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The dynamic structure factor and other dynamic characteristics of strongly coupled one-component plasmas
have been studied [Yu. V. Arkhipov et al., Phys. Rev. Lett. 119, 045001 (2017)] using the self-consistent version
of the method of moments. Within any version of the latter, the system dielectric function satisfies all involved
sum rules and other exact relations automatically, and the advantage of this version is that, in addition, the
dynamic characteristics (the dynamic structure factor, the dispersion, and decay parameters of the collective
modes) are all expressed in terms of the static ones (the static structure factor) without any adjustment to the
simulation data. The approach outlined in the aforementioned Letter is justified in detail and applied mainly to
the classical Coulomb systems achieving satisfactory agreement with new numerical simulation data. It is shown
how the realm of applicability of the method can be extended to partly degenerate and multicomponent systems,
even to simple liquids. Some additional theoretical results are presented in the Supplemental Material.
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I. INTRODUCTION

The description of dynamic properties of collision-
dominated Coulomb systems is a challenge of contemporary
statistical plasma physics. The Coulomb systems we refer to
are strongly coupled plasmas and in particular warm dense
matter, where the temperature and density vary in wide ranges
of magnitude but in a way that the characteristic lengths
such as the Debye and Wigner-Seitz radii, the thermal de
Broglie wavelength, and the Landau length are all about 1 Å
long. Under such conditions, thermal, Coulomb coupling, and
quantum effects compete with each other and impede the
construction of a crossover theory capable of including all of
these effects in the description of static, kinetic, and dynamic
properties of the above systems of high relevance for inertial
fusion devices [1–3] and advanced laboratory studies, e.g.,
in ultracold plasmas [4,5], electrolytes and charged stabilized
colloids [6,7], laser-cooled ions in cryogenic traps [8–10], and
dusty plasmas [11–14]. Strongly coupled plasmas also appear
in astrophysical contexts in white dwarfs and neutron stars
[15,16].

In the present article we basically study classical fluid one-
component plasmas where the coupling parameter (roughly
a ratio of the Coulomb interaction energy of two particles to
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their kinetic energy)

� = βe2

a
∈ (1, 175). (1)

The properties of the uniform partially degenerate electron gas
with pronounced quantum properties are usually characterized
by the degeneracy parameter defined as

D = βEF

and the Brueckner parameter rs = a/aB. Here a = 3
√

3/4πn,
aB, and EF are the Wigner-Seitz and Bohr radii and the (elec-
tron) Fermi energy; in addition, n is the number density of the
plasma particles, the temperature T = (kBβ )−1, and

rs = �

2D

(
9π

4

)2/3

= 1.842
�

D
.

For the latest review on strongly coupled Coulomb liquids,
see [17]. Despite the lack of small parameters (� or D or
rs or r−1

s ) [18], static structural and kinetic characteristics
of strongly coupled plasmas are relatively easy to determine
numerically (see, e.g., [19,20]). On the other hand, there have
recently appeared extensive numerical studies of dynamic
properties of the uniform paramagnetic electron gas and warm
dense matter (see [21] and references therein) and of the
classical one-component plasmas [22] carried out in a wide
realm of variation of the thermodynamic parameters.

The main aim of the present paper is the analytical de-
scription of the latter results along with the simulation data
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on the dynamic local-field correction [23] without using any
numerical adjustment parameter. The theoretical basis is in
the framework of the nonperturbative self-consistent method
of moments [24,25], though the initial idea of the method of
moments itself is about 40 years old [26,27]. In addition, here
we will provide a detailed justification of the self-consistent
approach in comparison to the well-established methods of
description of dynamic properties of Coulomb systems, which
are the mean-field [28] and memory-function [29,30] meth-
ods, and the quasilocalized charge approximation [31–33]
along with others.

The moment approach was originally based on Nevan-
linna’s [34,35] noncanonical solutions of the (truncated)
Hamburger moment problem consisting in the reconstruction
of a non-negative distribution density using a finite number of
its power moments (for more details, see Sec. I A in the Sup-
plemental Material [36]). If we employ this approach to study
the plasma dielectric function or the dynamic structure factor,
the latter are actually the sum rules [47] valid independently
of the small-parameter expansions. In this regard, the moment
approach is nonperturbative and thus it is auspicious for the
determination of dynamic properties of the above crossover
systems with no small dimensionless parameters, especially
if it is complemented by physically motivated simplifications
or asymptotic considerations. The background of the moment
approach is certainly purely mathematical with the specifics
of a system reflected only in the moments; in this sense the
approach is model-free. It can be applied to study dynamic
properties of Coulomb and non-Coulomb liquid systems [48],
irrespectively of its geometry [49,50] (see also [51–53]).
Observe also that the untruncated moment approach taking
into account an infinite number of moments is similar to the
continued-fraction method by Hong et al. [54,55].

Preliminary versions of the present work were presented
in [56–59]. Here, in addition, the results of [60] are partially
analyzed.

The paper is organized in the following way. In Sec. II
we provide mathematical and physical aspects of the moment
method background. The expressions obtained there are of
general character and hence they are applicable to multi-
component and partially degenerate systems as well. Then,
in Sec. III, our moment approach is applied to determine
dynamic structure factor and dispersion and decay of the col-
lective modes of both Coulomb and Yukawa one-component
classical plasmas. Further, in Sec. IV, a comparison to the
quasilocalized charge and the extended random-phase approx-
imations is carried out. Numerical results of the moment
approach are checked against the available simulation data
on the dynamic characteristics of classical Coulomb systems
including the dynamic local-field correction, in Secs. V and
VI, respectively. A summary is given, conclusions are drawn,
and perspectives are outlined in Sec. VII. Some additional
details and results are presented in the Supplemental Material
[36] with special attention paid to the recent data of [60].

II. METHOD OF MOMENTS

A. Moments

The systems we consider are presumed to be in thermal
equilibrium, like unmagnetized one-component plasmas. The

keystones of our approach are the plasma (inverse) dielectric
function ε−1(q, z = ω + iδ) (δ � 0), which is a genuine re-
sponse function for any q [61,62], and the (non-negative and
even) loss function

L(q, ω) = − Imε−1(q, ω)

ω
. (2)

This definition is quite similar to that of the effective damping
function of the hydrodynamic approach by Kadanoff, Martin,
and Yip [29,30]. Here and throughout the text we use the
dimensionless wave number q = ka.

The dynamic structure factor (DSF), which is the central
quantity of collective and dynamic effects, is determined by
the loss function via the fluctuation-dissipation theorem

S(q, ω) = q2n

3π�
B(β h̄ω)L(q, ω), (3)

where

B(x) = x[1 − exp(−x)]−1 �
x→0

1 (4)

is the Bose factor. Both dynamic functions L(q, ω) and
S(q, ω) behave at very low frequencies and/or in classical
systems [where B(β h̄ω) = 1] in a similar way. We will show
how, on the rigorous mathematical basis complemented by
simple physical considerations, the knowledge of the dynamic
characteristics can be reduced to that of the static ones, pre-
cisely, the (partial) static structure factor(s).

The construction blocks of the present approach are the
system sum rules which are the loss function frequency power
moments

Cυ (q) = 1

π

∫ ∞

−∞
ωυL(q, ω)dω, υ = 0, 2, 4. (5)

Note that the odd-order moments vanish due to the sym-
metry of the loss function, and thus the general formulas
of the theory of moments simplify significantly. Contrary to
the multicomponent plasma situation [63], higher-order one-
component plasma (OCP) sum rules converge but they are
related to scarcely studied nonpairwise correlations that we
neglect here (see nevertheless [64]). In classical systems, due
to (4), the moments of the loss function (5) are directly propor-
tional to those of the dynamic structure factor (see [24,25]).

The moments C0(q),C2, and C4(q) and the characteristic
frequencies

ω1(q) =
√

C2

C0(q)
, ω2(q) =

√
C4(q)

C2
(6)

are known independently; they are determined by the system
composition, degeneracy, and thermodynamics. By virtue of
the classical version of the fluctuation-dissipation theorem (3),
the zeroth sum rule in a classical system is determined by the
system static structure factor

C0(q) = 1

π

∫ ∞

−∞
L(q, ω)dω = 3�

q2
S(q). (7)

The second moment is the f -sum rule [65]

C2(q) = − 1

π

∫ ∞

−∞
ω Im ε−1(q, ω)dω = ω2

p, (8)
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where ωp is the system plasma frequency. Hence, in classical
plasmas

ω2
1(q) = q2

3�

ω2
p

S(q)
. (9)

The loss function fourth power moment

C4(q) = 1

π

∫ ∞

−∞
ω4L(q, ω)dω (10)

for OCPs has been studied by Kugler [28], Pathak and
Vashishta [66], and earlier in [67–70]. It was established that
in a classical Coulomb (C) or Yukawa (Y) one-component
plasmas with the pairwise interaction potential [71] (see also
[72])

ϕ(r) = e2

r
exp

(
−κ

r

a

)
, (11)

ω2
2(q)

ω2
p

= ζα (q) + q2

�
+ Uα (q), α = C,Y,

ζC(q) = 1, ζY(q) = q2

q2 + κ2
,

Uα (q) = 1

3π

∫ ∞

0
[S(p) − 1] fα (p, q)p2d p,

fC(p, q) = 5

6
− p2

2q2
+ (p2 − q2)2

4q3 p
ln

∣∣∣∣q + p

q − p

∣∣∣∣,
fY(p, q; κ ) = 3q2 − p2 − κ2

2q2
− 2p2

3(p2 + κ2)

+ (q2 − p2 − κ2)2

8q3 p
ln

(
κ2 + (q + p)2

κ2 + (q − p)2

)
. (12)

Certainly, the Coulomb OCP (COCP) expressions are re-
covered when κ → 0. On the other hand, the Yukawa OCP
(YOCP) static structure factor S(q) depends on the screening
parameter κ .

These results were generalized for partially degenerate sys-
tems in [27,73] within the Kubo linear-reaction theory and
using the second-quantization technique (see [27,47,51,52]
and Sec. I C in the Supplemental Material [36]).

B. Hamburger problem and Nevanlinna formula

To find the dynamic characteristics of Coulomb systems
and to relate them to the static ones, we use the solutions
of the truncated Hamburger moment problem corresponding
to a certain set of convergent frequency moments (5) of the
distribution density L(q, ω)/π (for more details, see Sec. I A
in the Supplemental Material [36]). It is known that the Ham-
burger problem is solvable, i.e., we can reconstruct the loss
function by its moments whenever the set of the involved
moments is positive definite [74,75]. It is obvious that the
solvable truncated moment problem (except for the so-called
degenerate cases [47]) may have only an infinite number of
solutions. The branch of at least continuous (noncanonical)
solutions of the moment problem by virtue of Nevanlinna’s
theorem [34,35] is parametrized by the Nevanlinna parameter
functions (NPFs) Rυ (z; q). This one-to-one correspondence (a

bijection) is realized by the Nevanlinna formula∫ ∞

−∞

L(q, ω)dω

π (z − ω)
= Eυ+1(z; q) + Rυ (z; q)Eυ (z; q)

Dυ+1(z; q) + Rυ (z; q)Dυ (z; q)
,

Im z > 0, υ = 0, 1, 2, . . . ; (13)

the functions Rυ (z = ω + iδ; q), exactly like any response
(Nevanlinna) function [74], must be analytic and possess a
non-negative imaginary part in the upper half plane δ > 0,
being at least continuous on its closure δ = 0. In addition,
they must [uniformly within any angle ϑ � arg(z) � π − ϑ ,
0 < ϑ < π ] satisfy the limiting condition

lim
z→∞

Rυ (z; q)

z
= 0. (14)

This important property of the NPF guarantees the automatic
satisfaction, by the density L(q, ω)/π , of the imposed mo-
ment conditions or sum rules. The coefficients of the one-to-
one linear-fractional transformation L(q, ω) ←→ Rυ (ω; q)
[Eq. (13)] are real orthogonal polynomials with the weight
L(q, ω)/π [52,74], which possess only real alternating zeros
[74]. Precisely, for an even density L(q, ω)/π ,

D0(z; q) = 1, D1(z; q) = z, D2(z; q) = z2 − ω2
1(q),

D3(z; q) = z
[
z2 − ω2

2(q)
]
, . . . ,

E0(z; q) = 0, E1(z; q) = C0(q), E2(z; q) = C0(q)z,

E3(z; q) = C0(q)
{
z2 − [

ω2
2(q) − ω2

1(q)
]}

, . . . . (15)

A contemporary proof of the Nevanlinna theorem (13) based
on the Krein formula for the generalized resolvents [76] can
be found in [77]. Note that if we descend on the real axis of
frequencies or let δ ↓ 0 in (13), then, due to the Sochocki-
Plemelj-Dirac formula

1

ω′ − ω − i0+ = P
ω′ − ω

+ π iδ(ω′ − ω), (16)

(P standing for the Cauchy principal value), we obtain

L(q, ω) = −Im
Eυ+1(ω; q) + Rυ (ω; q)Eυ (ω; q)

Dυ+1(ω; q) + Rυ (ω; q)Dυ (ω; q)
,

υ = 0, 1, 2, . . . , (17)

or, for the classical systems,

S(q, ω) = − q2n

3π�
Im

Eυ+1(z; q) + Rυ (z; q)Eυ (z; q)

Dυ+1(z; q) + Rυ (z; q)Dυ (z; q)
,

υ = 0, 1, 2, . . . . (18)

Earlier [52], we contrasted these results with alternative the-
oretical approaches like the random-phase or the extended
Mermin approximations. Let us now establish an interrela-
tion between the particular cases with υ = 0, 1 and widely
employed mean-field, hydrodynamic, and memory-function
models. In the simplest case of υ = 0, even the f -sum rule
is not satisfied (its similarity to the mean-field models is
discussed in the Supplemental Material [36]). The memory-
function approach intrinsically involves only three sum rules
{C0(q), 0,C2}, but using the Gaussian memory function, one
includes in the model two sum rules more. This is achieved
by introducing an adjustable parameter, a characteristic relax-
ation time.
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There are only two theoretical approaches capa-
ble of directly taking into account five sum rules
{C0(q), 0,C2, 0,C4(q)} while describing dynamic properties
of strongly coupled plasmas and warm dense matter. These
are the quasilocalized-charge approximation (QLCA) model
[31–33] and the method of moments. These two, in addition,
express the dynamic characteristics in terms of the static
ones, namely, in the case of one-component plasmas, the
static structure factor. However, the QLCA does not account
for the energy dissipation and the single-particle movement
effects such as the Vlasov dispersion contribution to the
fourth moment.

The advantages of the method of moments corresponding
to the case υ = 2 are to be outlined further. Certainly, the nu-
merical outcomes will be checked against available simulation
data as well.

III. DYNAMIC STRUCTURE FACTOR

A. Memory-function formalism

If we take into account only three sum rules {C0(q), 0,C2}
(υ = 1), with

det

(
C0(q) 0

0 C2

)
> 0,

it follows from (13) and (17) that∫ ∞

−∞

L1(q, ω)dω

π (z − ω)
= C0(q)[z + R1(z; q)]

z2 − ω2
1(q) + zR1(z; q)

(19)

and

L1(q, ω) = ω2
p Im R1(ω; q)

|ω2 − ω2
1 + ωR1(ω; q)|2 , ω = Re(z + i0+)

(20)
or

ε−1
1 (q, ω) = 1 + ω2

p

ω2 − ω2
1(q) + ωR1(ω; q)

(21)

(see Sec. I B in the Supplemental Material [36] as well).
Let us compare these expressions with those of the classical
Gaussian memory-function model widely used recently for
the description of dynamic properties of strongly coupled
Yukawa plasmas [22,23] (see also [78]). Then, by employing
the classical version of the fluctuation-dissipation theorem and
using our notation, we get

LMF(q, ω)

= ω2
p Re M(q, ω)

[ω2 − ω2
1(q) − ω Im M(q, ω)]2 + [ω Re M(q, ω)]2

,

(22)

where

M(q, ω) = τq
[
ω2

2(q) − ω2
1(q)

]
i
√

π
Z

(
τqω√

π

)
(23)

is determined by the plasma dispersion function of a real
variable ξ = τqω/

√
π ,

Z (ξ ) = exp(−ξ 2)

(
i
√

π − 2
∫ ξ

0
exp(s2)ds

)
. (24)

The memory-function model (22) for the loss function is
obviously equivalent to (20) with

R1(ω; q) = τq[ω2
2(q) − ω2

1(q)]√
π

Z

(
τqω√

π

)
. (25)

For any correct NPF, the generic loss function satisfies
the sum rules {C0(q), 0,C2} automatically and with the Gaus-
sian memory function (23) of [79], the asymptotic form of
the inverse dielectric function (21) with (25) approaches,
independently of the value of the positive relaxation time
τq, the one corresponding to the set of five sum rules
{C0(q), 0,C2, 0,C4(q)}:

ε−1
MF(q, ω) = 1 + ω2

p

ω2 − ω2
1 + ωτq (ω2

2−ω2
1 )√

π
Z ( τqω√

π
)

�
ω→∞ 1 + ω2

p

ω2
+ ω2

2ω
2
p

ω4
+ O(ω−6) (26)

This means that the memory-function model (22) and (23)
satisfies these sum rules and this presumably permitted to ad-
just the expression for the dynamic structure factor stemming
from (22) to the vast amount of simulation data presented in
[22,23]. Moreover, Mithen et al. in [22,23] showed that a very
fine tuning to the dynamic simulation data can be performed
by taking into account the numerical noise in the characteristic
frequencies ω1(q) and ω2(q). In other words, for each value
of the wave number q the authors of those papers used the
adjusted values of τq complemented by a slight [not more
than ±10% of the values precalculated by (6)] variation of
these frequencies to achieve an almost complete coincidence
of the memory-function theoretical values of the dynamic
structure factor with the simulation data. We conclude that the
memory-function formalism is a special case of the solution
of the problem of moments. In general, it satisfies the zero-
and f -sum rules, but with a Gaussian memory function (23)
it satisfies the fourth sum rule as well, independently of the
value of the relaxation time τq.

B. Five-moment problem

1. Setup

Consider now the Hamburger moment problem with five
convergent frequency moments {C0(q), 0,C2, 0,C4(q)}, υ =
2. By virtue of the Cauchy-Bunyakovsky-Schwarz inequal-
ity, this moment sequence is positive definite (see [27,52]).
Hence, this moment problem is solvable, i.e., we can recon-
struct the loss function, the dynamic structure factor, and to
describe the properties of the collective modes existing in the
system the unshifted (diffusion) mode and the shifted (optical
or acoustic-roton) mode

ωus(q) = −ia(q), ω±sh(q) = ±W (q) − ib(q) (27)

and other dynamic characteristics, in both one-component and
multicomponent plasmas. Expressions for the loss function
and the dynamic structure factor follow immediately from the
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general formulas (15), (17), and (18),

L(q, ω) = ω2
p

[
ω2

2(q) − ω2
1(q)

]
Im R2(ω; q)∣∣ω[

ω2 − ω2
2(q)

] + [
ω2 − ω2

1(q)
]
R2(ω; q)

∣∣2 ,

(28)
and for the classical systems

S(q, ω) = q2n

3π�

ω2
p

[
ω2

2(q) − ω2
1(q)

]
Im R2(ω; q)∣∣ω[

ω2 − ω2
2(q)

] + [
ω2 − ω2

1(q))
]
R2(ω; q)

∣∣2 .

(29)
The mode characteristics are to be found from the

dispersion equation or as the poles of the inverse
dielectric function. The latter can be extracted from the
Nevanlinna linear-fractional transformation (13) using

the Kramers-Kronig relations for the inverse dielectric
function

ε−1(q, z) = 1 −
∫ ∞

−∞

ωL(q, ω)dω

π (ω − z)
(30)

= 1 − C0(q) + z

π

∫ ∞

−∞

L(q, ω)dω

ω − z

= 1 + ω2
p[z + R2(z; q)]

z[z2 − ω2
2(q)] + R2(z; q)[z2 − ω2

1(q)]
,

Im z > 0. (31)

Note that the asymptotic expansion of this inverse dielectric
function corresponds to the number of sum rules involved
independently of the form of the NPF,

ε−1(q, z = ω + i0+) = 1 − C0(q) + 1

π

∫ ∞

−∞

L(q, ω′)dω′

1 − ω′
z

�
ω→∞ 1 − C0(q) + 1

π

∫ ∞

−∞

[
1 + ω′

z
+

(
ω′

z

)2

+
(

ω′

z

)3

+
(

ω′

z

)4

+
(

ω′

z

)5

+ · · ·
]
L(q, ω′)dω′

= 1 + ω2
p

ω2
+ ω2

2ω
2
p

ω4
+ O(ω−6),

and thus coincides with the expansion (26). Certainly, the
dielectric function

ε(q, z) = 1 − ω2
p(z + R2(z; q))

z
(
z2 − ω2

2 + ω2
p) + R2(z; q

)(
z2 − ω2

1 + ω2
p

)
(32)

can be applied to the solution of other problems, e.g.,
the problem of reflection of laser radiation from shock-
compressed plasmas (see [80,81] and references therein).

2. Nevanlinna parameter reduction

In order to employ the above expressions for the plasma
dynamic characteristics and to solve the dispersion equation

z[z2 − ω2
2(q)] + R2(z; q)

[
z2 − ω2

1(q)
] = 0 (33)

explicitly, one has to model the NPF R2(z; q). The simplest is
to substitute the NPF by its static value, like it was initially
suggested in [26] and followed in [82] and a number of other
publications (see [47] and references therein):

R2(z; q) = R2(0; q) = ih(q), h(q) > 0. (34)

In order to relate the unknown function h(q) to the sys-
tem static characteristics, precisely, to the frequencies ω1(q)
and ω2(q), consider the Fourier transform of the loss func-
tion �(q, t ), whose behavior at long times, by virtue of
the Tauber or Abel theorem, will be similar to that of the
Fourier transform of the dynamic structure factor, i.e., the
intermediate scattering function K (q, t ). The function �(q, t )
is bounded, decreasing exponentially, and becomes essentially
zero for long times. Hence, taking into account the physical
timescales of the problem, for t larger than the longest relax-
ation time of the system collective modes and in compliance
with Bogolyubov’s principle of weakening of correlations,

both �(q, t ) and K (q, t ) have finite (zero) limiting values as
t → ∞. Then L(q, ω), like the dynamic structure factor, also
has a finite zero-frequency limiting value. Hence, for very low
frequencies, due to the same theorems, the values of the loss
function need to be weakly dependent on ω. This is exactly
what we observe on the dynamic structure factor graphs of
[22–24,83]: There is no Rayleigh peak characteristic for the
diffusion mode in simple liquids, so we observe broad flat ex-
trema of both Coulomb and Yukawa dynamic structure factors
near the zero frequency. A sharp Rayleigh peak observed on
some graphs, e.g., in [83], might be attributed to the caging
effects [22].

The loss function (and in classical systems the dynamic
structure factor as well) is an even function of frequency,
so from the mathematical point of view this situation corre-
sponds to the so-called third derivative test: The first three
derivatives of the loss function must vanish at ω = 0 and the
value of the fourth one defines the nature of the extremum; we
have a minimum if it is positive and vice versa. Therefore,
as it can be easily shown, we can describe the absence of
the Rayleigh peak [22] if we oblige the second derivative of
L(q, ω) with respect to ω to vanish at ω = 0:

d2L(q, ω)

dω2

∣∣∣∣
ω=0

= 0. (35)

The same results can be obtained if we observe that the loss
function as an even function of frequency effectively depends
only on the variable x = ω2 and study the extrema of the the
function L(q, x) so that we can use the traditional Fermat
interior extremum condition for the first derivative of the latter
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function:

dL(q, x)

dx

∣∣∣∣
x=0

= 0. (36)

The condition (35) or (36) was justified numerically in [52].
The degenerate system dynamic structure factor (3), due to

the presence of the Bose factor, does not possess the property
(35), but in classical systems it permits to eventually express
(within the present approach) all dynamic characteristics in
terms of the static structure factor(s). The approximation (34)
converts (28) into

L(q, ω)|R2=ih = ω2
p

[
ω2

2(q) − ω2
1(q)

]
h(q)

ω2
[
ω2 − ω2

2(q)
]2 + h2(q)

[
ω2 − ω2

1(q)
]2 .

(37)
The Maclaurin expansion of this expression,

L(q, ω → 0)|R2=ih � ω2
p

(
ω2

2 − ω2
1

)
hω4

1

+ ω2
p

(
ω2

2 − ω2
1

)
h3ω8

1

ω2
(
ω4

2 − 2h2ω2
1

)

+ ω2
p

(
ω2

2 − ω2
1

)
h5ω12

1

ω4
(
3h4ω4

1 + 2h2ω4
1ω

2
2

− 4h2ω2
1ω

4
2 + ω8

2

) + O(ω6 ),

implies that the loss function possesses a broad flat extremum
and no Rayleigh peak at ω = 0 if

h(q) = h0(q) = ω2
2(q)√

2ω1(q)
. (38)

An alternative justification of the approximation (34) and
(38) is provided in Sec. II of the Supplemental Material [36].
The sign of the fourth derivative at ω = 0 for h = h0, i.e., the
sign of the parameter

θ (q) = 2ω1(q) − ω2(q)

ωp
∈

(
−ω2(q)

ωp
,

ω2(q)

ωp

)
, (39)

determines the nature of the extremum at ω = 0: A positive
θ (q) corresponds to a minimum and vice versa. When θ (q) >

0, the loss function and, in classical systems, the dynamic
structure factor have two shifted maxima whose positions on
the frequency axis, in nondegenerate and slightly degenerate
systems, are determined by the following simple expression:

ωmax(q) = ± ω2(q)√
3ω1(q)

√
4ω2

1(q) − ω2
2(q). (40)

Otherwise, this mode decays strongly and we have only
a broad unshifted maximum. Observe also that the zero-
frequency value

L(q, 0)|R2=ih =
√

2ω2
p

ω3
1(q)

[
1 − ω2

1(q)

ω2
2(q)

]
(41)

is a decreasing function of the parameter θ (q). The role of the
discrimination parameter (39) was discussed in [24,25].

The important result (38) leads to the simple form for the
dynamic structure factor

S(q, ω) = q2n

3�

√
2ω1ω

2
2ω

2
p

(
ω2

2 − ω2
1

)
B(β h̄ω)

2ω2
1ω

2
(
ω2 − ω2

2

)2 + ω4
2

(
ω2 − ω2

1

)2 , (42)

which is one of the main practical results of the present paper.
In a classical system like a one-component plasma the Bose
factor B(β h̄ω) = 1.

Further, the model (38) simplifies the dispersion equation
(33) into the analytically solvable cubic equation

√
2zω1(q)

[
z2 − ω2

2(q)
] + ω2

2(q)
[
z2 − ω2

1(q)
] = 0 (43)

whose solutions are represented by the following formulas:

ωus(q) = −ia(q) = −w2X − wY − ih0/3,

ω−sh(q) = −W (q) − ib(q) = −X − Y − ih0/3,

ωsh(q) = W (q) − ib(q) = −wX − w2Y − ih0/3. (44)

They provide direct information on the system (unshifted)
diffusion and shifted (optical or acoustic-roton) modes. Here
w = exp(2π i/3) and

X = 3
√

h0V 2/2i + Z3 , Y = 3
√

h0V 2/2i − Z3,

Z3 =
√

−(
ω2

2/3 − h2
0/9

)3 − (h0V 2/2)2,

V 2 = −ω2
2/3 + ω2

1 + 2h2
0/27. (45)

We have shown that in both classical and partially degenerate
systems, irrespectively of the number of their components
and in the present approximation determined by the number
of sum rules taken into account (6) and the model (38), the
physical characteristics of the plasma are contained in the
characteristic frequencies ω1(q) and ω2(q), i.e., they are de-
scribed by the system static structure characteristics only. The
corresponding numerical results in comparison with available
simulation data are provided in Sec. V.

IV. COMPARISON WITH ALTERNATIVE
THEORETICAL RESULTS

Observe first that the above expression for the inverse
dielectric function (31) leads to the QLCA model [31–33]
for the dielectric function of purely Coulomb systems if we
neglect the Nevanlinna parameter function R2(z; k) (respon-
sible for the account of the energy dissipation in the system)
and the zeroth-order moment and consider only the coupling
contribution U (k) to the exact characteristic frequency

ωCOCP
2 (k) =

√
C4(k)

C2

= ωp

√
1 + K (k) + U (k) →

QLCA
ωp

√
1 + U (k).

Thus we understand that the quasilocalized charge approxima-
tion takes into account, and in a limited form, neglecting the
kinetic energy contribution, only the second and fourth sum
rules. Sophisticated QLCA results including the dispersion
gap in electron bilayers can be reproduced and improved
within the moment approach. However, there is no possibil-
ity to reduce the QLCA dispersion to the classical Vlasov
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(a) (b)

(c) (d)

FIG. 1. Dynamic structure factor (47) (solid lines) normalized to
the shifted maximum values in COCPs, compared to the molecular-
dynamics results [23] (squares), at (a) � = 1 and q = 1.02, (b) � =
10 and q = 0.64, (c) � = 50 and q = 2.32, and (d) � = 120 and q =
1.39. The static structure factors were calculated using the fitting of
[88].

asymptotic form contained in the kinetic contribution K (k)
of the fourth moment. In Yukawa one-component plasmas,
the QLCA also accounts for two contributions to the fourth
moment only:[

ωYOCP
2 (k)

ωp

]2

= k2a2

k2a2 + κ2
+ K (k) + U (k) →

QLCA

k2a2

k2a2 + κ2
+ U (k).

A partial account of the fourth sum rule together with the
f -sum rule has permitted one to achieve, within the QLCA,
interesting versatile new results on the dispersion of the col-
lective modes up to now [84,85]. Generally speaking, the
QLCA results are imbedded in the moment formalism, but
our approach takes the processes of energy dissipation into
consideration and permits us to determine the DSFs and the
decrements of the collective modes.

Another theoretical approach in the investigation of dy-
namic characteristics of the systems we are interested in here
is based on the local-field corrections to the random-phase
approximation [86] (see also [52]). In one-component plasmas
the dynamic local-field correction is equivalent to our NPF,
while in multicomponent systems the NPF stands for all par-
tial local-field corrections which are quite difficult to model
(see, nevertheless, [87] and references therein). This interrela-
tion in one-component plasmas is discussed in Sec. VI.

V. NUMERICAL RESULTS

A. Dynamic structure factor

In Figs. 1–3 the numerical simulation data on the dynamic
structure factor of Coulomb and Yukawa one-component
plasmas [22,23,60] are compared with those calculated by

(a) (b)

(c) (d)

FIG. 2. Same as in Fig. 1, but in YOCPs (solid lines), compared
to the MD results [22] (squares), at κ = 1, q = 0.85, and (a) � = 1,
(b) � = 10, (c) � = 50, and (d) � = 120. The static structure factors
were calculated using the variational modified hypernetted chain
procedure of [89].

Eq. (47). Some preliminary comparison with the recent data
of [60] is presented in [36], Sec. III. These results complement
those contained in [24]. The Fourier-transformed effective
interaction potential in YOCPs is that of (11),

ϕ(q) = 4π (ea)2

q2 + κ2
= q2φ(q)

q2 + κ2
, (46)

where in COCPs κ = 0 and in YOCPs κ = √
3�. The simple

form for the DSF stemming from (29), (34), and (38),

S(q, ω) = q2n

3�

√
2ω1ω

2
2ω

2
p

(
ω2

2 − ω2
1

)
2ω2

1ω
2
(
ω2 − ω2

2

)2 + ω4
2

(
ω2 − ω2

1

)2 , (47)

was used and the characteristic frequencies ω1(q) and ω2(q)
were calculated according to (9) and (12), respectively, with
the employment of the mentioned fitted static structure fac-
tors.

In Figs. 1–3 we observe good agreement of the results of
our calculations with the molecular-dynamics (MD) simula-
tion data at least up to q ≈ 2.3. We understand that for the

(a) (b)

FIG. 3. Same as in Fig. 2, but compared to the MD results [60],
at (a) κ = 0, � = 150, and q = 2.71 and (b) κ = 3, � = 100, and
q = 1.99. The static structure factors were calculated using (a) the
fitting of [88] and (b) the variational modified hypernetted chain
approximation of [89].
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values of � � 1 [Fig. 2(a)] the static approximation (34) is not
applicable since then the NPF must be dynamic and describe
the Landau decay. Notice that the quantitative agreement,
especially with respect to the physically important position of
the shifted maxima, has been achieved by direct calculations
using no adjustment parameters. The results of [60] are also
discussed in detail in [36].

B. Dispersion properties

Analysis of the characteristics of collective modes in
strongly coupled Coulomb and Yukawa classical one-
component plasmas can be realized within the present
self-consistent method as well by solving the dispersion
equation (43). We have determined that the structure of the
collective spectrum is determined by the sign of the dis-
crimination parameter θ (q) [Eq. (39)]: When θ (q) < 0 all
modes merge and there is a unique broad line located at
ω = 0, but when θ (q) > 0 a shifted line is formed whose
position ωmax(q) on the frequency axis can be calculated as
in Eq. (40). In COCPs this line corresponds to the optical
Langmuir-Bohm-Gross mode and in YOCPs it represents the
acoustic-roton mode. When this mode decrement b(q) in (44)
is small with respect to its frequency W (q) the latter real
part of the solution of the dispersion equation (33) is close
to ωmax(q) but, in general, they do not coincide. The results of
[24,25] are complemented here by those of Sec. III in [36].

In conclusion, we stress that we thus reduce the knowledge
of the dynamic characteristics to the calculation of the fre-
quencies (9) and (12) or to that of the static structure factor
S(q). The precision of the data on S(q) affects the precision
of our dynamic results significantly. One can try to adjust
our results to the simulation data by fitting the values of the
characteristic frequencies ω1(q) and ω2(q), like it was done in
[22,23], but this goes beyond the scope of the present work.

VI. LOCAL-FIELD CORRECTION

We have seen that the Nevanlinna parameter function plays
a significant if not crucial role in the present approach. Gen-
erally speaking, it is a nonphenomenological component of
the latter. In OCPs it is nevertheless directly related to the
dynamic local-field correction (DLFC) and in this section we
wish to study the interrelation between the static approxima-
tion (34) and (38) and the DLFC simulation data of [23].

We have seen that the Nevanlinna formula relates the
five-moment NPF R2(ω; q) directly to the dielectric function
[see (32)]. On the other hand, by the definition of the DLFC
G(k, ω),

ε(q, ω) = 1 + φ(q)�(q, ω)

1 − φ(q)�(q, ω)G(q, ω)
,

where �(q, ω) is the polarization function [90]. Then [82]

G(q, ω) = 1 + 1

φ(q)�(q, ω)
+ ω2

ω2
p

− ωω2
2(q) + ω2

1(q)R2(ω; q)

ω2
p[ω + R2(ω; q)]

, (48)

so any NPF model implies a model for the one-component
plasma DLFC and vice versa. In particular, for (34) and (38)
we have

G0(q, ω) = 1 + 1

φ(q)�(q, ω)
+ ω2

ω2
p

− ω2ω2
2 + h2

0ω
2
1

ω2
p

(
ω2 + h2

0

)
+ iωh0

ω2
2 − ω2

1

ω2
p

(
ω2 + h2

0

) . (49)

The relation between the static local-field correction and the
zero-frequency moment of the loss function follows immedi-
ately from (48),

G(q, 0) = 1 + 1

φ(q)�(q, 0)
− ω2

1(q)

ω2
p

, (50)

which implies that the static local-field correction is real and
is equivalent to the frequency ω2

1(q) only but depends on
the polarization operator model. Notice also that due to (48),
the dynamic local-field correction is a response function:
It is analytic in the upper half plane of frequency where
ImG(q, ω) � 0.

The expressions (48)–(50) are statistics-free, but in a clas-
sical system we choose the polarization function taken in the
random-phase approximation as in [23],

�(q, ω) = �0(q, ω)

= 3�

q2

[
1 + ω

qωp

√
3�

2
Z

(
ω

qωp

√
3�

2

)]
,

where Z (ξ ) is the real argument plasma dispersion function
(24). So, as it is well known [91,92],

Gclassical(q, 0) = 1 + q2

3�

(
1 − 1

S(q)

)
.

The above model for the NPF (34) leads to reason-
able agreement between the dynamic local-field correction
G0(q, ω) determined in Eq. (49) and the simulation data
of [23] (see Figs. 4 and 5). The squares there represent
the simulation data of [23] (the results of the method of
continued fractions are presented as well). Notice that the
applicability of the Tanaka-Ichimaru extended random-phase
approximation is dubious in Yukawa plasmas with no long-
range interaction characteristic for the Coulomb systems. We
observe that the improvement by the present model is signif-
icant at the lower coupling strengths, but at higher coupling
strengths we still have no quantitative model for the dynamic
local-field correction, at least within the static approximation
(34) for the NPF.

On the other hand, the quantity directly computed in
molecular-dynamics simulations of [23] was the intermediate
scattering function K (q; t ), which is the frequency Fourier
transform of the dynamic structure factor. The K (q; t ) data
permitted the authors of [23] to calculate both the dynamic
structure factor and the dynamic local-field correction, and
it was pointed out in [23] that the latter was more difficult
to compute from the K (q; t ) molecular-dynamics data than
the dynamic structure factor. The difficulty of determina-
tion of the K (q; t ) long-time asymptotic form is reflected in
the accuracy of the results of [23] near the zero frequency.
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(a) (b)

(c) (d)

FIG. 4. Dynamic local-field correction in COCPs (solid lines),
compared to the molecular dynamics results [23] (squares), at q =
1.02 and (a) and (b) � = 10 and (c) and (d) � = 50. Blue dashed
lines correspond to the model of [55]. The static structure factors
were calculated using the fitting of [88].

Three starting positions are employed here to analyze the
low-frequency behavior of the dynamic local-field correction.

(i) Both the Nevanlinna parameter function and the
dynamic local-field correction are analytic and holomorphic
functions of the complex frequency z = ω + iδ in the half
plane δ > 0; hence they admit Maclaurin expansions at
ω = 0.

(ii) Due to the Riesz-Herglotz formula for the (Nevanlinna)
response functions [74], the correct zero-frequency value of
the NPF is purely imaginary [47,74], say, ih(q), with
h(q) > 0.

(a) (b)

(c) (d)

FIG. 5. Same as in Fig. 4, but for (a) and (b) � = 120 and (c) and
(d) � = 160.

(a) (b)

(c) (d)

FIG. 6. Dynamic structure factor (3) normalized to the shifted
maxima values in Coulomb one-component plasmas, compared to
the MD results [23], at q = 1.02 and (a) � = 10, (b) � = 50, (c) � =
120, and (d) � = 160. Red solid lines correspond to the dynamic
structure factors with h0(q) [Eq. (47)] and blue dashed lines display
the dynamic structure factors with h [Eq. (52)]. The static structure
factors were calculated using the fitting of [88].

(iii) The systems studied in [23] are classical;
hence

φ(q)�0(q, ω → 0) � 3�

q2
+ 3i

√
π

�

q3

aω

vT
+ O(ω2).

Thus,

G(q, ω → 0) � G(q, 0)

− iω

(
ω2

1(q) − ω2
2(q)

ω2
ph(q)

+
√

π

3�

aq

vT

)
+ O(ω2)

or

G(q, ω → 0) � G(q, 0) − iωp(q) + O(ω2).

Then, after some simple calculations, we obtain for the NPF
from (48) the following limiting form:

R2(ω → 0; q) � i
ω2

2(q) − ω2
1(q)

ω2
p

[√
πaq

3�vT
− p(q)

] = ih(q). (51)

These values are certainly different from h0(q). For each wave
number, we obtained the values of the parameter p(q) from
the data of [23] on the dynamic local-field correction and
found that the value of h(q) in (51) is quite close to h0(q)
and gives satisfactory results for the dynamic structure factor
(see Fig. 6). These calculations were carried out using the
expression

S(q, ω) = q2ne

3�

ω2
p

(
ω2

2 − ω2
1

)
h

ω2
(
ω2 − ω2

2

)2 + h2
(
ω2 − ω2

1

)2 (52)

and (47), respectively.
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VII. CONCLUSION

The nonperturbative self-consistent moment approach to
the description of dynamic properties of strongly coupled
Coulomb systems was discussed. The method was constructed
to satisfy the first three nonvanishing sum rules of the sys-
tem inverse dielectric function automatically. It is capable of
reducing the knowledge of the dynamic properties to that of
the static ones. It is also independent of any data input from
simulations. Agreement was achieved with available numeri-
cal data on the dynamic structure factor, the collective mode
characteristics, and even the dynamic local-field correction of
the classical Coulomb and Yukawa plasmas. A comparison
with the most important alternative theoretical approaches
was carried out. The viability of the suggested approach was
thus justified and confirmed. In general, it is also perfectly
applicable to study dynamic characteristics of any physical
system described by a response function like the inverse di-
electric function; further studies in the case of the uniform
electron gas or more complex systems are left for future work.
The robustness of the approach with respect to the precision
of the data on the static structure factors requires further
examination. An investigation of the possibilities to vary the
values of the sum rules thus accounting for the uncertainties
in the static structure factor should be considered elsewhere.

We believe that the double-hump feature that emerges in the
dynamic structure factor computed by MD [see, for example,
Fig. 3(a)] at strong coupling and high wave numbers could
be described within the same formalism in the nine-moment
approximation, i.e., taking into account the sixth and eighth
moments, which could generate two additional characteristic
frequencies. The latter are related to the three- and four-point
static structure factors S(k1, k2) and S(k1, k2, k3), scarcely
known at the moment. This task is also beyond the scope of
the present work.
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