, an effective viscosity νe will be involved instead of the
physical viscosity ν. Note that νe can be negative, as some
models are expected to be unstable.

Figure 10 displays the logarithm of the maximal vertical
velocity max(uy) normalized by u0y , as function of a dimen-
sional time expressed as a Fourier number Fo = νk2t . Plotting
these quantities allows an easy identification of the ratio νe/ν

as the slope of a given curve. The following conclusions can
be drawn:

(a) with both lattices, the dissipation of the BGK collision
model is close to the NS expectations,

(b) an amplification of the shear wave is observed with the
PR model for both lattices,

(c) with the D2Q9 lattice, RR3∗ and RR4∗ models have
the same dissipation rate, which is overestimated compared to
the theory,

(d) the same behavior, although more amplified, is found
with the RR3 model on the D2V17 lattice.
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FIG. 10. Decay or growth of the vertical velocity of a horizontal
shear wave as function of the Fourier number. : BGK, : PR,

: RR3, : RR4, : NS.

All these conclusions are in perfect agreement with the
linear stability analyses of Sec. IV.

Similarly, an inclined shear wave is simulated in order
to assess the dissipation properties of nonhorizontal waves
exhibited in the previous section. To that end, the velocity field
is now initialized as

u0x = Ma cs − ε ux sin(θk ) cos(kxx + kyy), (43)

u0y = ε ux cos(θk ) cos(kxx + kyy), (44)

with θk = atan2(ky, kx ). In the following, kx = 2π/16 and
ky = 2π/12 are adopted to deliberately capture the instability
of the D2Q9-RR3∗ model (cf. Fig. 5). A periodic domain of
size (160×120) voxels is used, so as to simulate 10 periods
of the shear wave. Linear growths and decays of this inclined
wave are displayed on Fig. 11. A perfect agreement with the
linear analyses of Sec. IV is obtained. In particular, with the
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FIG. 11. Decay or growth of the vertical velocity of an inclined
shear wave as function of the Fourier number. : BGK, : PR,

: RR3, : RR4, : NS.
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TABLE I. Estimated ratio νe/ν for horizontal and inclined shear
waves. Nppx = 2π/kx , Nppy = 2π/ky.

Horizontal Inclined

Nppx = 8, Nppy = ∞ Nppx = 16, Nppy = 12

Collision D2Q9 D2V17 D2Q9 D2V17

BGK 1.15 1.07 0.98 1.06
PR −195 −150 −2.1 180
RR3 17 87 −2.5 230
RR4 17 X 6.4 X

D2Q9 lattice, both PR and RR3∗ models are unstable, while
the RR4∗ one remains stable. An interesting behavior of the
D2V17-PR model can be noticed: Even though the excited
wave is stable (resulting in an initial decay of the velocity
amplitude), a severe instability occurs. This is due to the
positive amplification rate of horizontal shear waves, which
can still exist in the simulation even if not initially triggered.

Note that, under these mean flow conditions, the BGK
collision model is expected to be unstable with both the D2Q9
and D2V17 lattices, as displayed on Figs. 8 and 9. However,
no instability is observed in the test cases considered in the
present section. This is due to two distinct phenomena, both
illustrated in Appendix C. First, with a periodic domain of
size (Nx, Ny), only discrete values of the wave numbers kx ∈
{ jπ/Nx, j ∈ �0, Nx�}, ky ∈ { jπ/Ny, j ∈ �0, Ny�} are consid-
ered, so that �kx = π/Nx and �ky = π/Ny [89]. Hence, the
thin instability peaks of the BGK model may not be triggered
in such simulations. The second reason lies in the fact that the
x-aligned mean flow is not the most critical configuration, as
displayed on Fig. 18.

More quantitatively, estimated ratios of the effective vis-
cosity on the real kinematic one νe/ν are compiled in Table I.
Negative values correspond to an antidissipative behavior, i.e.,
an instability. Their order of magnitude is in perfect agreement
with the linear stability results of Figs. 5–7.

B. Acoustic waves

Similar simulations are now performed with downstream
acoustic waves. A horizontal one can first be consid-
ered thanks to the following initialization of macroscopic
variables:

ρ0 = ρ + ρ ′
0, ρ ′

0 = ε ρ cos(kxx), (45)

u0x = Ma cs + ρ ′
0cs/ρ, u0y = 0, (46)

with ε = 0.001 and kx = 2π/8. A periodic domain of size
(80×2) voxels is adopted for this case. Linear growth and
decay of this wave with the BGK and regularized collision
models are displayed on Fig. 12 for the D2Q9 and D2V17
lattices. Once again, a very good agreement with the linear
stability analyses of Sec. IV are obtained. In particular, with
the D2Q9-PR model, the acoustic wave is correctly attenu-
ated during the first instants, even if a strong amplification
suddenly occurs, due to the instability of an unexpected shear
mode for this pure acoustic test case. D2Q9-RR models be-
have close to the BGK one in terms of dissipation. With the

FIG. 12. Decay or growth of the density amplitude of a horizon-
tal acoustic wave as function of the Fourier number. : BGK, :
PR, : RR3, : RR4, : NS.

D2V17 lattice, the acoustic wave is stable with every model,
even if a sudden amplification occurs with the PR one, which
is, here again, due to the instability of the shear wave. Also
note that the acoustic wave is more dissipated than expected
by the NS equations, even with the BGK collision model. This
is due to the modal interaction highlighted on Fig. 6 (left),
responsible for a sudden attenuation of the acoustic wave for
kx ≈ 2π/8.

Similarly, an inclined downstream acoustic wave can be
initialized as

ρ0 = ρ + ρ ′
0, ρ ′

0 = ε ρ cos(kxx + kyy), (47)

u0x = Ma cs + ρ ′
0cs cos(θk )/ρ, (48)

u0y = ρ ′
0cs sin(θk )/ρ, (49)

FIG. 13. Decay or growth of the density amplitude of an inclined
acoustic wave as function of the Fourier number. : BGK, :
PR, : RR3, : RR4, : NS.
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TABLE II. Estimated ratio νe/ν for horizontal and inclined
acoustic waves. Nppx = 2π/kx , Nppy = 2π/ky.

Horizontal Inclined

Nppx = 8, Nppy = ∞ Nppx = 16, Nppy = 12

Collision D2Q9 D2V17 D2Q9 D2V17

BGK 1.00 2.1 1.05 1.13
PR 1.00 1120 −310 −190
RR3 1.00 1150 120 330
RR4 1.00 X 105 X

with θk = atan2(ky, kx ). In the following, the wave number
vector is set as kx = 2π/16, ky = 2π/12 and a periodic do-
main of size (160×120) voxels is adopted. The linear growths
or decays of this wave are displayed on Fig. 13. As ex-
pected by the linear analyses, the PR model is unstable with
both the D2Q9 and D2V17 lattices, and all other regularized
models are overdissipative. Only the standard BGK model
achieves recovering the linear decay expected by the NS
equations.

These results are more precisely quantified in Table II,
where ratios νe/ν are compiled for each model. Very fair
comparisons with the NS dissipative behavior are obtained for
the horizontal acoustic wave with the D2Q9 lattice, whatever
the adopted collision model. This is in agreement with the
linear studies of Marié et al. [7], who showed that LB methods
are less dissipative than sixth-order optimized NS schemes
regarding the acoustics. Note, however, that this trend is not
recovered in non-Cartesian directions. In that case, the nu-
merical dissipation of the BGK model is indeed increased,
and, as previously noticed for the shear waves, dissipative
properties of regularized models for the acoustics are very far
from that expected by the NS equations. In addition to the
results themselves, these analyses prove the need to perform
investigations of the numerical properties in any direction
before concluding on the advantages of a given scheme.

VI. DISCUSSION: NUMERICAL PROPERTIES
OF REGULARIZED MODELS

The analyses of the previous sections have put the light
on two paramount properties of the regularized collision
models:

(i) a mode filtering property: some modes carrying
a nonphysical information have been filtered out of the
computation,

(ii) an incorrect dissipation rate of the modes carrying
shear and acoustics, yielding either an overdissipation, or an
instability of physical waves.

The first point explains how some regularized models
achieve to effectively increase the numerical stability of LB
simulations. A decrease in the number of modes indeed helps
reducing the occurence of eigenvalue collisions, which is the
main source of instability with the BGK collision model. It
is worth noting that the number of remaining modes does
not depend on the lattice considered: whatever the lattice,

projected (PR) and recursive (RR) regularizations reduce their
number to six modes, as noticed in Sec. IV.

On the other hand, the second property turns out to be
problematic both for accuracy, because of an overdissipation
of relatively well resolved waves, and for numerical stability,
since an antidissipative behavior could be highlighted. It is
important to notice that this last point could not be attributed
to any eigenvalue collision phenomenon, which makes the
numerical behavior of regularized models very different from
that of the BGK one.

This section aims at providing some explanations of these
phenomena. But before focusing on these two properties, the
light will be put on the analysis of an “analytically regular-
ized” scheme, which might help understand the origins of the
observed phenomena.

A. LSA of an analytically regularized model

In this section, an “analytically regularized” (AR) collision
model is considered. The latter is based on the observation
that a Chapman-Enskog expansion [20] allows providing an
analytical expression for the first-order coefficient a(2)

1 . In the
context of athermal equations, it reads

a(2),AR
1,αβ = −τρc2

s

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
. (50)

Based on this expression, an AR collision model can be con-
sidered, where the f (1)

i term of Eq. (13) is replaced by

f (1)
i = wi

2c4
s

a(2),AR
1 : H(2)

i . (51)

Note that, as for the recursive regularization, higher-order
terms in Hermite polynomials could be included in f (1)

i .
However, without any loss of generality, they will not be
considered in this section since these high-order terms are not
expected to have any macroscopic constribution at the (ather-
mal) NS level. It is all the more noted that linear analyses
including third- and fourth-order Hermite polynomials (not
shown below) do not affect the conclusions of this section.

Even if the analytical expression of Eq. (50) cannot be used
as it stands in a LB solver, for which a discretization of the
gradient operator is mandatory, a linear stability analysis can
be performed on the corresponding time-advance numerical
scheme, without any approximation in the computation of the
space derivatives. This is the main interest of the analyses
proposed in this section.

The derivation of the matrix representative of the AR
scheme is proposed in Appendix B. The eigenvalue problem
of Eq. (23) is recovered with

MAR
i j = eik·ei

[
Jeq,N

i j +
(

1 − 1

τ

)
wi

2c4
s

�
(2),AR
1, j : H(2)

i

]
, (52)

where(
�

(2),AR
1, j

)
αβ

= −iτc2
s

[(
e jα − uα

)
kβ + (

e jβ − uβ

)
kα

]
. (53)

Propagation and dissipation curves along the horizontal
direction (ky = 0) are displayed on Fig. 14 for a horizontal
mean flow at Ma = 0.2, τ = 10−5 and two lattices: the D2Q9
lattice with N = 4∗ and the D2V17 lattice with N = 3. Note

053305-16



LINEAR STABILITY AND ISOTROPY PROPERTIES OF … PHYSICAL REVIEW E 102, 053305 (2020)

kx

0 π/4 π/2 3π/4 π

kx

0 π/4 π/2 3π/4 π
−5000

−4000

−3000

−2000

−1000

0

1000

ωi/ν

−π

−π/2

0

π/2

π

ωr

FIG. 14. Propagation (top) and dissipation (bottom) curves of the
AR collision model with τ = 10−5, Ma = 0.2. Left: D2Q9 lattice
with N = 4∗; right: D2V17 lattice with N = 3. Modes carrying a
physical wave are identified as on Fig. 4.

that, for the sake of convenience, the scale of the dissipation
curves have been adapted for these models.

These analyses lead to two major conclusions:
(a) While six modes are present with the PR and RR

schemes whatever the lattice, only three modes remain with
the AR collision model.

(b) Dissipative properties of both D2Q9 and D2V17 lattice
drastically deviate from the NS behavior for ||k|| > π/8 (16
points per wavelength), and the D2Q9 lattice is even unstable
for this configuration.

These incorrect dissipative properties can be more pre-
cisely figured out on Fig. 15, where any propagation direction
of the physical waves is considered. With the D2Q9 lattice
with N = 4∗, all the physical waves (shear and acoustics) have
unstable regions, while they remain stable with the D2V17
lattice, even though much more attenuated than expected.

This short study remains useful to better understand the
main properties of the regularized models stated above, since
they are both recovered in the AR model. In particular, it is
important to notice that this AR regularization is a priori per-
fect in the sense of the NS equations. There is indeed no need
to enrich, from a physical point of view, the content of the off-
equilibrium part of Eq. (51), which already contains all the NS
physics. Yet, a dissipative issue can be highlighted. It therefore
seems that this issue is related to the intrinsic regularization
procedure (i.e., the fact of re-writing fi as f eq

i + f (1)
i , with a

specific off-equilibrium part, before the collision), rather than
to the way coefficients a(n)

1 are regularized, since such an error
remains whatever the adopted regularized model (PR, RR,
and AR).

This statement being made, the rest of the section focuses
on the origins of the aforementioned properties.

B. Mode filtering property

Every regularized collision model of interest in the present
work can be written as two successive steps: (1) a precollision
regularization,

f reg
i = f eq,N

i + f (1)
i , (54)

followed by (2) a BGK collision,

f ∗
i = f reg

i − 1

τ

(
f reg
i − f eq,N

i

)
. (55)

The mode filtering property can be understood by looking
carefully at the first step of this scheme. In two dimensions,
the computation of the equilibrium distribution function in-
volves three macroscopic quantities (ρ, ux, uy), hence three
moments of the discrete distributions fi. Regarding f (1)

i , it
depends on the adopted model:

(a) with the PR and RR models: f (1)
i is a function of six

variables: (ρ, ux, uy, a(2)
1,xx, a(2)

1,xy, a(2)
1,yy ), involving six indepen-

dent moments of the discrete distributions,
(b) with the AR model, since a(2)

1 is computed thanks to
the knowledge of (ρ, ux, uy) only, f (1)

i is a function of these
three variables.

Precollision regularized distribution functions can then be
formally written as function of:

PR, RR : f reg
i

(
ρ, ux, uy, a(2)

1,xx, a(2)
1,xy, a(2)

1,yy

)
, (56)

AR : f reg
i (ρ, ux, uy). (57)

This regularization procedure yields a reduction in the rank of
the system, which explains the aforementioned decrease in the
number of modes: six modes for PR and RR models and three
modes for the AR model.

Understanding this property makes it possible to pre-
dict the behavior of regularized models in three dimen-
sions. Then 10 modes are expected with the PR and RR
models because of the dependency on 10 variables: ρ,

ux, uy, uz, a(2)
1,xx, a(2)

1,xy, a(2)
1,xz, a(2)

1,yy, a(2)
1,yz, a(2)

1,zz. This larger
number of remaining modes may possibly lead to a loss of
stability for three-dimensional lattices, especially for the BGK
collision model, where modal interactions are the main cause
of instability. Such investigations will be the purpose of future
work.

Finally, note that discussing on the rank of the system is the
opportunity to put the light on the particular behavior of any
collision model in the case τ = 1/2 (or equivalently τ = 1).
In such a case, Eq. (55) becomes f ∗

i = f eq,N
i , so that the rank

of the system is reduced to three in two dimensions (four
in three dimensions), yielding a substantial gain in stability
induced by a strong mode filtering. It explains the large critical
Mach numbers reached on Figs. 8 and 9, even with the BGK
collision model.

C. Dissipation error of regularized models

The incorrect dissipation rate of shear and acoustics en-
countered with every regularized collision model can a priori
be explained by two potential sources of error:
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FIG. 15. Dissipation properties of the modes carrying physical waves with the AR collision model, τ = 10−5 and a horizontal mean flow at
Ma = 0.2. Hatched areas indicate zones where ωi > 0 (unstable wave numbers). Top: D2Q9 lattice with N = 4∗, bottom: D2V17 lattice with
N = 3. Left: Shear; middle: downstream acoustics; right: upstream acoustics. Gray indicates zones where no physical wave could be identified
with η = 90%.

(i) the hydrodynamic behavior of the discrete velocity
Boltzmann equations (DVBE), from which regularized mod-
els are derived,

(ii) a completely numerical effect, induced by the time and
space discretization of the DVBE.

In order to answer this question, it is therefore essential
to find out the DVBE from which regularized models are
derived. Such a work has been properly done for the BGK col-
lision model [72], but, to the author’s knowledge, no a priori
derivation of regularized schemes from continuous equations
has been achieved yet. In the following, the focus will be put
on the PR scheme, which can be written as a MRT model [50].
Note that all the equations below are considered dimensional
involving the characteristic time �t and length �x.

1. A priori derivation of the PR scheme

Let us start with the following system of equations, contin-
uous in space and time, and where the velocity space has been
discretized:

∂ fi

∂t
+ ei · ∂ fi

∂x
= [H−1RH]i j

(
f j − f eq,N

j

)
, (58)

where H is the matrix of Hermite polynomials eventually
completed by a Gram-Schmidt orthogonalization procedure,
and

R =
(

2

�t
− 1

τ

)
P(2) − 2

�t
I, (59)

where I is the identity matrix and P(2) is the projection matrix
onto the second-order terms. For instance, with the D2Q9
lattice, one has

Hi j = (
H(0)

j ,H(1)
x, j,H

(1)
y, j ,H

(2)
xx, j,H

(2)
xy, j,H

(2)
yy, j,

H(3)
xxy, j,H

(3)
xyy, j,H

(4)
xxyy, j

)T
, (60)

P(2) = diag(0, 0, 0, 1, 1, 1, 0, 0, 0), (61)

R = −diag

(
2

�t
,

2

�t
,

2

�t
,

1

τ
,

1

τ
,

1

τ
,

2

�t
,

2

�t
,

2

�t

)
. (62)

Note that, in absence of body-force term, the first three
coefficients of R have no influence on the model since
they are related to collision invariants. It can be shown (cf.
Appendix D) that the PR model is nothing more than a particu-
lar time and space discretization of Eq. (58), using a trapezium
rule and an appropriate change of variables. Hence, Eq. (58)
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is the DVBE from which the PR scheme can be derived, it will
be referred to as the PR-DVBE in the following.

2. Linear analysis of the PR-DVBE

Thanks to the above a priori derivation of the PR scheme,
it is confirmed that this collision model is actually part of the
MRT family. In this context, the unexpected dissipation rate
highlighted in the present work is in perfect agreement with
the observations of Dellar [88], who evidenced an increasing
dissipation error for the MRT-LBM in the low-Mach limit.
This statement being made, a question can now be raised: Is
this defect directly related to the choice of relaxing high-order
moments to any prescribed value? In other words, do MRT
models intrinsically induce a degeneracy of high Knudsen
effects, responsible for the observed phenomena? Looking at
Eq. (62), the higher-order relaxation times of the continuous
equations that the PR scheme intends to solve (namely the
PR-DVBE) depend on a numerical parameter: the time step
�t . However, it is known that, when the ratio between the
physical relaxation time (τ ) and that of the high-order moment
(2/�t here) becomes too large, hyperviscosity may occur
[14,38], i.e., high-order dissipation which is not expected by
the Navier-Stokes equations, but consequent of an incorrect
hydrodynamic limit of the DVBE. This phenomenon could
explain the incorrect dissipation rate observed with the PR
models, and a fortiori with every regularized model, as well
as any MRT model. To highlight the presence, or not, of
hyperviscosity in the continuous model, it is proposed in this
section to perform a linear stability analysis of Eq. (58). A
linearization of the partial differential equations, followed by
an injection of the plane monochromatic waves of Eq. (22),
lead to the following eigenvalue problem

ωF̂ = MPR−DVBE F̂, (63)

with

MPR−DVBE
i j = [

k · ei δi j + i[H−1RH]il
(
δl j − Jeq,N

l j

)]
, (64)

where an implicit summation is done on the index l . Exactly
as for the analysis of LB scheme, solving this eigenvalue
problem gives access to the propagation (ωr) and dissipation
properties (ωi) of the V modes of the linearized system.

Maps of dissipation rates are displayed on Fig. 16 for
each of the physical waves that can be identified thanks to
an eigenvector analysis: the shear and the acoustic waves.
The parameters set for this analysis are as follows: a D2Q9
lattice with N = 4∗, a horizontal mean flow at Ma = 0.2
and a dimensionless relaxation time τ/�t = 10−5. Even if
a slight deviation of the effective viscosity (νe = −ωi/||k||2)
compared to the expected one (ν) can be observed, its order
of magnitude remains low, so that hyperviscous effects can
reasonably be neglected. This conclusion could have been
guessed from a previous work [14], showing that high-order
Knudsen effects (referred to as Prandtl degeneracy) only have
an influence on the NS physics when

τ

τN
� ||k||τcs

�x

�t
, (65)

where τN is the relaxation time applied to non collision invari-
ants. With the PR model, τN = �t/2, so that this condition
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FIG. 16. Spectral maps of the dissipation properties of the PR-
DVBE [cf. Eq. (58)] on the D2Q9 lattice with N = 4∗, Ma = 0.2,
τ = 10−5. Top: Shear; middle: downstream acoustics; bottom: up-
stream acoustics.

becomes

||k||�x � 2/cs ≈ 3.5, (66)

which is not the case on Fig. 16, where both kx and ky are
restricted to π/�x.

Hence, the overdissipation previously observed with any
regularized model, as well as the instability occurrence, can-
not reasonably be attributed, at least for the PR model, to
any hyperviscous effects occurring on the DVBE from which
they a priori derive. It is therefore necessary to focus on the
numerical error induced by time and space discretizations of
the regularized scheme.

3. Numerical error of the PR scheme

Since the hydrodynamic behavior of the PR-DVBE seems
to be in good agreement with the NS equations, the dissipation
issue encountered with the discrete scheme can only origi-
nate from a numerical error induced by the time and space
discretization of the DVBE [Eq. (58)]. To this extent, let us
focus on the a priori derivation of the PR scheme of Ap-
pendix D. Exactly as in the case of the BGK collision model, a
O(�t3) error appears due to the second-order precision of the
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trapezium rule. However, in the case of the PR scheme, this
term is multiplied by the matrix R containing terms of order
O(1/�t ), as shown in Eq. (62). Even though the three first
components of this matrix, related to collision invariants, have
rigorously no influence on the numerical scheme (in absence
of body-force term), the three last ones directly impact the
time evolution of third- and fourth-order moments. For this
reason, the numerical error induced by the time and space dis-
cretization of the PR scheme appears to be one order lower, in
�t , than that of the BGK scheme. This is a direct consequence
of equilibrating high-order Hermite moments with this model.

However, numerous past investigations of regularized
collision models have evidenced an order of convergence
close to that of the BGK one, i.e., second-order ac-
curacy in space and time [50,51,83,84,86,90]. This may
appear in disagreement with the a priori derivation of
Appendix D, indicating a first-order accuracy for the PR
scheme. It therefore seems that the corresponding error has
no pragmatic effect on the order of convergence on the macro-
scopic equations. A possible explanation for this observation
is that the numerical error does not directly affect mass and
momentum equations, but the evolution of higher-order mo-
ments only. More in-depth investigations of the convergence
error of the numerical scheme and that of the corresponding
macroscopic equations will be the purpose of future work.

Regarding the RR4∗ scheme with N = 4∗ on the D2Q9
lattice, it has recently been shown equivalent to a centered
Hermite moment MRT model equilibrating high-order mo-
ments [39]. It therefore shares all the conclusions drawn in
this section.

In any case, the spatio-temporal discretization of the regu-
larized schemes turns out to be essentially different from that
of the BGK one. This observation may account for numerical
instabilities of different nature, namely

(i) modal interactions (eigenvalue collisions) for the BGK
model, and

(ii) an unexpected amplification of isolated modes for reg-
ularized models.

The work of Dellar on MRT models [88] seem to confirm
the fact that setting high-order relaxation rates to a predefined
value is responsible for a numerical error in dissipation, as
large as the dimensionless τ is decreased. The latter was
indeed able to improve the precision of MRT models by
releasing the value of high-order relaxation rates and by im-
posing a constant “ghost Reynolds number” instead. However,
with such a solution, one of the main advantage of the regu-
larized models would be lost: their ability to completely filter
out some nonhydrodynamic modes.

In order to shed some light on these points, the possible
link between time and space errors of the numerical schemes
and potential dissipation issues will be the purpose of future
work. In addition, the methodology employed in the present
work is being considered for the analyses of various collision
models.

VII. CONCLUSION

Linear stability analyses of several regularized collision
models have been rigorously performed for the athermal lat-
tice Boltzmann method. Two kinds of regularizations have

been particularly investigated: the so-called PR, which was
successively used by Skordos [47], Ladd and Verberg [48],
and Latt and Chopard [49], and the RR, where off-equilibrium
distribution functions are computed by recurrence [24,51,87].
Following a previous work performed on the BGK collision
model, a particular attention has been paid to the eigenvectors
of the linear analyses, which bear important information on
the macroscopic content of a given LB mode. In particular,
such a study has made it possible to systematically iden-
tify the modes carrying a physical information (acoustics or
shear) and investigate their isotropy properties in two dimen-
sions. Moreover, numerical cases of plane monochromatic
waves have confirmed the results obtained by linear stability
analyses.

All in all, a rigorous methodology, that can be applied
to any LB model, has been introduced. It provides objective
comparisons of collision models and allows drawing fair con-
clusions on their stability in the linear regime. Since it seems
that most phenomena have a numerical origin, their stability
property are hardly predictable in an a priori manner. In this
context, the main interest of such a work is to provide hints
in the hope of clearly identifying the origins of the numerical
properties of each model, so as to help build more robust LB
schemes.

Regarding regularized models, the results strongly warn on
the importance of investigating numerical properties in every
direction, since a large anisotropy has been highlighted. This
is especially true for the dissipation of acoustic waves, which
have a very good behavior in the mesh-aligned directions, but
are severely attenuated, or even amplified, in diagonal ones.
Two major conclusions shared by all the regularized models
investigated in the present article have been highlighted: (1)
a mode filtering property and (2) an incorrect dissipation rate
(overdissipation or amplification) of the physical waves trav-
eling in some directions. The first property has been explained
by a reduction of the rank of the system, as a result of the pre-
collision regularization procedure. This mode filtering helps
reducing the occurrence of eigenvalue collisions, that are re-
sponsible for the strong instability issues of the BGK collision
model, and therefore contributes in an enhanced stability. For
instance, with both the D2Q9 and D2V17 lattices, the most
stable models (in term of maximal achievable Mach number)
turn out to be a form of the recursive regularization. Unfortu-
nately, the second property led to unphysical dissipation rates,
in some cases of several orders of magnitude larger than the
expected kinematic viscosity, in other cases responsible for
linear instabilities. By discussing on the way the PR scheme
can be a priori obtained from its DVBE counterpart, it seems
that a numerical error, one order lower (in time) than with the
BGK model, may be at the origin of a particular source of in-
stability. Indeed, while the numerical instabilities of the BGK
model are caused by modal interactions only, the amplification
of isolated modes has been observed with regularized models.
It is likely that the fact of setting high-order relaxation rates
to predefined values is at the origin of such a phenomenon, as
observed by Dellar with MRT models [88].

Discussing on the numerical error of regularized schemes
has in fact raised as many questions as it answered, especially
regarding their order of convergence. In order to shed the
light on this particular point, a study on the link between
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the numerical errors of LB schemes and potential dissipation
issues is ongoing. Furthermore, as a perspective for future
work, similar analyses can be performed on three-dimensional
lattices for practical purposes. One would then expect a lower
robustness due to the larger number of remaining modes, even
after the regularization filter. It would also be interesting, if
not essential, to reproduce such analyses to other LB models
in order to find out how they achieve a potential stability gain.
In this context, an investigation of the hybrid recursive regu-
larized (HRR) collision model [56] is being under study, both
for athermal and compressible flows [91]. More generally,
other time and space discretizations of the discrete velocity
Boltzmann equation may also be investigated, e.g., fractional
propagation schemes [92,93]. Obviously, the behavior of other
collision models (either based on a particular moment space

[16,26,27,30–32,38,53] or relying on an entropy maximiza-
tion principle [41–44,46]) should also be investigated. For
all the above collision models, when the relaxation rate of
a given moment is such that it is imposed at its equilibrium
value during the collision process, it is expected that similar
properties as that of the regularized collision models would be
recovered.
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APPENDIX A: LATTICES

D2Q9 and D2V17 lattices, used in the present article, are described below. For the sake of clarity, all velocities obtained by
cyclic permutations with respect to each Cartesian axis are omitted, the number of velocities belonging to a same group (i.e.,
same velocity norm) being denoted by p. The parameters of the D2V17 lattice are taken from Ref. [17].

Lattice Quadrature order ei Group p wi cs

(0, 0) 1 1 4/9
D2Q9 Q = 5 (1, 0) 2 4 1/9 1/

√
3

(1, 1) 3 4 1/36

(0, 0) 1 1 (575 + 193
√

193)/8100
(1, 0) 2 4 (3355 − 91

√
193)18000

D2V17 Q = 7 (1, 1) 3 4 (655 + 17
√

193)/27000
√

5(25 + √
193)/72

(2, 2) 6 4 (685 − 49
√

193)/54000
(3, 0) 7 4 (1445 − 101

√
193)/162000

APPENDIX B: MATRICES FOR THE LINEAR SYSTEMS

This Appendix aims at detailing the derivation of matrices
presented in the linear system of Sec. III,

e−iωF = MF, (B1)

for the BGK and the regularized models introduced in Sec. II.
Whatever the collision model, it starts by linearizing the col-
lide and stream scheme as

f ′
i (x + ei, t + 1) = ∂ f ∗

i

∂ f j

∣∣∣∣
f j= f j

f ′
j, (B2)

where f ∗
i are postcollision populations, whose expression

depends on the adopted collision model. After injecting the
monochromatic plane wave of Eq. (22), one has

eik·ei e−iω f̂i = ∂ f ∗
i

∂ f j

∣∣∣∣
f j= f j

f̂ j . (B3)

1. BGK collision model

With the BGK collision model, postcollision populations
are computed as

f ∗
i (x, t ) = fi(x, t ) − 1

τ

[
fi(x, t ) − f eq,N

i (x, t )
]
. (B4)

Hence,

∂ f ∗
i

∂ f j

∣∣∣∣
f j= f j

= δi j − 1

τ

(
δi j − Jeq,N

i j

)
, (B5)

where Jeq,N , the Jacobian matrix of the equilibrium distribu-
tion functions, can be computed as

Jeq,N
i j = ∂ f eq,N

i

∂ f j

∣∣∣∣∣
f j= f j

. (B6)

The equilibrium distribution functions of interest in the
present article can be written in the general form

f eq,N
i = wi

N∑
n=0

1

n!c2n
s

a(n)
eq : H(n)

i . (B7)

In the above expression, coefficients a(n)
eq only are implicit

function of all populations ( f j ) through macroscopic variables
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(ρ, u). For this reason, one has

Jeq,N
i, j = wi

N∑
n=0

1

n!c2n
s

�
(n)
eq, j : H(n)

i , (B8)

with(
�

(n)
eq, j

)
α1..αn

= ∂a(n)
eq,α1..αn

∂ f j

∣∣∣∣∣
f j= f j

= ∂a(n)
eq,α1..αn

∂ρ

∣∣∣∣∣
(ρ,ρu)

∂ρ

∂ f j
+ ∂a(n)

eq,α1..αn

∂ (ρuβ )

∣∣∣∣∣
(ρ,ρu)

∂ (ρuβ )

∂ f j
,

(B9)

where an implicit summation is done over the index β. It
should be noted that partial derivatives of a(n)

eq over ρ are
done at (ρu) constant rather than at u constant. Knowing the
definitions of ρ = ∑

fi and ρu = ∑
ei fi, one has

∂ρ

∂ f j
= 1,

∂ (ρu)

∂ f j
= e j . (B10)

Moreover, equilibrium coefficients a(n)
eq can be expressed as

a(n)
eq,α1...αn

= ρuα1 ..uαn = jα1 .. jαn

ρn−1
, (B11)

after denoting j = ρu, so that

∂a(n)
eq,α1..αn

∂ρ

∣∣∣∣∣
(ρ,ρu)

= − (n − 1) jα1 .. jαn

ρn = −(n − 1)uα1 ..uαn ,

(B12)

∂a(n)
eq,α1..αn

∂ jβ

∣∣∣∣∣
(ρ, j)

= 1

ρn−1

n∑
i=1

jα1 .. jαi−1 jαi+1 .. jαnδαiβ

=
n∑

i=1

uα1 ..uαi−1 uαi+1 ..uαnδαiβ. (B13)

Note that these expressions do not involve the mean density
ρ any more. Hence, the equilibrium Jacobian matrix Jeq,N can
be computed with(
�

(n)
eq, j

)
α1..αn

= −(n − 1)uα1 ..uαn+
n∑

i=1

uα1 ..uαi−1 uαi+1 ..uαn e j,αi .

(B14)

For instance, some of these coefficients are provided below:

�
(0)
eq, j = 1,

(
�

(1)
eq, j

)
α

= e j,α, (B15)(
�

(2)
eq, j

)
xx

= −ux
2 + 2uxe j,x,(

�
(2)
eq, j

)
xy

= −uxuy + uxe j,y + uye j,x, (B16)(
�

(2)
eq, j

)
yy

= −uy
2 + 2uye j,y,(

�
(3)
eq, j

)
xxx

= −2ux
3 + 3ux

2e j,x,(
�

(3)
eq, j

)
xxy

= −2ux
2uy + ux

2e j,y + 2uxuye j,x, (B17)(
�

(3)
eq, j

)
xyy

= −2uxuy
2 + uy

2e j,x + 2uxuye j,y,(
�

(3)
eq, j

)
yyy

= −2uy
3 + 3uy

2e j,y, (B18)(
�

(4)
eq, j

)
xxyy

= −3ux
2uy

2 + 2ux
2uye j,y + 2uxuy

2e j,x. (B19)

Finally, injecting Eq. (B5) in Eq. (B3) leads to the eigenvalue
problem of Eq. (B1) with

Mi j = e−ik·ei

[
δi j − 1

τ

(
δi j − Jeq,N

i j

)]
. (B20)

2. PR

In the PR approach, postcollision populations can be
rewritten as

f ∗,PR
i = f eq,N

i +
(

1 − 1

τ

)(
fk − f eq,N

k

)
hik, (B21)

where an implicit summation is done over the index k and with

hik = wi

2c4
s

H(2)
i : H(2)

k . (B22)

Thus, the Jacobian matrix of postcollision populations can be
computed as

∂ f ∗,PR
i

∂ f j

∣∣∣∣∣
f j= f j

= Jeq,N
i j +

(
1 − 1

τ

)(
δk j − Jeq,N

k j

)
hik . (B23)

The eigenvalue problem of Eq. (B1) can therefore be obtained
with

MPR
i j = e−ik·ei

[
Jeq,N

i j +
(

1 − 1

τ

)(
δk j − Jeq,N

k j

)
hik

]
. (B24)

3. RRNr

With the recursive regularization, the postcollision popula-
tions can be written as

f ∗,RRNr
i = f ∗,PR

i +
(

1 − 1

τ

) Nr∑
n=3

wi

n!c2n
s

a(n)
1 : H(n)

i . (B25)

In the second right-hand-side term of the above relation,
only coefficients a(n)

1 are (implicit) functions of the discrete
populations ( f j ), through the recursive formula of Eq. (17).
A linearization of these terms therefore involves the derivative
nth-order tensors �

(n)
1, j defined as

(
�

(n)
1, j

)
α1..αn

= ∂a(n)
1,α1..αn

∂ f j

∣∣∣∣∣
f j= f j

. (B26)

Off-equilibrium coefficients of interest in this article can be
obtained as follows with the recursive relation of Eq. (17):

a(3)
1,xxx = 3uxa(2)

1,xx, a(2)
1,xxy = 2uxa(2)

1,xy + uya(2)
1,xx,

a(3)
1,xyy = 2uya(2)

1,xy + uxa(2)
1,yy, a(3)

1,yyy = 3uya(2)
1,yy, (B27)

a(4)
1,xxyy = u2

ya(2)
1,xx + 4uxuya(2)

1,xy + u2
xa(2)

1,yy, (B28)

where

a(2)
1,xx =

∑
k

(
fk − f eq,N

k

)
H(2)

k,xx,

a(2)
1,xy =

∑
k

(
fk − f eq,N

k

)
H(2)

k,xy, (B29)

a(2)
1,yy =

∑
k

(
fk − f eq,N

k

)
H(2)

k,yy.
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Eventually linearizing these coefficients yields(
�

(3)
1, j

)
xxx

= 3ux

(
H(2)

j,xx −
∑

k

Jeq,N
k j H(2)

k,xx

)
, (B30)

(
�

(3)
1, j

)
xxy

= 2ux

(
H(2)

j,xy −
∑

k

Jeq,N
k j H(2)

k,xy

)

+ uy

(
H(2)

j,xx −
∑

k

Jeq,N
k j H(2)

k,xx

)
, (B31)

(
�

(3)
1, j

)
xyy

= 2uy

(
H(2)

j,xy −
∑

k

Jeq,N
k j H(2)

k,xy

)

+ ux

(
H(2)

j,yy −
∑

k

Jeq,N
k j H(2)

k,yy

)
, (B32)

(
�

(3)
1, j

)
yyy

= 3uy

(
H(2)

j,yy −
∑

k

Jeq,N
k j H(2)

k,yy

)
, (B33)

(
�

(4)
1, j

)
xxyy

= uy
2

(
H(2)

j,xx −
∑

k

Jeq,N
k j H(2)

k,xx

)

+ 4uxuy

(
H(2)

j,xy −
∑

k

Jeq,N
k j H(2)

k,xy

)

+ ux
2

(
H(2)

j,yy −
∑

k

Jeq,N
k j H(2)

k,yy

)
. (B34)

Finally, the eigenvalue problem of Eq. (B1) can be recovered
with

MRRNr
i j = MPR

i j + e−ik·ei

(
1 − 1

τ

) Nr∑
n=3

wi

n!c2n
s

�
(n)
1, j : H(n)

i .

(B35)

4. AR

In the “analytical regularization” as described in this arti-
cle, postcollision populations are reconstructed as

f ∗,AR
i = f eq,N

i +
(

1 − 1

τ

)
wi

2c4
s

a(2),AR
1 : H(2)

i , (B36)

where a(2),AR
1 is the analytically computed coefficient obtained

with a Chapman-Enskog expansion, whose components are
given by

a(2),AR
1,αβ = −τρc2

s

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
, (B37)

where α, β ∈ {x, y}. As previously, this function is an implicit
function of all populations ( f j ) through macroscopic quanti-
ties ρ and u. It can be linearized as

a(2),AR
1,αβ ( f j ) = a(2),AR

1,αβ ( f j ) + ∂a(2),AR
1,αβ

∂ f j

∣∣∣∣∣
f j= f j︸ ︷︷ ︸

(�(2),AR
1, j )

αβ

f ′
j + O

(
f ′

j
2)

.

(B38)

Note that the first right-hand-side term vanishes since the
gradient of the mean flow is null by definition. Computing
the first-order fluctuations leads to

a(2),AR
1,αβ ( f j ) = −τc2

s ρ

(
∂uα

∂ f j

∣∣∣∣
f j= f j

∂ f ′
j

∂xβ

+ ∂uβ

∂ f j

∣∣∣∣
f j= f j

∂ f ′
j

∂xα

)
+ O

(
f ′

j
2)

. (B39)

On the one hand, by denoting j = ρu, one has

∂uα

∂ f j

∣∣∣∣
f j= f j

= ∂ ( jα/ρ)

∂ f j

∣∣∣∣
f j= f j

= 1

ρ

∂ jα
∂ f j

∣∣∣∣
f j= f j

− jα
ρ2

∂ρ

∂ f j

∣∣∣∣
f j= f j

= e j,α − uα

ρ
, (B40)

where Eq. (B10) has been used to establish the last equality.
On the other hand, injecting the fluctuation forms of Eq. (22)
into Eq. (B39) yields

∂ f ′
j

∂xα

= ikα f ′
j,

∂ f ′
j

∂xβ

= ikβ f ′
j . (B41)

This leads to(
�

(2),AR
1, j

)
αβ

= −iτc2
s

[(
e jα − uα

)
kβ + (

e jβ − uβ

)
kα

]
. (B42)

Finally, one has

∂ f ∗,AR
i

∂ f j

∣∣∣∣
f j= f j

= Jeq,N
i j +

(
1 − 1

τ

)
wi

2c4
s

�
(2),AR
1, j : H(2)

i ,

(B43)

so that the eigenvalue problem of Eq. (B1) is recovered with

MAR
i j = eik·ei

[
Jeq,N

i j +
(

1 − 1

τ

)
wi

2c4
s

�
(2),AR
1, j : H(2)

i

]
. (B44)

APPENDIX C: CONVERGENCE STUDY IN LSA
OF THE D2Q9-BGK SCHEME

This Appendix aims at providing information regarding the
convergence of the linear stability analyses performed in this
work, especially regarding the critical Mach number obtained.
With the BGK collision model, Sec. IV highlights the pres-
ence of thin instability peaks in the spectral space. Therefore,
a sufficiently resolved spectral resolution is required to cap-
ture them, so as to obtain a correct estimation of the maximum
reachable Mach number. It is recalled here that each study
is performed for any wave number so as kx ∈ [−π, π ] and
ky ∈ [0, π ] with a step �k. Figure 17 displays the maximal
Mach number obtained with the BGK-D2Q9 model for sev-
eral resolutions �k, considering mean flow orientations in
[0◦, 45◦] with a step of 1◦. A convergence in the results can
be noticed for �k < 0.01.

Figure 18 provides similar results considering x-aligned
mean base flows only. It highlights the importance of in-
vestigating any flow orientation in order to obtain a correct
estimation of the stability property of a given scheme, as a
consequence of the large anisotropy of numerical errors.
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FIG. 17. Convergence of the critical mean flow Mach number Ma
c

of the BGK with the D2Q9 lattice and several equilibrium distribution
orders N , considering any mean flow orientation. Several spectral discretizations with a step �k are considered. The dashed line represents the
theoretical limit of lattice Boltzmann models with a second-order equilibrium: Ma

c = √
3 − 1 ≈ 0.73 [14].

APPENDIX D: A PRIORI DERIVATION
OF THE PR SCHEME

Note that every quantity presented in this Appendix is
dimensional, as adopted in Sec. VI.

Let us start with the following system of equations, contin-
uous in time and space:

∂ fi

∂t
+ ei · ∂ fi

∂x
= �PR

i = [H−1RH]i j
(

f j − f eq,N
j

)
, (D1)

where H and R are (V × V ) matrices given in Sec. VI C 1.
Integrating Eq. (D1) along a characteristic line and using a

trapezium rule yields

fi(x + ei�t, t + �t ) − fi(x, t )

= [H−1RH]i j

{
�t

2

[
f neq,N

j (x + ei�t, t + �t )

+ f neq,N
j (x, t )

] + O(�t3)

}
, (D2)

where f neq,N
i = fi − f eq,N

i . As with the BGK collision model
[72], a new variable can be introduced:

gi = fi − �t

2
�PR

i , (D3)
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FIG. 18. Convergence of the critical mean flow Mach number Ma
c

of the BGK with the D2Q9 lattice and several equilibrium distribution
orders N , considering x-aligned mean flows only. Several spectral discretizations with a step �k are considered. The dashed line represents the
theoretical limit of lattice Boltzmann models with a second-order equilibrium: Ma

c = √
3 − 1 ≈ 0.73 [14].
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leading to the following equation

gi(x + ei�t, t + �t ) − gi(x, t )

= [H−1RH]i j
[
�t f neq,N

j (x, t ) + O(�t3)
]
. (D4)

In order to obtain an explicit collide and stream scheme, the
right-hand side term of (D4) has to be expressed as a function
of gi:

�PR
i = [H−1RH]i j

(
f j − f eq,N

j

)
= [H−1RH]i j

(
g j + �t

2
�PR

j − f eq,N
j

)
, (D5)

⇒
[

H−1

(
I − �t

2
R

)
H

]
i j

�PR
j

= [H−1RH]i j
(
g j − f eq,N

j

)
. (D6)

After some math, this leads to

�t �PR
i = [H−1RDH]i j

(
g j − f eq,N

j

)
, (D7)

with

RD =
(

1 − �t

τ + �t/2

)
P(2) − I =

(
1 − �t

τ

)
P(2) − I,

(D8)

where τ = τ + �t/2 and P(2) is the projection matrix onto
second-order moments. For instance, with the D2Q9 lattice,
P(2) = diag(0, 0, 0, 1, 1, 1, 0, 0, 0). The following numerical
scheme, explicit for gi, is obtained:

gi(x + ei�t, t + �t )

= gi(x, t ) + [H−1RDH]i j
(
g j − f eq,N

j

) + O(R �t3) (D9)

= gi(x, t ) +
[(

1 − �t

τ

)
H−1P(2)H − I

]
i j

(
g j − f eq,N

j

)
+O(R �t3) (D10)

= f eq,N
i +

(
1 − 1

τ

)
[H−1P(2)H]i j

(
g j − f eq,N

j

)
+O(R �t3). (D11)

Dropping the O(�t3) error, the projected regularized scheme
of Eq. (13) is recovered on the discrete distributions gi. Note
that this matrix form of the PR scheme is well known in the
literature [50].
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