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In this work, we numerically study linear stability of multiple steady-state solutions to a type of steric
Poisson-Nernst-Planck equations with Dirichlet boundary conditions, which are applicable to ion channels. With
numerically found multiple steady-state solutions, we obtain S-shaped current-voltage and current-concentration
curves, showing hysteretic response of ion conductance to voltages and boundary concentrations with memory
effects. Boundary value problems are proposed to locate bifurcation points and predict the local bifurcation
diagram near bifurcation points on the S-shaped curves. Numerical approaches for linear stability analysis
are developed to understand the stability of the steady-state solutions that are only numerically available.
Finite difference schemes are proposed to solve a derived eigenvalue problem involving differential operators.
The linear stability analysis reveals that the S-shaped curves have two linearly stable branches of different
conductance levels and one linearly unstable intermediate branch, exhibiting classical bistable hysteresis. As
predicted in the linear stability analysis transition dynamics, from a steady-state solution on the unstable branch
to one on the stable branches, are led by perturbations associated to the mode of the dominant eigenvalue.
Further numerical tests demonstrate that the finite difference schemes proposed in the linear stability analysis
are second-order accurate. Numerical approaches developed in this work can be applied to study linear stability
of a class of time-dependent problems around their steady-state solutions that are computed numerically.
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I. INTRODUCTION

Ion channels play crucial roles in regulating various
biological functions, such as exchanging ions across cell
membranes and maintaining membrane excitability [1]. Ion
permeation through channels is sensitively related to the ap-
plied transmembrane voltages, ionic concentrations of cells,
and extracellular medium, etc. [2,3]. Recent years have seen
a growing interest in characterizing hysteretic response of
ion permeation to applied voltages and concentrations [4–6].
For instance, ion conductance through voltage-gated channels
follows different paths when applied voltages increase and
decrease periodically [5,7,8]. Such a hysteresis phenomenon
takes place when the frequency of oscillating applied volt-
ages is comparable to the relaxation timescale of transitions
between conductance states [4,5,8].

As a continuum mean-field model, the Poisson-Nernst-
Planck (PNP) theory has been widely used in the description
of ion permeation through channels [9,10]. In such a theory,
the Poisson equation governs the electrostatic potential due to
charges stemming both from mobile ions and fixed charges in
the channel. The Nernst-Planck equations describe the diffu-
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sion and convection of ions in gradients of the electrostatic
potential. The nonlinear coupling between the electrostatic
potential and ionic concentrations poses a challenge in study-
ing the problem analytically and numerically. Mathematical
theories on the PNP equations have been developed in the
literature of semiconductor physics [11]. Global existence
results on solutions to steady-state PNP equations have been
established for certain initial and boundary conditions [11],
whereas the uniqueness of the solution is mainly limited to
the case of very small applied voltages. Numerical simula-
tions have evidenced the existence of multiple steady-state
solutions to the PNP equation in one dimension. For instance,
multiple steady-state solutions are studied numerically and
asymptotically in the case of the PNP equations with piece-
wise constant fixed charges of large magnitude [12]. Singular
perturbation methods, such as matched asymptotic expansions
[13–19] and geometric singular perturbation theory [20–24],
have been developed for the PNP equations. Such asymp-
totic methods are often based on an assumption that a small
singular parameter arises from the scale separation between
the Debye length and channel dimension. For instance, time-
dependent matched asymptotic analysis is developed for the
PNP equations to characterize the diffuse-charge dynamics in
electrochemical systems [15,25].

Despite its success in wide applications, the PNP theory
is derived based on the mean-field approximation that ne-
glects steric effects and ion-ion correlations [26]. To address
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these issues, more complicated models have been developed
to account for ionic steric effects, ion-ion correlations, etc.
[27–37]. For instance, the steric effect of ions can be taken
into account through including the solvent entropy to the free
energy of a charged system. Another approach is to incor-
porate ion-ion interactions described by the Lennard-Jones
(LJ) integrals to the free energy [36,38]. To avoid com-
putationally intractable integro-differential equations, local
approximations of the nonlocal LJ integrals are proposed to
obtain local PNP models with steric effects [35,39,40]. Mod-
ification added to the PNP theory in such a local model can
also be understood as inclusion of hard-sphere interactions
through second-order virial coefficients [41,42]. To validate
the local steric PNP model, it is used to predict ion transport
and selectivity of ionic channels [39,43].

The study on multiple steady-state solutions to the local
steric PNP model has also attracted much attention in recent
years [40,43–46]. When zero-flux boundary conditions are
considered, the steady-state Nernst-Planck type of equations
can be reduced to a system of algebraic equations, which de-
fines generalized Boltzmann distributions. Rigorous analyses
prove that there are multiple steady-state solutions to such a
reduced system coupled with the Poisson equation [40,44,45].
It should be noted that the analysis for the zero-flux boundary
conditions is not applicable to the scenario of ion perme-
ation through channels. If multiple steady-state solutions are
present, a hysteresis loop can emerge in the current-voltage
(I-V ) characteristic curve of ion channels [46]. It is desirable
to perform stability analysis of the steady-state solutions in
the sense of time evolution. Linear stability analysis is a
powerful tool to understand the stability of solutions under
perturbations [40,47–51]. However, most of studies on linear
stability analysis are carried out around steady states that
have closed-form solutions. We develop general numerical ap-
proaches to perform linear stability analysis on solutions that
are only numerically available, and apply them to numerically
study the stability of steady-state solutions of the steric PNP
equations in the context of ion channels.

In this work, we study linear stability of multiple steady-
state solutions to a type of steric PNP equations that has been
used to predict ion permeation through ion channels [35,39].
The current-voltage (I-V ) characteristic curve of ion channel
is determined by finding the steady-state solutions of the steric
PNP equations with Dirichlet boundary conditions for ionic
concentrations and the electrostatic potential. The existence
of multiple steady-state solutions gives rise to an S-shaped
I-V curve with a hysteresis loop, which demonstrates the
dependence of ion conductance on varying applied voltages
with memory effects. In addition, we find hysteretic response
of ion conductance to boundary concentrations, indicating that

ion conductance may not only depend on intracellular and
extracellular ionic concentrations but also their history values.

We propose boundary value problems to predict the loca-
tion of bifurcation points and corresponding local bifurcation
diagram on the S-shaped I-V curve. Numerical approaches
for linear stability analysis are developed to understand the
stability of the steady-state solutions that are only numer-
ically available. Finite difference schemes are proposed to
discretize a derived eigenvalue problem involving differential
operators. By solving the eigenvalue problem, the linear sta-
bility analysis reveals that both the lower and upper branches
of the S-shaped I-V curve are linearly stable and the in-
termediate branch is linearly unstable, exhibiting a classical
bistable hysteresis diagram. Furthermore, we numerically
study the transition dynamics in nonlinear regime, from a
steady-state solution on the unstable branch to a one on the
stable branches. As predicted by the linear stability analysis,
such transition dynamics is led by perturbations associated to
the mode of the dominant eigenvalue. Numerical simulations
also demonstrate that the local bifurcation diagram predicted
by the second derivative of V with respect to I agrees with the
I-V curve. In addition, we perform numerical tests to show the
convergence of the finite difference schemes proposed in the
linear stability analysis.

The rest of the paper is organized as follows. In Sec. II,
we describe our governing equations. In Sec. III, we present
our methods to solve for steady-state solutions and bifurcation
points. In Sec. IV, we perform linear stability analysis on
steady-state solutions. Section V is devoted to the presentation
of our numerical results. Finally, we draw conclusions in
Sec. VI.

II. MODEL

Consider a charged system occupying a bounded domain
� with a smooth boundary ∂�. Dirichlet boundary condi-
tions are considered on ∂� with boundary data given by V0.
The electrostatic potential ψ satisfies the following boundary-
value problem of the Poisson equation:

−∇ · ε0εr∇ψ =
M∑

l=1

zlecl + ρ f in �,

ψ = V0 on ∂�,

where cl is the ion concentration for the lth species, zl is
the valence, M is the number of ion species, e is the el-
ementary charge, ε0 is the vacuum permittivity, εr is the
relative dielectric constant, and ρ f is the fixed charge density.
The free-energy functional of the charged system is given by
[35,39,52]:

F [c1, c2, · · · , cM] = 1

2

∫
�

(
M∑

l=1

zlecl + ρ f

)
ψdx + β−1

∫
�

M∑
l=1

cl [log(�3cl ) − 1]dx

+
M∑

l=1

M∑
r=1

β−1

2

∫∫
�

clωlrcrdx − 1

2

∫
∂�

ε0εr
∂ψ

∂n
V0dS, (2.1)
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where β is the inverse thermal energy, � is the thermal de
Broglie wavelength, and ωi j are the steric interaction coeffi-
cients, depending on the size of ith and jth ionic species. The
coefficients can be obtained by introducing spatially band-
limited functions to truncate the (spatial) frequency range of
the singular Lennard-Jones interactions between ions [35,39],
and are given by

ωi j = εi j (ai + a j )
12Sδ,

where εi j is the energy coupling constant between the ith and
jth ionic species, ai and a j are the corresponding radii of
ions, and Sδ = ωd

12−d δ−12+d with ωd being the surface area of
d-dimensional unit ball and δ being a small number for cutoff
length. Note that the steric interaction coefficients ωi j can be
alternatively defined via the second-order virial coefficients
for hard spheres [41].

The evolution of ion concentrations is described by the
continuity equation

∂t cl = −∇ · Jl ,

where the flux Jl is given by

Jl = −βDl cl∇
( δF

δcl

)
, l = 1, 2, · · · , M.

Here Dl is the diffusion constant of lth ionic species. This
gives rise to the Nernst-Planck equations

∂t cl = Dl∇ ·
(

∇cl + zleβcl∇ψ + cl

M∑
r=1

ωlr∇cr

)
,

l = 1, 2, · · · , M.

We introduce a macroscopic length scale L, a characteris-
tic concentration c0, a characteristic screening length λD =√

ε0εr
2βe2c0

, and the following dimensionless variables [15,25]

x̃ = x
L

, D̃l = Dl

D0
, t̃ = tD0

LλD
, c̃l = cl

c0
,

ρ̃ f = ρ f

ec0
, ω̃lr = c0ωlr, ψ̃ = βeψ.

After rescaling, we obtain by dropping all the tildes the nondi-
mensionalized Poisson–Nernst-Planck equations with steric
interactions

∂t cl = γl∇ ·
(

∇cl + zlcl∇ψ + cl

M∑
r=1

ωlr∇cr

)
,

l = 1, 2, · · · , M,

−ψ = κ

(
M∑

l=1

zlcl + ρ f

)
, (2.2)

where γl = λD
L Dl and κ = L2

2λ2
D

.
We apply the steric PNP equations (2.2) to study ion

conductance through a perfect cylinder-shaped ion chan-
nel. By assuming radial and azimuthal symmetry, we re-
duce (2.2) into one-dimensional equations on a rescaled

domain � = (−1, 1):

∂t cl = γl∂x

(
∂xcl + zlcl∂xψ + cl

M∑
r=1

wlr∂xcr

)
,

l = 1, . . . , M, −∂xxψ = κ

(
M∑

l=1

zlcl + ρ f

)
. (2.3)

Note that the dimension reduction used here is a special case
of a more general one-dimensional reduction with a cross-
sectional area factor, which allows more general geometry
[21,22].

We are interested in the case that two ends of an ion
channel are connected to extracellular and intracellular ionic
solution reservoirs. To model an applied transmembrane po-
tential and extracellular and intracellular bulk concentrations
in reservoirs, we employ the following boundary conditions
[20,24,39,53]:

cl (t,−1) = cL
l and cl (t, 1) = cR

l , l = 1, . . . , M,

×ψ (−1) = 0 and ψ (1) = V, (2.4)

where V is an applied potential difference across the channel
and the bulk concentrations cL

l and cR
l at boundaries satisfy

neutrality conditions
M∑

l=1

zlc
L
l =

M∑
l=1

zlc
R
l = 0.

To describe fixed charges along a channel, we consider the
following fixed charge distribution:

ρ f (x) = ρi for x ∈ (xi−1, xi ), (2.5)

where i = 1, 2, · · · , K , x0 = −1, xK = 1, and ρ1 = ρK = 0.
To quantify ion conductance through a channel, we define the
net ionic current

I =
M∑

l=1

zlJl . (2.6)

We remark that ions often have strong correlations due
to crowded confinement in ion channels. Although the steric
interactions can be regarded as a part of ion correlations
of short range, the treatment on ion correlations in this
work is incomplete. As shown in Ref. [39], however, se-
lective ion permeation through channels can be predicted to
some extent by the inclusion of the pairwise interaction term∑M

l=1

∑M
r=1

β−1

2

∫∫
�

clωlrcrdx, with some parameters in ωi j

treated as the fitting parameters. We leave for future work a
detailed study with inclusion of ion correlations [54–56].

III. STEADY STATES

A. Steady-state solutions

We find steady-state solutions of Eqs. (2.3) by solving
equations

∂x

(
∂xcl + zlcl∂xψ + cl

M∑
r=1

wlr∂xcr

)
= 0, l = 1, . . . , M,

− ∂xxψ = κ

(
M∑

l=1

zlcl + ρ f

)
(3.1)

053301-3



JIE DING, HUI SUN, AND SHENGGAO ZHOU PHYSICAL REVIEW E 102, 053301 (2020)

130 140 150 160 170
V

0

50

100

150

I

B

A

CD
E

G

H

I

F

148.2 148.3 148.4
65

75

85

G

154.8 154.9

20

25

30

F

FIG. 1. An S-shaped I-V curve obtained by solving Eqs. (3.1).
Linear stability analysis reveals that the steady-state solutions on
the upper (blue solid) and lower (red solid) branches are stable, and
those on the intermediate (green dashed) branches are unstable. The
second derivative is given by ∂IIV = 0.005 at the upper bifurcation
point (G) that is located at (148.28, 76.69). The second derivative
is given by ∂IIV = −0.011 at the lower bifurcation point (F ) that
is located at (154.86, 23.61). There are three steady-state solutions,
labeled by A, B, and C, when the applied voltage V = 150. The
zoomed-in inset presents local bifurcation diagram, in which the
black dotted parabolas are predicted by the second derivatives at
bifurcation points.

with boundary conditions (2.4). We briefly recall the numeri-
cal methods proposed in our previous work [46] for solving
steady-state solutions. We first convert the problem into a
system of 2M + 2 first-order ODEs with the same number of
boundary conditions. The ODE system is numerically solved
with a MATLAB program called BVP4C, in which an ODE sys-
tem is solved with a collocation method on an adaptive mesh
and the resulting nonlinear algebraic equations are iteratively

solved by Newton-type methods [57]. Given the boundary
conditions (2.4), the problem with sign-alternating piecewise
constant fixed charges (2.5) may have multiple steady-state
solutions. As the applied voltage V varies, the corresponding
current I may become multivalued, giving rise to an S-shaped
current-voltage (I-V ) characteristic curve; cf. Fig. 1. To com-
pute an I-V curve, it is helpful to employ the strategy of
numerical continuation on applied voltages to get a good
initial guess. However, continuation on V often only finds the
low-current branch and high-current branch, and misses the
intermediate branch of an S-shaped I-V curve when multiple
solutions are present; cf. Fig. 1. Moreover, the continuation
advances with a very small step size as V approaches bifurca-
tion points on the curve, where the Jacobian of the discretized
nonlinear system becomes close to singular. To address this
issue, the voltage V , instead, is viewed as a function of I , and
Eqs. (3.1) are solved with the boundary condition ψ (1) = V
in (2.4) replaced by a prescribed current I . A complete S-
shaped I-V curve can be obtained by performing continuation
on I and collecting the applied voltage by V = ψ (1). See
Ref. [46] for more details.

B. Bifurcation points

The current-voltage (I-V ) characteristic curve plays a cru-
cial role in the study of ion conductance through ion channel
or nanopores. It is of practical significance to locate bifurca-
tion points on an S-shaped I-V curve, since the corresponding
V values of these critical points are threshold values for hys-
teresis to take place, and they are also endpoints of intervals
for V in which multiple solutions exist. If we assume that an
I-V curve locally determines a differentiable function of V on
I , then ∂IV = 0 holds at bifurcation points of an S-shaped I-V
curve; cf. red dots in Fig. 1. More generally, it is of interest to
locate a point on an I-V curve such that the slope, ∂IV , at the
point is given by a known value.

At steady states, the current I given in (2.6) is a constant
over �. Taking derivatives of both sides of Eqs. (3.1) with
respect to I , we have

∂x

(
∂xĉl + zl ĉl∂xψ + zlcl∂xψ̂ + ĉl

M∑
r=1

wlr∂xcr + cl

M∑
r=1

wlr∂xĉr

)
= 0, l = 1, · · · , M, −∂xxψ̂ = κ

M∑
l=1

zl ĉl , (3.2)

where ψ̂ := ∂Iψ and ĉl := ∂I cl for l = 1, . . . , M. To locate
a point determined by a given slope value ∂IV , we solve the
following boundary-value problem (BVP)

Eqs. (3.1),

Eqs. (3.2),

(c1, · · · , cM , ψ, ĉ1, · · · , ĉM , ψ̂ )|x=−1

= (
cL

1 , · · · , cL
M , 0, 0, · · · , 0, 0

)
,

(c1, · · · , cM , ĉ1, · · · , ĉM , ψ̂ )|x=1

= (
cR

1 , · · · , cR
M , 0, · · · , 0, ∂IV

)
. (3.3)

Note that we do not specify the applied voltage V as a bound-
ary condition in the BVP (3.3). Instead, the applied voltage
can be found after solving the BVP. Since

∑M
l=1 zl∂I Jl = 1, we

can convert the BVP into a system of 4M + 3 first-order ODEs
with the same number of boundary conditions, and numeri-
cally solve the ODEs again with the BVP4C program. See
our previous work [46] for more details. Of particular interest
are the bifurcation points that are determined by ∂IV = 0 on
an S-shaped I-V curve. With found bifurcation points, we are
able to determine threshold applied voltages for hysteresis, as
well as intervals for V in which the steric PNP equations have
multiple steady states.

Consider an I-V curve that locally determines a twice
differentiable function of V on I . It is desirable to compute
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the second derivative ∂IIV that reveals local shape (concav-
ity) of the curve. In particular, the second derivative enables
prediction of approximate local bifurcation diagram close to
bifurcation points. Taking second-order derivatives of both
sides of Eqs. (3.1) with respect to I , we have

∂x

[
∂x ˆ̂cl + 2zl ĉl∂xψ̂ + zl ˆ̂cl∂xψ + zlcl∂x

ˆ̂ψ

+
M∑

r=1

ωlr (2ĉl∂xĉr + cl∂x ˆ̂cr + ˆ̂cl∂xcr )

]
= 0,

− ∂xx
ˆ̂ψ = κ

M∑
l=1

zl ˆ̂cl , (3.4)

where ˆ̂ψ := ∂IIψ and ˆ̂cl := ∂II cl for l = 1, . . . , M. Here cl ,
ĉl , ψ , and ψ̂ in (3.4) are obtained by numerically solving the
BVP (3.3). The boundary conditions are given by

( ˆ̂c1, · · · , ˆ̂cM , ˆ̂ψ )|x=−1 = (0, · · · , 0, 0) and ( ˆ̂c1, · · · , ˆ̂cM )|x=1

= (0, · · · , 0). (3.5)

By the fact that

M∑
l=1

zl∂II Jl = 0,

we can convert Eqs. (3.4) into a system of 2M + 1 first-order
ODEs with the same number of boundary conditions, and
numerically solve the ODEs with the BVP4C program. After

solving, we have ∂IIV = ˆ̂ψ (1). When a bifurcation point is
interested, we first solve the BVP (3.3) with ∂IV = 0 to get cl ,
ĉl , ψ , and ψ̂ , and then compute ∂IIV to characterize the local
bifurcation diagram close to the bifurcation point.

IV. LINEAR STABILITY ANALYSIS

We present a linear stability analysis on steady-state so-
lutions of the steric PNP equations (2.3). We linearize the
nonlinear equations (2.3) around a steady-state solution de-
noted by ψ̄ (x) and c̄l (x), which is obtained by solving
Eqs. (3.1) as described in Sec. III A. We assume that the
solution (c1, · · · , cM , ψ ) to Eqs. (2.3) is given by⎛⎜⎜⎜⎜⎜⎝

c1(x, t )

...

cM (x, t )

ψ (x, t )

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
c̄1(x)

...

c̄M (x)

ψ̄ (x)

⎞⎟⎟⎟⎟⎟⎠ + eλt

⎛⎜⎜⎜⎜⎜⎝
δc1(x)

...

δcM (x)

δψ (x)

⎞⎟⎟⎟⎟⎟⎠ + · · · ,

where |δcl | � 1 and |δψ | � 1, and dots represent terms of
higher orders as |δcl | and |δψ | go to zero. We also assume
that the initial condition is given by

cl (x, 0) = c̄l (x) + δcl (x) and ψ (x, 0) = ψ̄ (x) + δψ (x).

By the Dirichlet boundary conditions (2.4), we have homoge-
neous boundary conditions for δcl and δψ :

(δc1, δc2, · · · , δcM , δψ )|x=±1 = (0, 0, · · · , 0, 0). (4.1)

To the leading order, we recover Eqs. (3.1) for the steady state.
Comparing the first-order terms, we obtain a linearized system

λδcl = γl∂x

[
∂xδcl + zl c̄l∂xδψ + zlδcl∂xψ̄

+
M∑

r=1

wlr (δcl∂xc̄r + c̄l∂xδcr )

]
, 1 � l � M,

−∂xxδψ = κ

M∑
l=1

zlδcl .

This system can be expressed in a matrix form

A

⎛⎜⎜⎜⎜⎜⎝
δc1

δc2

...

δcM

⎞⎟⎟⎟⎟⎟⎠ = λ

⎛⎜⎜⎜⎜⎜⎝
δc1

δc2

...

δcM

⎞⎟⎟⎟⎟⎟⎠, (4.2)

where

A =

⎛⎜⎜⎝
A11 A12 · · · A1M

A21 A22 · · · A2M
...

...
...

...

AM1 AM2 · · · AMM

⎞⎟⎟⎠ (4.3)

with operators

Aii

γi
= ∂xx − z2

i κ∂xc̄i∂x(∂xx )−1 − z2
i κ c̄i + zi∂xψ̄∂x + zi∂xxψ̄

+ wii∂xc̄i∂x + wiic̄i∂xx

+
M∑

r=1

wir (∂xc̄r∂x + ∂xxc̄r ) for i = 1, 2, · · · , M,

Ai j

γi
= − ziz jκ∂xc̄i∂x(∂xx )−1 − ziz jκ c̄i + wi j∂xc̄i∂x

+ wi j c̄i∂xx for i �= j.

To numerically compute λ, we develop a finite difference
scheme to discretize the operator matrix (4.3). We introduce a
uniform mesh with grid points given by

xi = −1 + ih, i = 0, 1, · · · , N + 1,

where grid spacing h = 2
N+1 . We denote by δcl,i and δψi

the numerical approximation of δcl (xi ) and δψ (xi ) for i =
0, 1, · · · , N + 1, respectively. By the boundary conditions
(4.1), we have δcl,0 = δcl,N+1 = 0 and δψ0 = δψN+1 = 0. We
take interior grid points {xi}N

i=1 as our computational mesh,
and define

δ̂cl = (δcl,1, δcl,2, · · · , δcl,N )T , 1 � l � M,

δ̂ψ = (δψ1, δψ2, · · · , δψN )T . (4.4)

The first derivative is approximated by a second-order central
differencing scheme, which corresponds to a differentiation
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matrix

DN+2 = 1

2h

⎛⎜⎜⎜⎜⎝
0 2 0

−1 0 1
. . .

. . .
. . .

−1 0 1
0 −2 0

⎞⎟⎟⎟⎟⎠
(N+2)×(N+2).

The second derivative corresponds to a differentiation matrix
D2

N+2. To approximate the eigenvalue problem (4.2) on inte-
rior grid points, we only make use of D̃N and D̃2

N obtained
by stripping the first and last rows and columns of DN+2 and
D2

N+2, i.e., in MATLAB notations,

D̃N = DN+2(2 : N + 1, 2 : N + 1) and

D̃2
N = D2

N+2(2 : N + 1, 2 : N + 1).

The operators ∂x and ∂xx with homogenous Dirichlet boundary
conditions can be approximated by D̃N and D̃2

N , respectively.
Similarly, the operator (∂xx )−1 is approximated by (D̃2

N )−1.
Consequently, the Ai j blocks can be approximated as

Aii

γi
≈ D̃2

N − z2
i κD̃N c̄iD̃N

(
D̃2

N

)−1 − z2
i κ c̄i + ziD̃N ψ̄D̃N

+ ziD̃
2
N ψ̄ + wiiD̃N c̄iD̃N + wiic̄iD̃

2
N

+
M∑

r=1

wir
(
D̃N c̄rD̃N + D̃2

N c̄r
)
, 1 � i � M,

Ai j

γi
≈ −ziz jκD̃N c̄iD̃N

(
D̃2

N

)−1 − ziz jκ c̄i + wi j D̃N c̄iD̃N

+wi j c̄iD̃
2
N , i �= j.

We assemble the vectors δ̂cl defined in (4.4) for M species
of ions, and define

δc :=
M∑

l=1

el ⊗ δ̂cl ,

where el is a unit column vector whose the lth element is
the only nonzero element being one, and ⊗ represents a Kro-
necker product. We recast the matrix A in (4.2) as a matrix
A : RMN → RMN given by

A =
M∑

i, j=1

(
ei ⊗ eT

j

) ⊗ Ai j .

Therefore, the eigenvalue problem (4.2) can be approximated
by

Aδc = λδc. (4.5)

Such an eigenvalue problem determines the linear stability
of the steric PNP equations (2.3) around a steady state as
follows: Re(λ) > 0 describes unstable modes, and Re(λ) <

0 describes stable modes. For short time, the coupling of
perturbations of infinitesimal amplitude, as well as their im-
pact on steady-state solutions, is still negligible. However, if
Re(λ) > 0 for one certain mode, perturbations associated with
the mode grow exponentially and quickly reach an amplitude
where nonlinearity has to be taken into account. In such a
nonlinear regime, the above linear stability analysis is no

longer applicable. To study the nonlinear dynamics, e.g., tran-
sition from one steady state to another, we resort to numerical
simulations of the steric PNP equations (2.3) starting from a
steady state.

To avoid possible instability arising from temporal dis-
cretization, we propose a stable, implicit time integration
scheme for the steric PNP equations (2.3):

cn+1
l − cn

l

t

= γl∂x

(
∂xcn+1

l + zlc
n+1
l ∂xψ

n+1 + cn+1
l

M∑
r=1

ωlr∂xcn+1
r

)
,

−∂xxψ
n+1 = κ

(
M∑

l=1

zlc
n+1
l + ρ f

)
, (4.6)

with boundary conditions (2.4). Here we denote by cn
l (x) and

ψn(x) semidiscrete approximations of cl (tn, x) and ψ (tn, x),
where tn = nt and t is a uniform time step size. Such a
semidiscrete scheme can be converted into an ODE system
and solved with the BVP4C, as described in Sec. III A.

V. NUMERICAL RESULTS

In our numerical simulations, we numerically solve
Eqs. (3.1) with certain boundary conditions to find an I-V
curve. To understand more on an S-shaped I-V curve, we
solve the BVP (3.3) with ∂IV = 0 to locate bifurcation points,
and solve Eqs. (3.4) at bifurcations points with boundary
conditions (3.5) to find ∂IIV , which can be further used to pre-
dict local bifurcation diagram close to the bifurcations points.
Moreover, we solve the eigenvalue problem (4.5) to study lin-
ear stability of steady states. In nonlinear regime, we numer-
ically investigate transition dynamics from unstable steady
states to stable ones with the time integration scheme (4.6).

Unless otherwise stated, we consider a charged system that
consists of binary monovalent electrolytes, i.e., M = 2, z1 =
1, and z2 = −1, and fixed charges

ρ f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ [−1,−0.2),
−50, x ∈ [−0.2, 0.4),
20, x ∈ [0.4, 0.8),
−50, x ∈ [0.8, 0.95),
0, x ∈ [0.95, 1).

We consider a steric interaction matrix W with diagonal el-
ements w11 = w22 = 0.1 and subdiagonal elements w12 =
w21 = 0.01. We take γ1 = γ2 = 1, κ = 100, and boundary
concentrations cL

1 = 1, cL
2 = 1, cR

1 = 0.5, and cR
2 = 0.5.

A. Hysteresis and bistability

We study the current-voltage relation for voltage-induced
hysteresis of ionic conductance. i.e., the I-V curve as shown
in Fig. 1. We first numerically solve Eqs. (3.1) with continua-
tion on applied voltages. When the applied voltage increases
gradually, the current ascends along a low-current branch
(from D to C on the solid red curve). As the voltage ap-
proaches the critical value corresponding to F , the iterations
for solving the equations slow down due to a more and more
singular Jacobian matrix, and continuation has to advance
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FIG. 2. The solution profiles of the electrostatic potential and ionic concentrations, corresponding to A, B, and C in the Fig. 1 when
V = 150.

with small increment. After the applied voltage exceeds a
critical value about V = 154.86, the current suddenly jumps
from the low-current branch at the bifurcation point F to a
high-current branch at H , switching the ionic conductance
state. In the other round of sweeping with decreasing ap-
plied voltages from high values, the current follows a totally
different path (from I to A on the solid blue curve) and sud-
denly switches at the bifurcation point G with V = 148.28 to
E on the low-current branch, exhibiting a typical hysteresis
loop. This demonstrates that ion conductance depends on
the applied voltage as well as its history values, showing
a memory effect. We remark that this is reminiscent of the
voltage-induced gating mechanism [43], though our theory

is purely deterministic. To explore more of the intermediate
region of two branches, we view the applied voltage as a
function of the current and solve Eqs. (3.1) with a boundary
condition prescribing the current, instead of applied voltages.
Such treatment of the boundary condition stablizes the nu-
merical simulation of steady-state solutions that are shown to
be unstable. As shown by the green dashed curve in Fig. 1,
an intermediate branch connecting the low-current and high-
current branches can be found by continuation on the current.
The complete S-shaped curve features hysteretic response of
ion current to varying applied voltages.

For applied voltages in the interval (148.28, 154.86), there
exist three steady-state solutions of different ion conductance
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FIG. 3. The eigenvalues with the largest real parts of the eigenvalue problem (4.5) at steady-state solutions corresponding to the A, B, and
C in the Fig. 1. Insets are zoomed-in plots of the eigenvalue with the largest real part.
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TABLE I. The error and convergence order of λMax, which is the
eigenvalue with the largest real part, for the eigenvalue problem at A,
B, and C in the Fig. 1.

A B C

h Error in λA
Max Order Error in λB

Max Order Error in λC
Max Order

1
750 2.42 × 10−2 – 1.44 × 10−1 2.07 2.88 × 10−1 –

1
800 2.15 × 10−2 1.88 1.25 × 10−1 2.09 2.51 × 10−1 2.15

1
850 1.91 × 10−2 1.96 1.11 × 10−1 2.11 2.20 × 10−1 2.17

1
900 1.70 × 10−2 1.97 9.79 × 10−2 2.14 1.94 × 10−1 2.19

levels. For instance, three steady-state solutions, labeled by
A, B, and C, are found for V = 150. The panel presented
in Fig. 2 displays profiles of the electrostatic potential and
ionic concentrations corresponding to these three points. We
observe that the solutions have large variations at the locations
where the fixed charges are discontinous. The ions distribute
mainly according to the fixed charges due to electrostatic in-
teractions. Comparing with the low-current state, both cations
and anions have larger concentrations along the channel in the
high-current conductance state.

We perform linear stability analysis on the steady-state
solutions on the lower, intermediate, and upper branches of the
S-shaped I-V curve by solving the eigenvalue problem (4.5).
The sign of the computed eigenvalue with the largest real part,
i.e., the dominant eigenvalue, for the perturbed system deter-
mines the linear stability. We present in Fig. 3 six eigenvalues
with the largest real parts of the eigenvalue problem (4.5) at
steady-state solutions, corresponding to the A, B, and C in the
Fig. 1. We find that the real part of the dominant eigenvalue is
negative for both A and C, and is positive for B. This reveals
that the steady-state solutions at A and C are linearly stable,
but that at B is linearly unstable. Analogously, we consider the
real part of the dominant eigenvalue for other points on the I-V
curve. Remarkably, we find that the steady-state solutions on
both the lower and upper branches shown in blue solid curves
are stable, but those on the intermediate branch shown in
red dashed curves are unstable, exhibiting a classical bistable

TABLE II. The l∞ error and convergence order of the eigenvector corresponding to λMax at the A, B, and C in the Fig. 1.

h l∞ error in δc1 Order l∞ error in δc2 Order l∞ error in δψ Order

1
750 1.10 × 10−3 – 3.41 × 10−4 – 2.25 × 10−4 –

A 1
800 9.42 × 10−4 2.14 2.97 × 10−4 2.15 1.95 × 10−4 2.17

1
850 8.27 × 10−4 2.15 2.61 × 10−4 2.16 1.71 × 10−4 2.17

1
900 7.30 × 10−4 2.19 2.30 × 10−4 2.19 1.51 × 10−4 2.21

1
750 6.16 × 10−4 – 3.13 × 10−4 – 6.64 × 10−5 –

B 1
800 5.37 × 10−4 2.12 2.74 × 10−4 2.08 5.78 × 10−5 2.15

1
850 4.72 × 10−4 2.13 2.41 × 10−4 2.10 5.06 × 10−5 2.17

1
900 4.17 × 10−4 2.16 2.13 × 10−4 2.13 4.47 × 10−5 2.19

1
750 1.60 × 10−3 – 1.90 × 10−3 – 2.98 × 10−4 –

C 1
800 1.40 × 10−3 2.17 1.60 × 10−3 2.20 2.57 × 10−4 2.27

1
850 1.20 × 10−3 2.19 1.40 × 10−3 2.21 2.24 × 10−4 2.28

1
900 1.10 × 10−3 2.21 1.30 × 10−3 2.23 1.97 × 10−4 2.29

diagram. This agrees with our expectation of bistability as
seen in typical hysteresis loops. Also, the instability explains
why it is hard to capture the steady-state solutions on the
intermediate branch in our numerical computations [46].

The stable and unstable branches connect at bifurcation
points marked by red solid dots, which are located by solving
the BVP (3.3) with ∂IV = 0. Further numerical calculations
based on Eqs. (3.4) at bifurcations points with boundary con-
ditions (3.5) find the second derivative of V with respect to
I: ∂IIV = −0.011 at the lower bifurcation point and ∂IIV =
0.005 at the upper bifurcation point. Such second derivative
information helps predict local bifurcation diagram close to
the bifurcation points. The dotted parabolas shown in the inset
of Fig. 1 demontrate that the predicted parabola agrees well lo-
cally with the one calculated by using steady-state solutions.

B. Convergence test

We perform convergence tests with various mesh resolu-
tions to further validate the proposed numerical approaches
on linear stability analysis of the steric PNP equations around
steady-state solutions. Table I lists the error and convergence
order of λMax, which is the eigenvalue with the largest real
part, for the eigenvalue problem at A, B, and C in the Fig. 1.
Table II lists l∞ errors and convergence order of the eigen-
vector, corresponding to the eigenvalue λMax, for the ionic
concentrations and electrostatic potential at A, B, and C. The
error is obtained by comparing against a reference solution
that is computed on a highly refined mesh with h = 1

3000 .
Since second-order central differencing is employed to dis-
cretize the differential operators in (4.3), we anticipate a
second-order convergence rate of our numerical approaches.
From the tables, we can see that the numerical error decreases
robustly as the mesh refines, and the numerical convergence
order is indeed roughly about two for both eigenvalues and
eigenvectors.

C. Nonlinear transition dynamics

The linear stability analysis is no longer applicable,
when long-time dynamics of the steric PNP equations are
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FIG. 4. (a) Snapshots of the evolution of ψ(t, x) and c

l (t, x) (l = 1, · · · , M) starting from the unstable steady-state solution at B (blue
lines marked with dots) to a final state corresponding to C (red curves marked with diamonds). (b) A normalized eigenvector corresponding to
the eigenvalue with the largest real part at B.

concerned. To understand how the unstable steady-state
solution evolves to stable ones, we numerically investigate
the nonlinear transition dynamics with the time integration
scheme (4.6). The numerical simulations start from a steady-
state solution corresponding to B on the unstable branch of
the S-shaped I-V curve shown in Fig. 1. Since numerical
noise provides broadband perturbations, noise associated to
the mode of the eigenvalue with Re(λB

Max) > 0 will grow
exponentially for small time. To examine the transition
starting from an unstable solution, we define variations of ψ

and cl as

ψ(t, x) := ψ (t, x) − ψB(x), c
l (t, x) := cl (t, x) − cB

l (x),

l = 1, · · · , M,

where ψ (t, x) and cl (t, x) are numerical solutions to (4.6)
with initial conditions ψB(x) and cB

l (x) that are a steady-state
solution corresponding to B in Fig. 1. As shown in Fig. 4 (left),
both ψ(t, x) and c

l (t, x) start from zero (blue lines marked
with dots), and evolve to final states (red curves marked with
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FIG. 5. (a) Snapshots of the evolution of ψ(t, x) and c
l (t, x) (l = 1, · · · , M) starting from the initial condition (5.1) (blue lines marked

with dots) to a final state corresponding to A (red curves marked with diamonds). (b) Another normalized eigenvector corresponding to the
eigenvalue with the largest real part at B.
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FIG. 6. A current-concentration curve showing concentration-
induced hysteresis. The steady states on the blue solid curve are
linearly stable, and those on the red dashed curve are linearly
unstable.

diamonds), corresponding to a stable solution at C in Fig. 1.
In addition, Fig. 4 (right) shows a normalized eigenvector
corresponding to the eigenvalue with the largest real part at
B. Clearly, we find that the evolution of concentrations and
the electrostatic potential follows exactly in the direction
dictated by the eigenvector, especially in the early stage.
This is consistent with our linear stability analysis that the
perturbations associated to the mode of the eigenvalue with
the largest real part lead transition dynamics.

To study transition dynamics from B to A, numerical inte-
gration starts from an initial condition

ψ (0, x) = εψA(x) + (1 − ε)ψB(x), cl (0, x)

= εcA
l (x) + (1 − ε)cB

l (x), l = 1, · · · , M, (5.1)

where ε = 0.001. Such an initial condition is obtained by per-
turbing the steady-state solution at B slightly toward that at A.
Figure 5 (left) shows the evolution of ψ(t, x) and c

l (t, x)
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FIG. 7. The eigenvalues with the largest real parts of the eigenvalue problem (4.5) at steady-state solutions corresponding to the points A,
B, and C in the current-concentration curve shown in Fig. 6. Insets are zoomed-in plots of the eigenvalue with the largest real part.

from the initial condition (5.1) to a final state at A. Figure 5
(right) shows another normalized eigenvector corresponding
to the eigenvalue with the largest real part at B. Notice that
this normalized eigenvector points in an opposite direction
contrast to the one showed in Fig. 4 (right). Again, we can
observe that the evolution of concentrations and the electro-
static potential accords with the given eigenvector, agreeing
with our linear stability analysis.

D. Concentration-induced hysteresis

In this example, we investigate the effect of boundary
concentrations on the existence and stability of multiple
steady-state solutions to the steric PNP equations. We set
boundary concentrations cl (−1) = cL

l for l = 1, 2 at the left
end where the electrostatic potential is grounded, and set
the relation c1(1) = c2(1) for boundary concentrations at the
right end where the potential V = 150. We define the vari-
able cB := c1(1). Similar to the S-shaped I-V curve shown
in Fig. 1, two rounds of sweeping with an increasing and
decreasing cB are used to capture low-current and high-current
branches in the current-concentration curve shown in Fig. 6.
To find the intermediate branch, we prescribe the current I as a
boundary condition and treat cB as a variable to be determined.
See our previous work [46] for more details. Such a strategy
helps complete the whole current-concentration curve with a
hysteresis loop, which indicates that the channel conductance
state not only depends on intracellular and extracellular ionic
concentrations but also their history values.

In addition, we study linear stability of steady-state so-
lutions on the current-concentration curve by solving the
eigenvalue problem (4.5). For the points A, B, and C on the
curve with cB = 1, we can see from Fig. 7 that the domi-
nant eigenvalue has a negative real part for A and C, and a
positive real part for B. This indicates that the steady-state
solutions at A and C are linearly stable and that at B is linearly
unstable. Similarly, we check the real part of the dominant
eigenvalue for the whole current-concentration curve. Results
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demonstrate that the steady-state solutions on blue solid
curves are linearly stable, and that on the dashed intermediate
branch in red are unstable, showing a typical bistable hystere-
sis loop.

VI. CONCLUSIONS

In this work, we have studied linear stability of mul-
tiple steady-state solutions to the steric PNP equations.
The current-voltage (I-V ) characteristic curve has been
determined by solving steady states to the steric PNP equa-
tions with Dirichlet boundary conditions arising from ion
channels. We have numerically found multiple steady-state
solutions that lead to an S-shaped current-voltage and current-
concentration curves showing hysteresis loops. The hysteretic
response of ion conductance to applied voltages and bound-
ary concentrations demonstrates that ion conductance state
depends on their currently applied values as well as their
history values, i.e., the memory effect. We have proposed
boundary-value problems to locate of bifurcation points and
to predict local bifurcation diagram near bifurcation points
on the S-shaped I-V curve. To understand the stability of
steady-state solutions that are only numerically available, we
have performed linear stability analysis that is based on finite
difference discretization of differential operators. The linear
stability analysis has unveiled that the S-shaped I-V curve has
two linearly stable branches with a high-conductance state and

low-conductance state, and has one linearly unstable inter-
mediate branch. This presents a classical hysteresis diagram
with bistable behavior. Furthermore, extensive numerical tests
have shown that the numerical method proposed in the linear
stability analysis is second-order accurate. In addition, we
have numerically studied the nonlinear transition dynamics
from unstable steady-state solutions to stable solutions. It has
been found that the transition follows the direction predicted
by eigenvectors associated to the dominant eigenvalue in the
linear stability analysis. The numerical approaches developed
in this work are quite general and useful, in the sense that
they can be applied to study linear stability of other time-
dependent problems around their steady-state solutions that
are only numerically available.
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