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Constructing feed-forward artificial neural networks to fit potential energy surfaces for molecular
simulation of high-temperature gas flows
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Kinetic rates for thermochemical nonequilibrium models are generally computed from quasiclassical tra-
jectory (QCT) calculations on accurate ab initio potential energy surfaces (PES). In this article, we use a
feed-forward artificial neural network (ANN) to fit existing single-point energies for N2 + N2 interactions
[Bender et al., J. Chem. Phys. 143, 054304 (2015)] to construct a PES suitable for molecular simulation of
high-temperature gas flows. We then perform detailed comparisons with a widely used N4 PES that was built
using the permutation invariant polynomials (PIP) method. Specific physical considerations in the construction of
the ANN for this application are detailed. Translation, rotation, and permutation invariance are precisely satisfied
by mapping the interatomic distances onto a set of permutation invariant inputs, known as fundamental invariants
(FI) that generate the permutation invariant polynomial ring. The diatomic energy is imposed by decomposing
the total potential energy into a sum of a two-body and a many-body energy contribution. To obtain the correct
dynamical behavior with the most basic, yet computationally efficient ANN, spurious long-distance interactions
must be removed to avoid incorrect physical behavior at the dissociation threshold. We use a simple apodization
function to smoothly taper off to zero any residual many-body interaction at large separations. Both accuracy and
performance of the FI-ANN PES are assessed. QCT calculations are used to compute dissociation probabilities
and vibrational energy distributions at various equilibrium temperatures. Excellent agreement with the results
obtained from the PIP PES is found. For our test case, the ANN PES is also significantly more computationally
efficient than the PIP PES at comparable root-mean-square error levels.
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I. INTRODUCTION

The accurate description of internal energy transfer mech-
anisms and dissociation kinetics in high-speed flows is
important to accurately predict the surface heat flux on hy-
personic vehicles. At Mach numbers above 5, shock layer
temperatures reach tens of thousands of degrees K. Molecular
collisions in this environment are extremely energetic and
lead to excitation of internal energy modes, dissociation, and
radiation. When flow and chemical characteristic time scales
become comparable, some regions of the flow field may be in
thermochemical nonequilibrium.

Current thermochemical models used in computational
fluid dynamics (CFD) are often based on equilibrium distri-
butions of molecular internal energies and are calibrated with
experimental data, which are typically characterized by a large
uncertainty. Often flight conditions cannot be reproduced with
ground testing, and the extrapolation of low temperature lab-
oratory measurements to high temperatures typical of hyper-
sonic conditions is problematic, due to strong nonlinearities
that characterize these phenomena. For these reasons, these
models may fail altogether in predicting some key physics.
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Higher fidelity is obtained from state-to-state kinetic mod-
els [1–10]. This approach consists in precomputing an ab
initio potential energy surface (PES) by interpolating an
extensive set of single-point energies that best describe
the interaction between either two molecules or an atom
and a molecule. Then, quasiclassical (or semiclassical [4])
trajectory calculations (QCT) are used to obtain reaction prob-
abilities, collision cross sections, and transition rates [11].
State-resolved approaches are very powerful and, in principle,
free of any empiricism.

An alternative to state-to-state kinetic models is the direct
molecular simulation (DMS) method. Similar to the direct
simulation Monte Carlo (DSMC) method of Bird [12], par-
ticle free flight and particle-particle collisions are decoupled,
thus achieving an enormous computational gain in a dilute
gas simulation compared to brute force molecular dynam-
ics. However, unlike standard DSMC, DMS does not rely
on simplified models for the collisions or precomputed col-
lision cross-sections; instead, a full trajectory calculation is
performed for each colliding pair of molecules to determine
the post-collision states [13].

Both QCT and DMS calculations generally integrate an ex-
tremely large number of molecular trajectories (up to billions,
depending on temperature) on a PES with femtosecond-sized
time steps. The computational cost of molecular-dynamics-
like methods [14] is directly proportional to the cost of
evaluating the gradient of the potential energy. Trajectories
are then obtained by a numerical integration of Newton’s
second law, where the negative of the gradient provides the
interatomic forces. Depending on the temporal accuracy of
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the numerical integration method (e.g., Verlet, Runge-Kutta,
etc. [14]), multiple force evaluations are needed per time
step. Such expensive computations can only be justified if
the trajectories are obtained on an accurate PES to produce
benchmark results for validation of reduced-order, simplified
descriptions. Clearly, the DMS method could be more eas-
ily extended to increasingly realistic flows beyond simple
zero-dimensional relaxations [13] with more computationally
efficient algorithms to evaluate interatomic forces (i.e., PES
gradient) needed in trajectory integration.

In general, it is desirable that the accuracy of the PES
should be primarily determined by the quality of the under-
lying quantum mechanical calculations, and to a lesser degree
by the interpolation methodology. Different ab initio data sets
for the same system are often obtained with different quantum
mechanical methods. For example, the N2 + N2 PES has been
independently obtained by researchers at NASA Ames [15],
the University of Minnesota [16], and the University of Pe-
rugia [17]. But “each research group has their own recipe for
devising the geometric grid, computing the electronic energy
[...], and defining the analytic expression used to represent the
PES.” Furthermore, “the process of determining the functional
form and values for the parameters that reproduce these ener-
gies is quite tedious and time-consuming [...]” [18]. Therefore,
it is also desirable for the interpolation scheme to require as
little human intervention as possible and to be computation-
ally efficient to be repeated as needed if the training data
set requires additional energies to improve the description
of the system energetics. Ultimately, the main effort in the
PES construction should be in the actual calculation of the
single-point energies.

Quite recently, artificial neural networks (ANN) have
emerged as a class of algorithms that have shown a number
of advantages over conventional PES construction methods
[19]. It has been shown formally [20] that feed-forward neural
networks are universal approximators, i.e., they are capable
of approximating any real-valued function from one finite di-
mensional space to another to any desired degree of accuracy,
provided a sufficient number of neurons in the hidden layer is
used (see Sec. II for a brief description of the ANN architec-
ture). Therefore, a feed-forward ANN is a natural choice for
PES construction. In fact, artificial neural networks have been
previously applied to several systems, from small molecules
(e.g., H2O) to condensed systems (Si or C) [19].

The objective of this work is to assess the physical accuracy
of the simplest feed-forward ANN architecture to construct
relatively low-dimensional PESs for application to molecular
simulation of high-temperature flows, where strong coupling
between internal energy excitation and chemical reactivity
occurs. In doing so, we also evaluate the computational ef-
ficiency of an ANN PES obtained from fitting an existing
N2 + N2 ab initio single-point energy data set [16,21] com-
pared to previous interpolations [21]. Recent works have
extended the application of ANNs to more complex systems,
e.g., condensed phases [22–24]. In these applications, the PES
dimensionality is very large (hundreds or thousands of di-
mensions) and permutation invariance is obtained by utilizing
descriptors of the local atomic environment. These strategies,
although quite general, greatly increase the sophistication of
the ANN, and therefore likely complicate its training and in-

crease the computational cost of evaluating energy and forces
compared to the simplest feed-forward ANN architecture.
Moreover, for air thermochemistry, molecular collisions only
involve a small number of atoms, thus resulting in a low
dimensional PES. For example, a three-dimensional PES de-
scribes N + N2 interactions, whereas a six-dimensional one
is required for N2 + N2 collisions. Hence, we think that the
application of sophisticated, but more general strategies, is not
necessary when the objective is to minimize computational
cost without loss of accuracy compared to polynomial inter-
polators.

The advantages of using ANN for PES construction are
well-known and, in summary, include the following:

(1) The accuracy of the fit is generally determined by the
architecture of the network, i.e., number of hidden layers
and corresponding constituent neurons. Unlike predetermined
functional forms, the ANN architecture can be easily varied
to obtain a desired accuracy. Furthermore, a change of archi-
tecture (e.g., number of neurons in a layer) does not require
any modification to the algorithm to compute its gradient with
respect to input variables.

(2) Neural networks are efficient at fitting large data sets.
Generally, larger data sets require more neurons and hidden
layers, but there is no need to modify functional forms or
adding functional terms like in the standard approach de-
scribed earlier.

(3) The training of neural networks does not require much
human intervention.

Because of these reasons, neural networks are very suitable
to construct a PES for the applications of interest here. For
example, different ab initio data sets on the same system could
be trained with the same network architecture to the same
level of accuracy (e.g., same root-mean-square error, RMSE).
This would enable comparisons between different ANN-based
surfaces, thus potentially highlighting differences due to the
underlying quantum mechanical data rather than the specific
selected fitting function. During the preparation of this article,
Li and co-workers [25] published a PIP neural network fit
of an extended N2 + N2 ab initio energy data set. Several
similarities and differences between our approach and theirs
will be briefly highlighted where appropriate.

The paper is organized as follows. In Sec. II, we briefly
illustrate the mathematical form of feed-forward artificial neu-
ral networks, with a particular focus on physical requirements
that must be satisfied for application to trajectory calcula-
tions, namely translation, rotation, and permutation invariance
(Sec. II B) and long-range asymptotic behavior (Sec. II C).
We select the N2 + N2 system as a test case. The results are
presented in Sec. III. First, we discuss the fitting performance
of ANN in Sec. III A. Then, we analyze results from quasi-
classical trajectories on the ANN PES and compare them to
those obtained with a widely used PES for N2 + N2 [26] in
Sec. III B. We draw the conclusions in Sec. IV.

II. MATHEMATICAL FORMULATIONS

A. Feed-forward neural network: Mathematical formulation

The comprehensive mathematical treatment of fully con-
nected feed-forward neural network is well-established (for
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FIG. 1. Schematics of a fully connected feed-forward ANN with
two hidden layers.

example, an introductory description is contained in the book
of Goodfellow, Bengio, and Courville [27] among many other
references). Here, we provide a short description of the basic
ingredients.

A typical schematic of a fully connected feed-forward
ANN is shown in Fig. 1. Neurons are organized in layers.
For the input layer, the number of neurons equals the domain
dimensionality of the function to approximate. The number
of hidden layers is a measure of the network’s depth. Each
hidden layer comprises several neurons. The number of output
neurons is determined by the dimensionality of the co-domain
of the function to interpolate. In this work, there is one output,
the potential energy of the system.

All nodes in each layer are connected to the nodes in
the next layer (feed-forward ANN) by weights, the fitting
parameters of the ANN. Furthermore, each node gets an ac-
tivation function whose input is the biased weighted sum of
the activation state of all the neurons in the previous layer
and that are connected to that node. We denote ω

(k,l )
i, j the

weight connecting neuron i in layer k with neuron j in layer
l = k + 1. Further, hidden and output nodes are connected
to a bias node by the bias weight b(l )

j . The input layer is
denoted with k = 0 and has no bias weights. Each neuron in
the first hidden layer gets a biased weighted sum of the input
coordinates Gi (shown later to be a function of the interatomic
distances, see Sec. II B),

y(1)
m = b(1)

m +
N0∑
i

ω
(0,1)
i,m Gi, (1)

where N0 represents the number of input neurons. Then, each
neuron in the first hidden layer gets an activation h(1)

m ,

h(1)
m = f

(
y(1)

m

)
, (2)

where f is the activation function. Similarly, a generic neuron
m in the hidden layer n is activated to a state,

h(n)
m = f

(
y(n)

m

) = f

(
b(n)

m +
Nn−1∑

i

ω
(n−1,n)
i,m h(n−1)

i

)
, (3)

where Nn−1 is the number of neurons in the n − 1 layer.
In this work, the sigmoid function is the activation function

in all hidden layers. For a simple network, several choices
for the activation function f are possible. We note that, for
simplicity, the same activation function was used in all hidden
layers. Although this is not a general requirement, we do not
expect any advantage in using different activation functions in
different layers (for two or more hidden layers). The output
node has a linear activation function for mapping inputs to a
real-valued output in all of R.

Weights are determined by minimizing an error function,

� = 1

2

∑
i∈�

(
V QM

i − V ANN
i

)2
, (4)

where V QM
i represents the single-point energy obtained with a

quantum mechanical calculation and V ANN
i the corresponding

ANN prediction. � is the set of training points. In this work,
we use the Levenberg-Marquardt minimizer.

By differentiating the negative of the potential energy with
respect to atomic coordinates, one obtains the forces required
to integrate the equations of motion according to Newton’s
second law. We find that a relatively shallow ANN is suffi-
cient to accurately fit the QM energy points (see Sec. III A).
Therefore, for simplicity, we present the gradient expressions
with respect to input variables for a network with one hidden
layer and for a network with two hidden layers.

In the simplest case (one hidden layer), consisting of N0

inputs and N1 neurons in the hidden layer, the output can be
written as

ok =
N1∑
i

ω
(1,2)
i,k h(1)

i + b(2)
k , (5)

where ok = V ANN as k = 1. Furthermore,

h(1)
i = f

(
N0∑
m

ω
(0,1)
m,i Gm + b(1)

m

)
. (6)

We seek to compute

∂ok

∂Gj
= ∂V ANN

∂Gj
. (7)

Because of the linearity of the sum operator, it follows that

∂ok

∂Gj
=

N1∑
i

ω
(1,2)
i,k

∂h(1)
i

∂Gj
, (8)

and using the chain rule in Eq. (6),

∂h(1)
i

∂Gj
= ω

(0,1)
i, j f ′

(
N0∑
m

ω
(0,1)
m,i Gm + b(1)

m

)
. (9)

By combining Eq. (9) with Eq. (8), we obtain

∂ok

∂Gj
=

N1∑
i

ω
(0,1)
i, j ω

(1,2)
i,k f ′

(
N0∑
m

ω
(0,1)
m,i Gm + b(1)

m

)
. (10)

A similar derivation can be done for a network with wo
hidden layers. The ANN now consists of N0 inputs, N1 neu-
rons in the first hidden layer, and N2 neurons in the second
hidden layer. The output can be written as

ok =
N2∑
i

ω
(2,3)
i,k h(2)

i + b(3)
k , (11)

053302-3



VALENTINI, GROVER, AND JOSYULA PHYSICAL REVIEW E 102, 053302 (2020)

where

h(2)
i = f

(
N1∑
m

ω
(1,2)
m,i h(1)

m + b(2)
i

)
(12)

and

h(1)
m = f

(
N0∑
l

ω
(0,1)
l,m Gl + b(1)

m

)
. (13)

By a similar procedure to that described earlier for one hidden
layer,

∂ok

∂Gj
=

N2∑
i

ω
(2,3)
i,k

∂h(2)
i

∂Gj
, (14)

where

∂h(2)
i

∂Gj
=

N1∑
m

ω
(1,2)
m,i

∂h(1)
m

∂Gj
f ′

(
N1∑
i

ω
(1,2)
m,i h(1)

m + b(2)
i

)
(15)

and

∂h(1)
m

∂Gj
= ω

(0,1)
l,m f ′

(
N0∑
l

ω
(0,1)
l,m Gl + b(1)

m

)
. (16)

By substituting Eq. (16) into Eq. (15), and then Eq. (15) into
Eq. (14), one obtains the desired result, namely ∂ok

∂Gj
= ∂V ANN

∂Gj
.

B. Permutation invariance

Arguably, the main difficulty with the application of ANN
to PES construction is the correct inclusion of symmetry.
Because we are interested in low-dimensional PESs relevant
for air thermochemistry, we will not discuss here possible
strategies based on local atomic environment energy decom-
positions [22]. As stated previously, the main advantage of
such approaches is their generality, in that they do not depend
on the particular type of system, but they are more suited to
condensed phases or biomolecules, whose PESs have much
higher dimensionality.

In general, rotational and translational invariance are satis-
fied in a straightforward way by setting the input variables Gj

as a function relative distances between atoms (ri j). However,
the total energy invariance with respect to the exchange of
like-atoms is much more problematic to satisfy for the simple
feed-forward ANN, due to the fact that weights connecting
the input layer to the first hidden layer are hardwired to each
particular input variable Gj . For polynomial-based interpola-
tors, the review article of Braams and Bowman [28] provides
a summary of the computational mathematics underlying the
construction of PESs based on permutationally invariant poly-
nomials. We remark that several concepts presented there are
used later in the work illustrated here.

The simplest approach to account for permutation invari-
ance in a neural network is to explicitly include all equivalent
structures in the training data set [29]. In this way, the ANN is
said to learn the symmetry. For example, for each N2 + N2

geometry, there are 24 equivalent arrangements that must
produce the same energy, corresponding to all possible permu-
tation of N atoms. This approach has two obvious drawbacks:

(1) the training set for highly symmetric systems becomes
quite large, thus making the ANN training computationally
expensive;

(2) permutation invariance is satisfied only approximately.
An alternative solution is to use symmetric neurons in

the first hidden layer, as suggested by Prudente et al. [30].
Although this ANN modification does enforce permutation
symmetry by construction, it requires ad hoc changes to
the network structure and the training algorithm, and it still
remains system-specific. Another approach involves sym-
metrizing atomic coordinates to obtain transformed input
variables that satisfy the required symmetry [31]. Once again,
this approach does enforce symmetry by construction, but it is
highly problem-specific and it may introduce discontinuities
in the gradient.

A more general and rigorous method is that of Guo and
coworkers [32,33] who use permutation invariant polynomi-
als to map the input variables (interatomic distances) onto a
set of permutation invariant polynomials containing all the
polynomials truncated at a given degree (the highest degree
of the primary and secondary invariants). This is the approach
of Li and coworkers [25]. Despite its generality and mathe-
matical rigor, the method becomes impractical as the number
of polynomials increases nonlinearly with the degree bound.
A simpler and more computationally efficient approach is that
of Shao et al. [34] who use a set of invariant polynomials,
called fundamental invariants (FI), as the input of the ANN.
This is the approach that we use in this work.

In the following, we will use the following nomenclature:
(1) the polynomial PES fit based on permutation invariant

polynomials using mixed-exponential Gaussian (MEG) bond
order variables will be denoted by MEG-PIP [26];

(2) the neural network PES fit based on fundamental
invariants inputs using MEG bond order variables will be
denoted by FI-ANN (present work);

(3) the neural network PES fit based on permutation
invariant polynomials inputs using exponential bond order
variables will be denoted by PIP-ANN [25].

For an A4 system (e.g., N2 + N2 or O2 + O2), the PES can
be written as a function of the six interatomic distances:

V (x) = V (r12, r13, r14, r23, r24, r34), (17)

where we define the vector x = (r12, r13, r14, r23, r24, r34).
Similar to a previous study [26], we used MEG functions of
interatomic distances:

Xm := e− xi−req
a − (xi−req )2

b (18)

for m = 1, 2, ..., 6, req is the equilibrium bond length of the
diatomic molecule, while a and b are arbitrary scaling param-
eters. For A4 systems, the FI polynomials are the following
[34]:

G1 = X1 + X2 + X3 + X4 + X5 + X6,

G2 = X 2
1 + X 2

2 + X 2
3 + X 2

4 + X 2
5 + X 2

6 ,

G3 = X1X2 + X1X3 + X1X4 + X1X5 + X2X3 + X2X4

+ X2X6 + X3X5 + X3X6 + X4X5 + X4X6 + X5X6,

G4 = X 3
1 + X 3

2 + X 3
3 + X 3

4 + X 3
5 + X 3

6 ,

G5 = X 2
1 X2 + X 2

1 X3 + X1X 2
3 + X 2

3 X5 + X 2
3 X6
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+ X2X 2
3 + X 2

2 X3 + X1X 2
2 + X 2

2 X4 + X 2
2 X6

+ X2X 2
6 + X3X 2

6 + X5X 2
6 + X4X 2

6 + X 2
4 X6

+ X2X 2
4 + X1X 2

4 + X 2
4 X5 + X4X 2

5 + X 2
5 X6

+ X3X 2
5 + X1X 2

5 + X 2
1 X5 + X 2

1 X4,

G6 = X1X2X3 + X3X5X6 + X2X4X6 + X1X4X5,

G7 = X 4
1 + X 4

2 + X 4
3 + X 4

4 + X 4
5 + X 4

6 ,

G8 = X 3
1 X2 + X 3

1 X3 + X1X 3
3 + X 3

3 X5 + X 3
3 X6 + X2X 3

3

+ X 3
2 X3 + X1X 3

2 + X 3
2 X4 + X 3

2 X6 + X2X 3
6 + X3X 3

6

+ X5X 3
6 + X4X 3

6 + X 3
4 X6 + X2X 3

4 + X1X 3
4 + X 3

4 X5

+ X4X 3
5 + X 3

5 X6 + X3X 3
5 + X1X 3

5 + X 3
1 X5 + X 3

1 X4,

G9 = X 5
1 + X 5

2 + X 5
3 + X 5

4 + X 5
5 + X 5

6 . (19)

We note that the input space is now nine-dimensional, at vari-
ance with the PIP-ANN PES of Li et al. [25] which instead has
276 permutation invariant input polynomials. The expressions
for the derivatives of the FI-ANN output with respect to input
variables are unchanged, as detailed in Sec. II. The gradient
of the ANN output with respect to the MEG inputs Xi is given
by

∇XV = (J∇GV )T, (20)

where J is the Jacobian of the transformation in Eq. (19) and
G = (G1, G2, ..., G9) are the FI polynomials that are now the
input set of the ANN. The Jacobian is given by

J =

⎡
⎢⎢⎢⎢⎣

dG1
dX1

dG2
dX1

. . . dG9
dX1

dG1
dX2

dG2
dX2

. . . dG9
dX2

...
...

. . .
...

dG1
dX6

dG2
dX6

. . . dG9
dX6

⎤
⎥⎥⎥⎥⎦. (21)

The chain rule of calculus gives us the gradient with respect
to ri j , with components

∂V

∂ri j
= ∂V

∂Xm

∂Xm

∂ri j
, (22)

i.e., the forces needed to integrate the molecular trajectories
(Sec. III B). As stated, we adapt this description to the N2 +
N2 system. Therefore, we set req = 1.098 Å and select a =
1 Å and b = 1.5 Å2 as done by Bender and coworkers [26].

To conclude this section, we note that the FI polynomials
in Eq. (19) are specific to systems of four identical inter-
acting atoms (e.g., O2 + O2, F2 + F2, etc.). For systems of
comparable dimensionality (e.g., O2 + O or N2 + O2), a dif-
ferent set of inputs G is required, as discussed by Shao et al.
[34]. However, the procedure just described to construct the
FI-ANN PES and compute its gradient is identical. Finally,
a significant advantage of the FI-ANN PES is its lower in-
put dimensionality compared to the PIP-ANN PES [25]. In
fact, although rather tedious, the analytic evaluation of the
FI-ANN PES gradient is fairly straightforward and can be
coded quite compactly. This allows us to avoid using a nu-
merical evaluation of the gradient in trajectory integration, as
instead done in the work of Li et al. [25], likely due to the
cost of evaluating the transformation Jacobian [Eq. (21)] for
the 276-dimensional polynomial input vector. This removes a

discretization error associated with the numerical evaluation
of the PES gradient, which could be significant in regions
of the surface characterized by steep variations, which may
be explored during high-energy collisions typical of high-
temperature gas conditions.

C. Long-range asymptotic behavior

The robust application of neural networks (but in general
both parametric [35] and nonparametric techniques [36]) to
trajectory calculations requires further considerations on the
long-range behavior of the resulting energy fit. It is convenient
to decompose the total energy as a sum of pair-wise energies,
V2(xi ), and a many-body contribution VMB(x), as in previous
works [15,16],

V (x) = V0 +
6∑
i

V2(xi ) + VMB(x), (23)

where V0 is the total energy required to break the molecular
bonds of two isolated molecules. There are several reasons to
apply the decomposition in Eq. (23):

(1) For many diatomic molecules, the bond energy curve
V2(xi ) is very well-known from highly accurate quantum me-
chanical calculations (e.g., N2 in the work of Gdanitz [37]).

(2) A stand-alone function to compute V2(xi ) makes the
calculation of molecular internal states using the Wentzel-
Kramers-Brillouin [11] method more efficient than directly
using the full PES V (x) function.

(3) Provided that VMB(x) tends to zero at large connected
distances (i.e., r13, r14, r23, and r24), the total energy of the
system reduces to V (x) = V0 + V2(x1) + V2(x6).

Therefore, we fit the FI-ANN PES to the many-body term
V ANN

MB (x) and use the diatomic energy curve V2(xi ) for N2 as
parametrized by Paukku et al. [16].

In general, VMB(x) is a function of all distances, includ-
ing unconnected distances (r12 and r34), even when MEG
variables [Eq. (18)], that decay to zero at infinite separation,
are used. For example, X1 and X6 will not be zero for two
bound molecules separated by an infinite distance. For this
reason, terms containing X1 and X6 that are not multiplied by
terms decaying to zero (Xi with i ∈ {2, 3, 4, 5}) cause a small,
spurious interaction even when two diatoms are infinitely far
away, as shown later in Fig. 3. This spurious coupling remains
because of the inability of the optimizer to fit with extreme
precision the near-zero energy of interaction of diatoms at
large separations.

Unlike in polynomial descriptions (see Supplemental Ma-
terial of the work of Paukku et al. [16]), where such terms
can be explicitly removed from the functional form, this is
not straightforward, or even possible at all, in other types of
interpolators. To correct for this nonphysical behavior, we use
a tapering function ω = ω[VMB(x)] to smoothly bring VMB(x)
to zero at large connected distances where VMB(x) → 0:

V (x) = V0 +
6∑
i

V2(xi ) + ωVMB(x), (24)

where ω takes the following expression:

ω[VMB(x)] = 1
2

{
1 + tanh

[
B0

(
VMB(x)2 − D2

0

)]}
. (25)
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FIG. 2. Tapering function to remove spurious long-distance in-
teractions between diatoms.

We manually optimized B0 = 10 mol2/kcal2 and D0 =
3.5 kcal/mol. The function ω is shown in Fig. 2. Because of
the way ω[VMB(x)] is defined, the switching to zero occurs
smoothly whenever |VMB| < D0, with D0 � RMSE.

In Fig. 3, we show the internal separations r12(t ) and r34(t )
of two isolated molecules that vibrate and rotate without any

relative motion. By introducing the tapering function ω, it
can be seen in Figs. 3(a) and 3(b) that r12(t ) is unaffected
by r34(t ) and viceversa. However, when ω = const = 1, it
is shown in Figs. 3(c) and 3(d) that r12(t ) and r34(t ) are
nonphysically coupled by the residual VMB(x) �= 0 at large
separations. Although such an effect is rather small, about
4% in Figs. 3(c) and 3(d), it must be eliminated as it may
produce incorrect dissociation of molecules at the threshold of
dissociation (e.g., quasibound states). Because dissociation of
diatomic molecules is strongly localized at high rovibrational
levels [26,38,39], a lack of such a correction would predict
a much greater (and incorrect) dissociation probability due
to this numerical artifact rather than the potential surface
morphology.

The correction suggested in this work for the robust ap-
plication of ANNs to PES construction is different than the
approach of Li and coworkers [25] in their PIP-ANN PES,
where terms containing unconnected distances are removed
from the input vector. We tested a similar approach in the
FI-ANN method, but observed a considerably worse fitting,
which resulted in unacceptable levels for the global RMSE.
Although we did not investigate this in detail, we believe that
is caused by the fact that at close range (which is the vast
majority of the geometries in the training set), all distances
are required to describe the energetics of the system, including
unconnected distances.

In addition to removing long-distance spurious coupling,
the use of a tapering function mathematically guarantees that
the interaction energy becomes precisely zero at large sep-
arations. This is at variance with the approach taken by Li
and coworkers [25] where the decay to zero is obtained by
including several single-point energies at very large separa-
tions (well beyond the dispersive force range) and by relying

FIG. 3. Rovibrational motion of two isolated diatoms with no relative speed: (a, b) with ω = ω[VMB(x)] (no long-distance coupling); (c, d)
ω = const = 1 (spurious long-distance coupling).
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on the optimization procedure to reduce the fitting error on
those configurations to nearly zero. While the two approaches
could be equivalent for standard QCT methodologies, the
decay of the long-range interaction energy precisely to zero
could be advantageous in DSMC-like methods, such as DMS
[13], where molecules undergo thousands, or even millions, of
successive collisions. Therefore, a small, but finite interaction
energy at large distances could introduce a small kinetic en-
ergy loss after the termination of each trajectory. Such a small
energy deficit could potentially accumulate over physical time
(or, equivalently, collisions) to produce a sizable energy loss
in an adiabatic system.

In previous works using a polynomial PES [40,41],
geometry-based switching functions were utilized to activate
or deactivate the relevant physical portions of the PES (e.g.,
switching from the close-range interaction to the very long
range interaction [41]). Such switching functions were based
on a geometric criterion, generally based on interatomic dis-
tances. Although similar, our approach is directly based on the
many-body energy, which does not decay precisely to zero
at large separations. This allows us to avoid any geometric
constraints (e.g., identifying a range over which the switching
occurs [rmin, rmax]) that are system-specific. With the defini-
tion of ω, the tapering occurs independently of the particular
chemical system (i.e., N4, O4, N2 + O2, etc.). Furthermore,
for a generic chemical system, the many-body interaction
energy is not necessarily a strictly positive (or negative) term
asymptoting to zero at large separations, but can change sign
in the close-range interaction region, thus crossing zero. If that
happens, then the tapering function would reduce smoothly
the term to zero within ±D0, which is set to be of the order of
the global RMSE. This is to ensure that the overall quality of
the fit would not be significantly compromised.

Finally, we remark that the choice of the tapering function
is not unique and has no physical justification, but only a
mathematical one. At very low temperatures, where the long-
range attraction becomes important, a further investigation of
an appropriate choice for ω[VMB(x)] may become necessary.
In this work, we are only concerned with kinetic processes
at high temperatures (hypersonic shock layer conditions),
where dispersive attractive forces are not important. At high
collisional energies, bound-bound transitions are primarily
affected by the repulsive wall of the PES, which is well-
reproduced by the FI-ANN fit, as shown later.

III. RESULTS

A. Fit to N2 + N2 ab initio energy data

To assess the physical accuracy of the FI-ANN PES, we
select the N2 + N2 system, for which an extensive data set
of ab initio single point energies was obtained by Paukku
et al. [16], and later slightly expanded by Bender et al.
[26]. This data set contains 16534 geometries, most of
which describe various interactions of two N2 molecules. A
small sub-set of geometries are for N2 + N interactions, thus
making the resulting PES transferable to the nitrogen atom-
diatom system. The energies were calculated by the complete
active space second-order perturbation theory (CASPT2)
quantum mechanical electronic structure method with the

maug-cc-pVTZ58 basis set [16,26]. As this work was being
prepared, Li et al. [25] further extended the data set with
an additional 4859 single-energy points using the CASPT2
method and 13 single-energy points using restricted coupled-
cluster calculations with single and double excitations and
quasiperturbative connected triple excitations, CCSD(T).

For a detailed description of the geometries, we refer the
reader to the work of Paukku et al. [16]. Here, however, we
briefly describe the main features of the selected geometries.
Most N2 + N2 atomic configurations in the data set [16,26]
include a spectator molecule at its equilibrium bond distance
(rA = req), while the other molecule undergoes dissociation,
i.e., rB is varied, at various separations between their cen-
ters of mass (from 1 Å to 10 Å). Paukku and coworkers
[16] further considered an elongated (rA = req + 0.2 Å) and
a compressed (rA = req − 0.2 Å) spectator molecule, thus,
in practice, describing interactions where only one molecule
may be significantly rovibrationally excited. Unlike Paukku
et al. [16], another commonly used PES for N2 + N2, de-
veloped at NASA Ames Research Center [15], is instead
based on geometries where also the spectator molecule’s
bond length is significantly varied beyond its equilibrium
value (between req − 0.2 Å to 5 Å). A detailed description
of the differences between these two surfaces, both from
the perspective of geometry selection and quantum chemistry
methods, is presented by Jaffe and coworkers [18].

This clearly demonstrates how the selection of atomic con-
figurations in the training set is somewhat arbitrary and relies
on physical intuition more than a systematic approach. For
example, restricting the spectator bond’s stretch to 0.2 Å may
not be ideal to describe interactions between highly excited
molecules in the shock layer, where, depending on conditions,
temperatures often exceed tens of thousands of K. This also
exemplifies a scenario where a portion of the function domain
might require some refining, and the fitting algorithm should
be robust enough to a possibly significant expansion of the
training set. Quite recently, Li and coworkers [25] have ex-
tended the data set for this system to include geometries where
both interacting molecules have bond distances significantly
different from the equilibrium value.

In general, an important question is how a PES performs
outside of the training region. An example of how both the FI-
ANN PES and the MEG-PIP PES extrapolate energies outside
the fitting data set is shown in Fig. 4. For the selected PES
cut (X-shape with d = 1 Å and spectator molecule’s bond
rA = 2.098 Å), the difference between the MEG-PIP PES and
the FI-ANN PES is revealed by the black lines. The solid
black line denotes the FI-ANN PES while the black symbols
are the MEG-PIP PES. A marked difference can be seen,
particularly in the range rB ∈ [2, 7] Å. We believe that the only
way to resolve these differences is to compare to new quantum
mechanical energies in the region of interest. Additionally,
artificial neural networks are susceptible to poor performance
when a significant portion of the functional domain is missing.
This problem was also identified in the work of Li et al.
[25], where more geometries were added to the training set
to improve coverage of the PES domain, thus resulting in
the addition of nearly 5000 more single-energy points. These
new points were added based on physical intuition and, in
part, guided by a less accurate polynomial fit, which is less
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FIG. 4. FI-ANN PES (present work) and MEG-PIP[26] PES in-
terpolation and extrapolation: X-shape with d = 1 Å and (i) spectator
molecule’s bond rA = 1.098 Å (in the training set, red line is FI-ANN
PES and symbols are MEG-PIP PES) and (ii) spectator molecule’s
bond rA = 2.098 Å (out of the training set, black line is FI-ANN
PES and symbols are MEG-PIP PES).

susceptible to overtraining and issues with extrapolation in
poorly resolved regions of the PES domain. In our study,
however, the objective is not to refine or produce an alternative
PES for the N2 + N2 system with additional quantum me-
chanical single-point energies, but to demonstrate the correct
application of artificial neural networks to fit ab initio energy
data. For this reason, we augment the training set by including
a few additional geometries with rB stretched beyond �1.2 Å.
Specifically, we added A-, BT-, HB-, H-, I-, X-, and T-shaped
arrangements with rB = {1.498, 2.098, 2.498} Å to the train-
ing set (see the article of Paukku et al. [16] for a definition of
the geometries) with corresponding surrogate energy values
obtained from the MEG-PIP PES [26]. The augmented train-
ing set contains a total of about 33,000 geometries. We point
out that it is not unusual for PES construction to compute tens
of thousands of single point energies to populate the training
data set (e.g., approximately 50 000 data points for the recent
N2 + O2 surface [42]). ANNs are very good at fitting large
data sets by simply varying their architecture, as discussed
earlier.

A feed-forward artificial neural network consists of several
hidden layers, each containing several neurons (see Sec. II A).
Hence, we test two network configurations, with one or two
hidden layers. Each hidden layer is composed of a number
of neurons ranging from 10 to 40. The input layer size is
defined by the dimensionality of the problem (here, R9 as
explained in Sec. II B) and the output by the codomain of
the function to interpolate (here, R, i.e., the potential energy).
We use the Levenberg-Marquardt optimizer implemented in

FIG. 5. Root-mean-square error (RMSE) as a function of number
of network weights for a one hidden layer FI-ANN and a two hidden
layer FI-ANN; speed-up of a two hidden layer FI-ANN compared
to the MEG-PIP PES [26], including both function and gradient
evaluation. The vertical line marks the number of fitting parameters
in the MEG-PIP PES, i.e., 276; the horizontal line marks the overall
RMSE of the MEG-PIP PES (6.7 kcal/mol) on the left and the
reference speed-up of one on the right.

MATLAB R2018b [43] to determine the fitting parameters.
Early stopping is used to prevent overfitting, with 20% of
the randomized training set used as validation set. Because
this optimization is highly nonlinear, the resulting RMSE de-
pends on the initial guess for the network weights and biases.
Therefore, we repeat each optimization 20 times and select the
network with the lowest RMSE.

Figure 5 shows the RMSE on the N2 + N2 original energy
data set (16 534 geometries) as a function of the total number
of ANN weights. For the FI-ANN, we restrict the computation
of the RMSE only to the ab initio portion of the training set,
thus excluding the surrogate energies used in the fitting. This
is because we think that it is the RMSE (a global measure of
error) on the first-principles data that has a greater significance
when comparing different fits. For a given number of hidden
layers, more weights corresponds to more neurons per hidden
layer. As expected, the RMSE decreases as the total number
of free parameters increases. When the number of weights
becomes very large, the optimization algorithm is very likely
to encounter a local minimum, due to the high-dimensionality
of the optimization space. Therefore, no significant further
reduction in RMSE is observed. However, for a given number
of weights, the network depth (i.e., number of hidden lay-
ers) improves the fitting quality (reduction in RMSE), thus
suggesting that increased depth enables the network to fit the
nonlinearities of the data set more accurately.

In Fig. 5, the vertical solid line marks the total number
of parameters in the MEG-PIP PES (276 free parameters).
It can be seen that networks with around that number of
parameters have comparable or better accuracy than the FI-
PIP PES, while achieving a good computational speed-up.
Here, the speed-up is defined as the ratio between the time
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TABLE I. Comparison of the RMSE for the MEG-PIP [26]
and selected network configurations with two hidden layers for the
FI-ANN PES. The speed-up includes both function and gradient
evaluation.

Energy [kcal/mol] MEG-PIP PES [26] 10 × 10 20 × 20 30 × 30

V < 100 1.3 2.7 1.6 1.2
100 < V < 228 3.8 5.0 2.7 1.7
228 < V < 456 4.9 6.1 3.6 2.7
456 < V < 1000 12.2 12.8 7.4 5.3
All 6.7 7.3 4.2 3.1
Speed-up 1 ∼4 ∼3 ∼2

needed to integrate one time step on the MEG-PIP PES
and on the FI-ANN PES, thus including both function and
gradient evaluation. Remarkably, with networks that reduce
the RMSE by roughly a half, a speed-up of about 2 is still
obtained.

The results for the RMSE in kcal/mol for selected network
configurations (two hidden layers with 10, 20, or 30 neurons
each) used in trajectory calculations (Sec. III B) are listed
in Table I and grouped by energy range. With the exception
of the smallest network (10 × 10), relatively small networks
(20 × 20 and 30 × 30) produce a similar or reduced RMSE
compared to the MEG-PIP PES, both over the whole energy
range and in each energy subset, while achieving a significant
speed-up in the current implementation.

FIG. 6. Comparison between the 20 × 20 FI-ANN PES (sym-
bols) and MEG-PIP[26] PES (solid line) for the A-shape geometry
PES cut. The spectator molecules has a bond length of rA = 1.098 Å
and the dissociating partner bond length rB is varied between 0.5 Å
and 8 Å. The distance between the centers of mass is denoted
by d .

FIG. 7. Comparison between the 20 × 20 FI-ANN PES (sym-
bols) and MEG-PIP [26] PES (solid line) for the H-shape geometry
PES cut. The spectator molecules has a bond length of rA = 1.098
Å and the dissociating partner bond length rB is varied between 0.5
Å and 8 Å. The distance between the centers of mass is denoted
by d .

In the work of Li et al. [25], a network containing 2016 fit-
ting parameters was selected and produced an overall RMSE
of 2.8 kcal/mol on the complete training data set. Although on
a different training set, our FI-ANN networks produced a rel-
atively comparable RMSE (4.2 kcal/mol with 641 parameters
for the 20 × 20 ANN and 3.1 kcal/mol with 1261 parameters
for the 30 × 30 ANN). As shown in Fig. 5, FI-ANNs with
around 2000 parameters could achieve an even greater reduc-
tion of the RMSE below 3 kcal/mol. This, however, was at the
expense of computational efficiency. Furthermore, it is unclear
how a further reduction of RMSE reflects in the error on
the observables obtained from QCT or DMS techniques, for
example. Finally, it is difficult to comment on the difference
in computational performance between our FI-ANN PES and
the PIP-ANN PES in the work of Li et al. [25]. While we
generally observed a computational speed-up or similar cost
compared to the MEG-PIP PES (Fig. 5), Li et al. [25] report
that their ANN force calculation (with a numerical evaluation
of the PES gradient) was about an order of magnitude slower
than the MEG-PIP PES. Such differences could be due to
the specific implementations, and, thus, should not be made
general when comparing different methods of fitting ab initio
data set for PES construction.

Selected cuts are shown in Figs. 6–10 at various N2 + N2

separations (d) and spectator molecule’s bond length. In the
figures, the FI-ANN 20 × 20 predictions (symbols) are com-
pared to the MEG-PIP PES energy (solid line) for various
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FIG. 8. Comparison between the 20 × 20 FI-ANN PES (sym-
bols) and MEG-PIP [26] PES (solid line) for the X-shape geometry
PES cut. The spectator molecules has a bond length of rA = 1.098 Å
and the dissociating partner bond length rB is varied between 0.5 Å
and 8 Å. The distance between the centers of mass is denoted by d .

FIG. 9. Comparison between the 20 × 20 FI-ANN PES (sym-
bols) and MEG-PIP [26] PES (solid line) for a random orientation
geometry PES cut. The spectator molecules has a bond length of
rA = 1.098 Å and the dissociating partner bond length rB is varied
between 0.5 Å and 8 Å. The distance between the centers of mass is
denoted by d .

FIG. 10. Comparison between the 20 × 20 FI-ANN PES (sym-
bols) and MEG-PIP [26] PES (solid line) for an elongated X-shape
geometry PES cut. The spectator molecules has a bond length of
rA = 1.698 Å and the dissociating partner bond length rB is varied
between 0.5 Å and 6 Å. The distance between the centers of mass is
denoted by d .

geometries in and out of the training set. Excellent agreement
is seen in all cases.

B. Trajectory calculations

Trajectory calculations are performed using the MEG-PIP
PES [26] and three selected network configurations, namely
two hidden layers each with 10, 20, or 30 neurons. Reactants
preparation and product analysis are conducted according
to the standard QCT procedure. The work of Bender et al.
[26] contains the details. Briefly, the effective potential [11]
is used to enumerate all allowed rovibrational states for the
N2 molecule via the semiclassical Wentzel-Kramers-Brillouin
(WKB) approximation [11]. Then, the rovibrational partition
function [26] is used to generate the distribution of the initial
energy states for thermal equilibrium corresponding to the
desired temperature. The total molecular internal energy is
partitioned between rotational and vibrational energy using
a vibration-prioritized splitting scheme [5]. Rotational and
vibrational energies are used to assign the internal phase space
coordinates of the two nitrogen atoms [26]. Finally, a relative
speed is assigned to the colliding pair from a Maxwell-
Boltzmann distribution corresponding to the selected temper-
ature and product states are analyzed using the WKB approxi-
mation. Whereas reactants states are assigned at integer values
for rotational and vibrational states, product number states are
real valued, i.e., no binning procedure is used.

The velocity Verlet time integration scheme is used to
advance atomic positions in time [14]. A time step of 0.01
fs is used to ensure excellent energy conservation, as was
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FIG. 11. Comparison of dissociation probabilities at 20 000 K
obtained from equilibrium quasiclassical trajectory calculations on
MEG-PIP PES [26] and FI-ANN PES.

demonstrated previously [26]. The selected temperatures are
10 000 K, 20 000 K, and 30 000 K. We only consider thermal
equilibrium for the preparation of the reactant molecules, i.e.,
Tt = Tr = Tv , where the subscripts t, r, v denote translation,
rotation, and vibration, respectively. Dissociation probabili-
ties are given a statistical uncertainty according to the Wald
method [44].

The thermally averaged dissociation probabilities at a
given impact parameter b are shown in Figs. 11, 12, and 13. In
Fig. 11, we compare the results obtained from three different
FI-ANN architectures (10 × 10, 20 × 20, and 30 × 30) with
those obtained from the MEG-PIP PES. Excellent agreement
between dissociation probabilities obtained from trajectory
calculations on the MEG-PIP PES and on the FI-ANN PES
can be seen, particularly when the number of neurons for
each hidden layer is 20 and 30. The 10 × 10 FI-ANN appears
to overpredict the dissociation probabilities compared to the
MEG-PIP PES (about 20% higher overall dissociation rate).
This is likely due to the poorer fitting performance (see Ta-
ble I) compared to the larger networks.

Similar quantitative agreement is shown in Fig. 12 at
30 000 K. The 20 × 20 FI-ANN PES reproduces the MEG-
PIP PES probabilities very well over the whole impact
parameter range. We expect similar results from the other
networks like in the 20 000 K case.

In Fig. 13, we show the results at 10 000 K for b = 0 Å and
b = 1 Å. This case is considerably more challenging than
the previous ones because the reaction probabilities are about
three orders of magnitude smaller. Each probability required
over 3 million trajectories. Despite the statistical uncertainty,
we again see excellent agreement between the 20 × 20 FI-
ANN PES and the MEG-PIP PES.

FIG. 12. Comparison of dissociation probabilities at 30 000 K
obtained from equilibrium quasiclassical trajectory calculations on
MEG-PIP PES [26] and FI-ANN PES.

Finally, we compare energy distributions obtained from the
MEG-PIP PES and the FI-ANN PES trajectories. In Fig. 14,
we plot the distribution of vibrational states of the product
molecules that do not undergo a dissociation in collisions with
b = 0 Å. Also shown is the initial Boltzmann distribution
of reactants. MEG-PIP PES and FI-ANN PES trajectories

FIG. 13. Comparison of dissociation probabilities at 10 000 K
obtained from equilibrium quasiclassical trajectory calculations on
MEG-PIP PES [26] and FI-ANN PES.
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FIG. 14. Comparison of vibrational distributions for products
undergoing nondissociative collisions at 30 000 K as obtained from
equilibrium quasiclassical trajectory calculations on MEG-PIP [26]
PES and FI-ANN PES.

predict nearly identical distributions, characterized by the
well-known depletion of high-v states [38,45].

IV. CONCLUSIONS

In this article, we have described the application of a simple
feed-forward ANN architecture to fit the N2 + N2 PES. For
the applications of interest, namely molecular simulation of
high-temperature gases, there are specific considerations on
the physical accuracy of the resulting fit, due to the strong
coupling of internal energy excitation and vibrational dissoci-
ation. Moreover, application to large-scale direct simulations
requires computational efficiency as well. In our implemen-
tation, translation, rotation, and permutation invariance are
satisfied by mapping the interatomic distances onto a set of

permutation invariant inputs, known as fundamental invari-
ants, that generate the permutation invariant polynomial ring.
With an appropriate energy decomposition, we impose the
correct two-body energy contribution and we remove spurious
long-distance interactions between diatoms with a tapering
function.

The ANN PES is shown to be as accurate or to have
superior accuracy compared to the standard description based
on permutation invariant polynomials at about the same num-
ber of free fitting parameters. The RMSE on the training set
geometries (16 534 data points) is generally lower than the
MEG-PIP PES, with the exception of the smallest network
considered (10 × 10). The RMSE is also broken down by
energy range and similar improvements are observed. A rela-
tively small network (20 × 20) considerably outperforms the
MEG-PIP PES.

Then, we conduct a QCT study on the dissociation proba-
bility, conditioned on the impact parameter. The results show
excellent agreement between the probabilities obtained from
trajectories performed on the FI-ANN PES and on the MEG-
PIP PES. Similar agreement is seen at the level of vibrational
energy distributions. The most significant discrepancy is ob-
served with the smallest network used in this study, namely
the 10 × 10 ANN. However, the error on the overall dissocia-
tion rate does not exceed about 20%.

In our implementation, FI-ANN PESs are generally more
computationally efficient than the MEG-PIP PES at a com-
parable RMSE. For the 20 × 20 ANN, which has an overall
lower RMSE than the MEG-PIP PES, a considerable speed-up
of nearly 3 is observed.

In conclusion, our study shows that fundamental invariant
artificial neural networks represent an attractive alternative to
traditional permutation invariant polynomials, provided that
physical constraints and asymptotes are correctly enforced.
We demonstrate that a methodology for reliable PES fitting
should include both PES training and molecular dynamics
trajectories to identify potential issues with extrapolation
or long-range asymptotic behavior (e.g., spurious coupling).
Furthermore, the fundamental invariant input method re-
quires much smaller network sizes compared to formulations
based on polynomial invariant inputs [25], thus making this
approach computationally efficient for large-scale direct sim-
ulations of gas flows [13].
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