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Preferential turbulence enhancement in two-dimensional compressions
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When initially isotropic three-dimensional (3D) turbulence is compressed along two dimensions, the compres-
sion supplies energy directly to the flow components in the compressed directions, while the flow component
in the noncompressed direction experiences the effects of compression only indirectly through the nonlinearity
of the hydrodynamic equations. Here we study such 2D compressions using numerical simulations. For initially
isotropic turbulence, we find that the nonlinearity can be insufficient to maintain isotropy, with the energy com-
ponents parallel to the compression coming to dominate the turbulent energy, with a number of consequences.
Among these are the possibilities for stronger and more easily sustained growth of turbulent energy than in 3D
compressions and for an increasing turbulent Mach number even in a compression without thermal losses.
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I. INTRODUCTION

The desire to understand the scaling of turbulent hydrody-
namic energy under compression arises in a variety of settings,
including combustion, aerodynamics, astrophysics [1–3], and
inertial fusion [4–11]. Compression tends to inject energy
into the turbulence, while turbulent dissipation (for example,
through viscosity) removes turbulent energy. Together, the
net balance of these effects (and possibly others) at each
time determines whether the turbulence in the compression
is growing or decreasing. The amount (as well as properties)
of the turbulence then influences important dynamics in the
various settings, ranging from material mixing (combustion
and inertial fusion) to the density distribution (astrophysics
and Z pinches [12]).

At present, we examine the turbulent kinetic energy (TKE)
dynamics of a three-dimensional fluid (or plasma) undergoing
compression in two dimensions. We do so by analyzing the
result from numerical simulations. Specifically, we focus on
the rate of change of the TKE in two-dimensional (2D) com-
pressions with changing volume, which is tied to the degree to
which the turbulence remains isotropic in the compression. Of
particular note is that we find that a preferential enhancement
of the TKE can occur in 2D compressions, which does not oc-
cur in 3D compressions. Throughout this work, when we refer
to 3D compressions, we mean isotropic 3D compressions.

While we consider an idealized problem, in order to isolate
basic effects, such effects may be of relevance to laboratory
Z-pinch compression experiments, where a cylindrical plasma
is compressed radially; such experiments underlie radiation
or neutron sources [13], as well as a fusion experiment con-
cept, magnetized liner inertial fusion (MagLIF) [14,15]. In the
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case of gas-puff Z pinches for radiation generation, obser-
vations suggest the presence of substantial turbulent energy
at stagnation [12,16–18], which may be compressed during
the course of the pinch. This phenomenon is likely relevant
in higher-current gas-puff and wire-array Z pinches [19,20].
Laser preheat in MagLIF experiments may generate vorticity
in the central fuel, which then undergoes substantial compres-
sion during the pinch [21].

Here it is useful to consider an analogy between the com-
pression of TKE and the familiar case of the compression
of thermal energy. In the simplest, lossless case (adiabatic
for the thermal or turbulent energy), the thermal energy of
an ideal monatomic gas grows as V −2/3 as the volume V is
compressed. This growth is independent of the manner of
compression; that is, working in Cartesian coordinates, we
may compress in one dimension (say, along x), two dimen-
sions (say, along x and y), or three dimensions and the energy
growth as a function of volume will be the same, assuming
collisions happen rapidly enough to keep the thermal motions
isotropic in the compression. The same would be true of the
TKE, as it is considered here, if it remains isotropic during
the compression. Further, the TKE would grow at the same
V −2/3 rate as the thermal energy [6,22,23]. In the case of
the TKE, the nonlinearity of the Navier-Stokes (NS) equation
plays the role of collisions, being the mechanism by which
energy injected by the compression can equilibrate into the
uncompressed flow component(s).

Here we investigate how effective the NS nonlinearity is
at maintaining or restoring the isotropy of the TKE in com-
pressions at various rates. If isotropy is not maintained, then
the TKE may grow more rapidly as a function of volume than
the V −2/3 scaling. In this scenario the compression may inject
more energy into the turbulent energy than the thermal energy
per volume decrement, leading to preferential enhancement
of the turbulence. While, in general real systems, both the
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thermal and turbulent energy dynamics are affected by a
variety of other loss (or forcing) mechanisms, this basic ques-
tion of TKE equilibration and the associated impact on TKE
growth rate can remain relevant.

We find that in 2D compressions the TKE can become
and remain highly anisotropic. As a consequence, the TKE
in 2D compressions can grow more strongly than the ideal
isotropic scaling of V −2/3, with a scaling peaking at V −1.
This then distinguishes the TKE not only from the thermal
energy in an ideal compression, but also from the TKE in a
3D compression, where isotropy is retained and a maximum
growth of TKE as V −2/3 can occur. Further, we discuss the
likelihood that the TKE growth is more easily sustained in 2D
compressions, due to aspect ratio effects.

The paper is organized as follows. In Sec. II we briefly
cover the formulation of the 2D compression system which
we use to investigate the problem at hand. The numerical
simulations used for the study are described in Sec. II. Sec-
tion III contains the main results, which are broken into two
parts. First, Sec. III A describes the theoretical framework
we analyze the results in, which examines the polytropic (or
adiabatic) index for a turbulent pressure under compression.
Second, Sec. III B contains simulation results and analysis,
broken into three pieces: Sec. III B 1 shows simulation results
and analysis for the 3D compression case to be contrasted
with the 2D case; Sec. III B 2 shows the 2D compression
case for the same initial conditions; Sec. III C shows the 2D
compression case for an alternate initial condition, to gain
further insight. Finally, we conclude in Sec. IV.

II. FORMULATION

To study the TKE behavior in two-dimensional compres-
sions, we use an approach similar to substantial prior work
on the compression of turbulence [5,22–25] and the same as
that described in [11]. This approach is described again briefly
here; more details, in the very similar 3D formulation, can
be found in the Appendix of Ref. [5]. Because it will be a
point of comparison, we also describe the 3D compression
case simultaneously.

We take the gas or plasma behavior to be governed by
the NS equations. A compression is caused by an assumed
background flow field vi0(x, t ) = Ai j (t )x j , with the complete
NS flow given by vi(x, t ) = vi0(x, t ) + v′

i (x, t ). Our goal is
to solve for the behavior of the (turbulent) field v′

i given the
compressing background flow vi0.

We will work in Cartesian coordinates throughout. A 3D
isotropic compression occurs when Ai j (t ) = a(t )δi j is diago-
nal (δi j is the Kronecker delta). A symmetric 2D compression
occurs when Ai j (t ) = a(t ) for i = j = 1 or i = j = 2 and
Ai j (t ) = 0 otherwise. In the present case, for two-dimensional
compression, we take the compression directions to be x and
y, with the z axis then uncompressed. Here we take

a(t ) = L̇/L, (1)

with the overdot indicating a time derivative, and

L(t ) = L0 − 2Ubt . (2)

The effect of the background flow is as follows. In a
3D compression, this background flow is such that a cube

of initial side length L0 placed in the background flow and
advected by it will remain a cube, with a side length L(t ) that
contracts at constant velocity according to Eq. (2). In a 2D
compression, the (initial) cube will only contract along the x
and y directions, with the side length along those axes given by
L(t ), while the uncompressed z direction will have a constant
side length of L0.

We will assume that the perturbed flow v′
i is homoge-

neous under ensemble averaging and we will ignore density
perturbations associated with it (low-Mach-number flow
assumption). With no density perturbations, the complete den-
sity behavior is then simply given by ρ2D(t ) = ρ0/L̄2 for the
2D case and ρ3D(t ) = ρ0/L̄3 for the 3D case. Here L̄ is the
normalized contracting side length

L̄ = 1 − 2Ubt/L0. (3)

Explicit spatial dependence in the NS momentum equation
can be eliminated by working in coordinates X that move with
the background flow. In three dimensions, this is x = L̄X,
while in two dimensions it is x = L̄X , y = L̄Y , and z = Z .
Writing v′

i (x, t ) = Vi(X, t ) and p′(x, t ) = P(X, t ), then for a
3D compression the NS momentum equations are

∂Vi

∂t
+ L̇

L
Vi + 1

L̄
Vj

∂Vi

∂Xj
+ L̄2

ρ0

∂P

∂Xi
= ν0L̄μ̄3D∇2Vi, (4)

while the continuity equation for the perturbed flow is simply
the divergence-free constraint ∂Vi/∂Xi = 0.

In the case of a 2D compression, the NS momentum equa-
tions are

∂Vx

∂t
+ L̇

L
Vx + C(Vx ) + L̄

ρ0

∂P

∂X
= ν0μ̄2DD(Vx ), (5)

∂Vy

∂t
+ L̇

L
Vy + C(Vy) + L̄

ρ0

∂P

∂Y
= ν0μ̄2DD(Vy), (6)

∂Vz

∂t
+ C(Vz ) + L̄2

ρ0

∂P

∂Z
= ν0μ̄2DD(Vz ), (7)

while the continuity equation is

1

L̄

(
∂Vx

∂X
+ ∂Vy

∂Y

)
+ ∂Vz

∂Z
= 0. (8)

In Eqs. (5)–(7) we have used a shorthand operator form
for both the convective term C and the viscous dissipation
term D,

C(A) = 1

L̄

(
Vx

∂A

∂X
+ Vy

∂A

∂Y

)
+ Vz

∂A

∂Z
, (9)

D(A) = ∂2A

∂X 2
+ ∂2A

∂Y 2
+ L̄2 ∂2A

∂Z2
. (10)

In the moving coordinates, the equations for the perturbed
(turbulent) flow V , in both the 2D and 3D cases, are sim-
ilar to the usual NS equations, with the differences being
time-dependent scalings appearing on some terms, as well
as forcing associated with the compression. In the 3D case,
the forcing, the second term on the left-hand side of Eq. (4),
appears for all velocity components; each velocity component
is forced the same in the isotropic compression.

In the 2D case [Eqs. (5)–(7)], the forcing only appears
in the equations for the velocity components parallel to the
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compressed directions (Vx and Vy). This means that Vz can only
increase through the action of the nonlinear terms (convective
and pressure) in Eq. (7). Since Vx and Vy are directly forced,
we may expect an initially isotropic flow, with equal energy
in each flow component, will only remain isotropic if the
nonlinearity is effective at transferring energy to Vz.

Note that, because we are solving for a perturbed flow
which we have assumed is of small Mach number, the pressure
appearing in the momentum equations is essentially that of in-
compressible flow, which acts to keep the continuity equation
satisfied despite the nonlinearity. The mean pressure in this
case follows from the mean density behavior, ρ2D(t ) or ρ3D(t ),
coupled with the ideal gas law and an assumption about the
temperature behavior in the compression (say, adiabatic or
isothermal, to give two possible examples).

The remaining piece to specify the compressing system(s)
is the viscous behavior. The dynamic viscosity μ is written
as μ2D = μ0μ̄2D (similarly for three dimensions) and the
kinematic viscosity appearing in the 2D and 3D momen-
tum equations is ν0 = μ0/ρ0. If we utilize the unmagnetized
Braginskii viscosity [26], then μ ∼ μ(T̄ , Z̄ ), with T̄ = T/T0

the temperature normalized to its initial value and Z̄ = Z/Z0

the ionization state normalized to its initial (spatially uni-
form) value. The impact of a changing plasma viscosity on
the evolution of the TKE has been previously investigated
in three-dimensional [4–9] and two-dimensional compres-
sions [11].

For simplicity, consider the case of a fully ionized plasma
(constant Z). Then, for the Braginskii viscosity, μ ∝ T̄ 5/2,
where in the present work the temperature is treated as spa-
tially uniform. For an adiabatic compression, we have T̄3D =
L̄−2 and T̄2D = L̄−4/3. However, the temperature behavior
growth in a real compression can be reduced by loss mech-
anisms, such as conduction or radiation, leading to weaker
viscosity changes. We can consider a general (but still power-
law) temperature behavior with compression by introducing
a parameter β such that μ̄3D = L̄−2β , while for 2D compres-
sions we define μ̄2D = L̄−4β/3; in either case β is a parameter
determined by the net heating and cooling (and also possi-
bly ionization) processes in the compression [5,27]. These
definitions make it so that for a given β, the 2D and 3D
compressions have the same dynamic viscosity as a function
of volume, μ̄2D(V ) = μ̄3D(V ).

Our primary goal here is to examine, with the aid of
direct numerical simulation (DNS), the question of isotropiza-
tion through the nonlinearity and the associated maximum
sustained TKE growth, rather than effects due to changing
viscosity (the viscosity can become quite large in certain
plasma compressions, causing a transition from high to low
Reynolds number [28]). In a truly high-Reynolds-number
regime, changes in the viscosity can be verified to not influ-
ence the results of DNS of turbulence [29]. Thus, we would
like our simulations to start and stay with a high Reynolds
number, however, we also want the simulations to remain
resolved at the smallest (viscous) scales as the compression
progresses.

Since the energy injection from the compression can lead
to increasing turbulent velocities, it can also then lead to
increasing Reynolds numbers (and therefore resolution re-
quirements for DNS). The Reynolds number will also be

influenced by the viscous behavior. At present, to try to
maintain both a reasonable Reynolds number and numerical
resolution, as well as for physical convenience, we will study
the case when β = 3/2, corresponding to μ̄2D = L̄−2. For a
fully ionized plasma (constant Z) with a Braginskii viscosity
this corresponds to T̄ = L̄−4/5, since the temperature depen-
dence of the Braginskii viscosity is proportional to T 5/2.

It is convenient, both for analysis and for numerical sim-
ulation, to rescale the fields and the time variable in the
compressing frame momentum Eqs. (4) or (5)–(7), with a
time-dependent scaling [5,6,30]. For the 3D case, we use the
velocity scaling Vi = L̄δV̂i; for the 2D case, we use Vx,y =
L̄δV̂x,y for the x and y directions and Vz = L̄σV̂z for the z
direction. We also scale the pressure P = L̄ηP̂ and the time
dt̂ = L̄τ dt .

Selecting, for the 3D case, δ = −1, τ = −2, and η = −5,
we find, for the momentum Eq. (4),

∂V̂i

∂ t̂
+ V̂j

∂V̂i

∂Xj
+ 1

ρ0

∂P̂

∂Xi
= ν0L̄3−2β∇2V̂i. (11)

Examining Eq. (11), we see that in the special case of β =
3/2, the evolution of the turbulence under compression is
determined by the solution of the NS equations for decaying
turbulence [6,30].

In the 2D case, if we again select δ = −1 and τ = −2 and
also select η = −4 and σ = −2, then the continuity Eq. (8)
becomes simply the divergence-free constraint ∂V̂i/∂Xi = 0.
The momentum Eq. (5)–(7) become

∂V̂x

∂ t̂
+ V̂j

∂V̂x

∂Xj
+ 1

ρ0

∂P̂

∂X
= ν0L̄2−4β/3D(V̂x ), (12)

∂V̂y

∂ t̂
+ V̂j

∂V̂y

∂Xj
+ 1

ρ0

∂P̂

∂Y
= ν0L̄2−4β/3D(V̂y), (13)

∂V̂z

∂ t̂
− 2L̄ ˙̄LV̂z + V̂j

∂V̂z

∂Xj
+ L̄2

ρ0

∂P̂

∂Z
= ν0L̄2−4β/3D(V̂z ). (14)

Simulations

We now briefly describe the simulations used in the present
work, which are similar to those in Refs. [11,27]. We utilize
the pseudospectral code DEDALUS [31] to solve for the evo-
lution of initially isotropic, homogeneous, turbulence under
two-dimensional compression, as governed by Eqs. (5)–(8).
We use periodic boundary conditions and a Fourier basis.

In DEDALUS it is numerically advantageous to solve
rescaled equations and then unscale the results appropriately.
For β = 3/2, we numerically solve Eqs. (12)–(14) together
with the divergence-free constraint on V̂ .

We generate the initial state that is compressed in two
different ways, which yield different initial spectral energy
distributions. First we describe the method used for the results
shown in Secs. III B 1 and III B 2, as well as the simulations
in those sections. Following that, we describe the method
used for the results shown in Sec. III C. All simulations have
ρ0 = 1, L0 = 1, and ν0 = 1/600.

To generate the first initial state that is compressed,
we initialize a divergence-free flow field with (uniformly
distributed) random Fourier phases and magnitudes set pro-
portional to k2 exp[−(kp/k)2], with kp = 4. This state is then
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(a) (b) (c) (d)

FIG. 1. Three-dimensional compression of an initial turbulent flow field (see Sec. III B 1); (a) isotropic power spectrum of the initial state
before compression begins, (b) polytropic index n3D [Eq. (18)] versus linear compression ratio L̄ (time progresses left to right) for compression
at different initial values of the compression rate S̄ [Eq. (20)], (c) decay of energy associated with the scaled NS momentum equation (11)
versus a scaled time which is related to L̄ by Eq. (29) (compression progresses left to right), and (d) instantaneous inferred decay power,
assuming a power-law decay for the scaled energy (30), which is seen to increase in time (as the compression progresses), eventually leading
to the decrease in n3D observed in (b).

allowed to decay (by the NS equations) for approximately a
turnover time. The resulting flow field has an isotropic energy
spectrum shown in Fig. 1(a).

The simulation to generate the initial state through decay
uses a Fourier mode resolution of 2163, which is 1443 after
3/2 dealiasing. The results on 3D compression, shown in
Figs. 1(b)–1(d), are computed with this same resolution. For
the 2D compression results up to L̄ = 0.03 we use a grid of
2162 × 1236 (dealiased to 1442 × 864). The higher mode res-
olution is in the z direction, which is done because the form of
the dissipation (10) allows for much steeper gradients (in the
moving coordinates) along z at a given ν0 as L̄ shrinks in the
compression. To continue 2D compressions past L̄ = 0.03 we
add additional kz modes at this L̄ (time) to maintain resolution
in this direction, resulting in a resolution before de-aliasing of
2162 × 2592; this is done for the S̄0 ≈ 1 and S̄0 ≈ 10 cases
shown in Fig. 2 and the following figures.

The initial field we use has the following proper-
ties, with angular brackets denoting a spatial average.

(a) (b) (c)

FIG. 2. Two-dimensional compression of the same initial state
used for the 3D compression cases in Fig. 1, at comparable initial
compression rates (see Sec. III B 2). Shown are the polytropic index
n2D [Eqs. (23) and (25)] versus compression ratio L̄ (time progresses
left to right in each plot). Also shown is the energy ratio rE [Eq. (24)],
which is a measure of the anisotropy of the turbulent flow. Three
compression rates are shown, ranging from (a) an initially slow com-
pression S̄0 ≈ 0.1 to (b) S̄0 ≈ 1 to (c) an initially fast compression
S̄0 ≈ 10.

The turbulent energy EK,0 = 〈ViVi/2〉 ≈ 0.85, the dissipation
ε0 = −ν0〈Vi∇2Vi〉 ≈ 11.5, and a derived Taylor microscale
Reynolds number Reλ = 2EK

√
5/3ε0ν0 ≈ 16. The initial de-

cay time τd,0 = (EK/ε)0 ≈ 0.074.
We have also simulated 2D compressions of initial states

generated using an alternate technique, the forcing method
described by Lundgren [32] and Rosales and Meneveau [33],
and these results are shown in Sec. III C. This forcing tech-
nique results in rather flat low-mode energy spectra [see
Fig. 9(d)]. We generate the initial state in this case again
using a resolution of 2163 (dealiased to 1443), which is then
interpolated to the finer grid before the compression is started;
the finer resolution (3242 × 1236) in x and y was used for the
compressing simulations as part of checking convergence. In
the case of the most dramatic compression shown S̄0 ≈ 20, we
restart part way through with a resolution of 3242 × 3888, to
maintain resolution in the z direction, as before.

The initial field that results from this second forcing
scheme has the following properties, with angular brack-
ets denoting a spatial average. The turbulent energy EK =
〈ViVi/2〉 ≈ 0.97, the dissipation ε = −ν0〈Vi∇2Vi〉 ≈ 2.57,
and a derived Taylor microscale Reynolds number Reλ ≈ 38.

III. ANALYSIS AND RESULTS

The primary analysis and results are contained in
Secs. III A and III B below. First, in Sec. III A we derive
the polytropic index relation for 2D compression of hy-
drodynamic turbulence and compare it with the result for
3D compression. This provides our general framework for
considering the TKE behavior during compression. Second,
Sec. III B provides further analysis of these relations and a
comparison to simulation results.

A. Turbulent polytropic (adiabatic) index

We find it useful to frame the TKE dynamics of a com-
pressing flow in terms of a polytropic index (sometimes also
referred to as the adiabatic index and denoted by γ ). Here,
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where the viscosity enters, we write it generally, without
specializing to the power-law form discussed above. We start
by recalling the familiar case of thermal pressure and energy
evolution, which will be a useful point of comparison. When
a plasma or monatomic gas that is treated as ideal undergoes
an adiabatic compression, the thermal pressure p obeys a
polytropic law

pV n = C (15)

and the polytropic index n = 5/3. Here V is the volume and
C is a constant. Correspondingly, the thermal energy U =
3pV/2 grows as V −2/3 in the compression. Assuming we are
in a regime where collisions are able to rapidly (compared
to the compression rate) isotropize thermal motions, these
thermal pressure and energy scalings will hold independently
of whether the compression is one, two, or three dimen-
sional. That is, working in Cartesian coordinates, we will have
nthermal = 5/3 whether we compress along only x, along x and
y, or along x, y, and z.

An analogous polytropic index can be defined for the turbu-
lence in both 3D [10] and 2D compressions. In the case of 3D
compression, we write the equation for the time rate of change
of the total TKE dET /dt , where ET = ∫∫∫ L0/2

−L0/2 dX(ρ0ViVi/2).
This total energy is the same as in the laboratory frame (in
the laboratory frame, the density increases, but the volume
to be integrated decreases in a manner that balances it).
We use Eq. (4) to write the equation for dET /dt , use the
volume relation dV = 3L2L̇dt to rewrite it in terms of the
volume rate of change, and define the viscous dissipation
εμ = −μL̄

∫∫∫ L0/2
−L0/2 dXVi∇2Vi. Doing so, we arrive at

−dET

dV
= 2

3

ET

V
− τc

εμ

3V
, (16)

where we have defined the (positive) compression
timescale as

τc = −L/L̇. (17)

It is natural to define the turbulent pressure in this 3D
compression as p3D = 2ET /3V , since, in Eq. (16), it is the
quantity that relates the infinitesimal volume increment to the
energy injected into the (turbulent) flow. The polytropic rela-
tion (15) implies n = ∂ ln p/∂ ln ρ. With p3D as just defined
and Eq. (16), we find

n3D = 5

3
− 2

3

τc

τt
= 5

3
− 2

3

1

S̄
, (18)

where the turbulent turnover time in this case is defined as

τt = 2ET

εμ

= 2τd , (19)

with τd the decay timescale τd = −ET /ĖT = ET /εμ. We have
defined a normalized strain rate S̄ as

S̄ = τt

τc
. (20)

With these definitions, an isoturbulent contraction (n = 1)
occurs if τc = τt or S̄ = 1 (see Ref. [5] for examples of 3D
contractions that reach this state, or for an example in the
inertial confinement fusion context, Ref. [27]). The ratio τc/τt

and S̄ can also be written as a type of Reynolds number.

A compression is rapid if τc 
 τt and S̄ � 1, which leads to
amplification of the TKE with n3D → 5/3, the peak achiev-
able amplification rate in this treatment. If the compression is
very slow τt 
 τc, S̄ 
 1, and n3D can take negative values.
In this case, the turbulence dissipates before it experiences the
compression.

For 2D compressions, we follow a similar procedure, ac-
counting for the volume in this case being V = L0L2. The
equation for the total energy in a 2D compression is

−dET

dV
= E‖

V
− τc

εμ,2D

2L3
0 L̄2

. (21)

Here the 2D viscous dissipation is εμ,2D =
−μ

∫∫∫ L0/2
−L0/2 dXViD(Vi) and the parallel (to compression)

energy E‖ = ∫∫∫ L0/2
−L0/2 dXρ0(V 2

x + V 2
y )/2.

In this case, only flow in the directions parallel to the com-
pression (Vx and Vy) is associated with a turbulent pressure;
that is, the energy injected by an infinitesimal contraction only
depends on these components. Then the natural definition
of turbulent pressure is p2D = E‖/V . As such, in order to
find n2D = ∂ ln p2D/∂ ln ρ2D, we use Eqs. (5) and (6) to write
an equation for the time (volume) evolution of E‖ and find,
for n2D,

n2D = 2 + τc
T‖
E‖

− τc
εμ,‖
E‖

. (22)

The parallel viscous dissipation εμ,‖ = μ
∫∫∫ L0/2

−L0/2 dX

[VxD(Vx ) + VyD(Vy)], while T‖ = ∫∫∫ L0/2
−L0/2 dX{Vx[ρ0C(Vx )

+ L̄∂X P] + Vy[ρ0C(Vy) + L̄∂Y P]} represents the nonlinear
transfer of energy between E‖ and the uncompressed
direction energy E⊥ = Ez = ∫∫∫

dXρ0V 2
z /2. There is no

corresponding nonlinear transfer term appearing in n3D

[Eq. (18)] because the transfer is conservative and integrates
out when the full energy evolution is considered.

As before, we can define additional timescales to write n
in terms of timescale ratios. In this case we define a nonlinear
transfer timescale τnl = −2E‖/3T‖ and the turbulent turnover
time τt,‖ = 4E‖/3εμ,‖. Then

n2D = 2 − 1

3

τc

τnl
− 2

3

τc

τt,‖
. (23)

The numerical coefficients in the definitions of the timescales
τnl and τt,‖ are chosen so that for τc = τnl and τc = τt,‖ we
have n = 1, and the coefficient in the definition of τnl is
selected so that n = 5/3 − τcεμ,‖/E‖ when τnl = τc.

By defining the energy ratio

rE = E‖
ET

= E‖
E‖ + Ez

, (24)

it is possible to recast n2D in an alternate but equivalent form

n2D = 1 + rE − ∂ ln rE

∂ ln V
− 2

3

τc

τt,T
. (25)

In this case the turbulent turnover time τt,T = 4ET /3εμ,2D. In
(statistically) isotropic turbulence, the energy ratio rE ∼ 2/3.
We will find both forms of n2D [Eqs. (23) and (25)] useful in
the analysis of 2D compressions.
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B. TKE growth and anisotropy

1. Behavior of n3D

Before addressing the values and behavior of n2D, we
discuss n3D [Eq. (18)]. When, as is presently the case, the
compression rate is predetermined, τc is a known function of
time [Eq. (17)]. Then n3D is determined by the evolution of the
turbulent turnover timescale τt [Eq. (19)]. In general, deter-
mining the evolution of τt is a difficult problem, requiring the
solution of the (turbulent) Navier-Stokes equation, including
possibly time-varying viscosity (4) or equivalently (11).

Existing turbulence models for 3D compression with vis-
cosity variation determined by the β = 5/2 case [7] or for
the general β case [6] can then be used to model n3D. When
the viscosity stays steady or increases in the compression,
the general trend for an initially fast compression is as fol-
lows. In an initially fast compression, τc,0 
 τt,0 (S̄0 � 1),
so n3D,0 ∼ 5/3. However, the turbulence will tend to evolve
towards faster timescales at a rate such that the ratio S̄ de-
creases, and thus n3D will decrease in time from the initial
value ∼5/3. When the viscosity growth with compression is
β > 1, the turbulence will eventually dissipate with continued
compression [5] so that n becomes less than one (in practice
n can become negative). When β = 1, it can be shown that
the turbulence saturates with continued compression so that
n3D → 1 (assuming an initial compression rate that meets a
threshold condition) [5].

Figure 1(b) shows n3D(L̄) for compression with a range of
initial rates S̄0 for the case when β = 3/2. The trends just
described are visible. Additionally, for S̄0 = 10 and 100, we
observe a regime with n3D approximately constant. We now
explain this plateau regime.

Consider n3D in an initially fast compression when β =
3/2. Initially, n3D ∼ 5/3 due to the fast compression, and ulti-
mately n3D in this case will become less than one as the TKE
dissipates (due to the rate at which the viscosity increases
with the increasing temperature in the compression, relative
to the rate of TKE injection). Both of these behaviors can be
governed by linear effects. When the compression is rapid and
n ∼ 5/3, this is a result of the TKE evolution being controlled
by the linear forcing from the compression, the second term
on the left-hand side of Eq. (4). When the viscosity grows very
large and n3D becomes highly negative as the TKE dissipates,
the behavior can be controlled by the linear viscous term,
the right-hand side of Eq. (4). If the initial Reynolds number
is high enough, there exists an intermediate regime where
nonlinear evolution of the turbulence governs n3D.

In the β = 3/2 case, we now determine the value of n3D

in this intermediate, nonlinear, stage. For β = 3/2, the scaled
NS equation for the compression (11) is just the “usual”
incompressible NS equation. In this case, at high Reynolds
number, the energy evolution can be modeled as a power-law
decay

ÊT (t̂ ) =
∫∫∫ L0/2

−L0/2
dXρ0V̂iV̂i/2 = ÊT,0(1 + t̂/t0)−α3D , (26)

with a decay power α3D and a decay timescale t0. The lab-
oratory frame energy is simply related to the scaled energy
ET = L̄−2ÊT . In general, α3D depends on the slope of the
TKE power spectrum at low wave numbers (long wavelength)

(see, e.g., Ref. [34]). Note that, for a given observed decay,
the value of t0 can also affect the inferred value of α3D (see,
e.g., Ref. [35] for more discussion); here, motivated by other
work [36], we use t0 = τd,0 = τt,0/2 consistently throughout,
including later for 2D compressions (which start from an
identical initial state).

Figure 1(c) shows the decay of the total TKE for the present
initial condition, plotted against a normalized time t∗,

t∗ = t̂

τd,0
= 2t̂

τt,0
. (27)

By undoing the velocity and time scalings (converting
back to the variables without a circumflex), we can
write the time (or, more conveniently, L̄) evolution of
the laboratory frame TKE ĒT (T̄ ) = ET /ET,0 = [1 + (−1 +
1/L̄)(2/S̄0)]−α3D/L̄2 and from that calculate n3D = 1 −
(L̄/3ĒT )dĒT /dL̄ in the high-Reynolds-number limit

n3D → 5

3
− α3D

3

1

1 + L̄(S̄0/2 − 1)
∼ 5 − α3D

3
. (28)

Since we have scaled time as dt̂ = L̄−2dt (for both 3D and 2D
cases), the relation between t∗ and L̄ is given by

L̄ = 1

1 + S̄0t∗/2
. (29)

Figure 1(c) shows a fit (dash-dotted) line ÊT ∼ (1 +
t∗)−1.355, which can be seen to match (approximately) the
slope of the decay over a period around t∗ ∼ 10 (discussed
below). This then corresponds to α3D ≈ 1.355. Figure 1(b)
shows (dash-dotted line) Eq. (28) with this value of α3D; it
agrees with the value of n3D in the observed plateau regime.

In general, the value of α3D can change during the com-
pression. Figure 1(d) shows the instantaneous inferred value
of α3D as a function of t∗ during the decay. This is calculated
from the assumed power-law decay (26) as

α3D(t∗) = ln(ÊT /ÊT,0)

ln[1/(1 + t∗)]
. (30)

It can be seen that α3D increases in time during the de-
cay for this initial condition, with a plateau around α3D ≈
1.355, yielding n3D ≈ 1.22. An important note is that the
relation (28) is written for constant α3D; when α3D changes
in time, there should be another term entering the equation,
which depends on this rate of change with L̄ (time). This
extra term, ignored here, is the reason the dash-dotted line in
Fig. 1(c) only approximately matches the apparent slope of
ln(ÊT ) vs 1 + t∗ in Fig. 1(c) [the true fit at this time is closer
to (1 + t∗)−1.4]. Later, in Sec. III C, for the 2D compression
case, we treat the impact of time-varying α.

As previously stated, the value of α3D depends on the
slope of the power spectrum at small (Fourier) wave number
k, ET (k) ∼ ks. For example, the Kolmogorov (or Batchelor)
decay result is α3D = 10/7 (s = 4), while the Saffman result
is α3D = 6/5 (s = 2) [37]. These then correspond to n3D =
25/21 ≈ 1.19 and n3D = 19/15 ≈ 1.27, respectively, in the
nonlinear cascade regime. Rewritten in terms of the energy
growth rate, these results agree with those given for the cas-
cade regime in [7]. While we began by considering a specific
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viscosity dependence β = 3/2, this dependence does not actu-
ally enter into the present result for n3D in the nonlinear phase.

The high-Reynolds-number limit of the decay, which is
utilized to arrive at Eqs. (26) and (28), can only hold for so
long when β > 1; eventually, the viscous regime is reached
and the decay characteristics will change, with α increas-
ing, leading to a decrease in n [6,7]. This is observable in
Fig. 1. When β = 1, the turbulence can saturate in length
scale at the (simulation or physical) domain size, yielding
a change in α (α → 2 [38,39]). A more broadly applicable
version of Eq. (28), capturing these variations, is possible,
e.g., through the use of more complex decay treatments than
Eq. (26) [6,7,40].

2. Two-dimensional compressions and n2D

Examining Eqs. (23) and (25), we can immediately make
some observations. First, from Eq. (23), we can see that
n2D > 5/3 = n3D,max may be achieved, depending on the val-
ues taken by the timescales entering the equation. Note that τc

and τt,‖ are generally non-negative, while in principle τnl can
be either positive or negative, corresponding to energy transfer
out of or into E‖, respectively. However, we consider initially
isotropic states, and in the 2D compressions only E‖ is forced;
as such, we may expect that the tendency at present is for the
nonlinearity to transfer energy from E‖ to Ez, corresponding
to τnl � 0. This is what we observe in simulations (except
for very small initial compression rates S̄0 ∼ 0.01, where the
sign is observed to switch back and forth, not shown here).
Then n2D � 2, with both the nonlinearity and the turbulent
dissipation tending to decrease the rate of (parallel) energy
growth in the compression.

A second observation, from Eq. (25), is that if rE = 2/3
(the isotropic value) and stays this value in the compression,
then n2D = 5/3 − 2τc/3τt,T . That is, if isotropy of the energy
is maintained in the compression, the turbulent growth is
capped at the same rate as for 3D compression, n2D � 5/3,
as one expects.

For β = 3/2, Fig. 2 shows the L̄ (time) evolution of n2D and
rE for 2D compressions of the same initially isotropic state at
three different rates S̄0,

S̄0 = 3

2

(
τt,T

τc

)
0

, (31)

with values S̄0 ≈ 0.1, 1, 10. Note that S̄0 in Eq. (31) is defined
such that it is identical, at t = 0 and L̄ = 1, to S̄ as written
in Eq. (20). In other words, the initial compression rate is
normalized to the same initial turnover time for both 2D and
3D compressions.

A few things are immediately of note in Fig. 2. First, the
fraction of the energy in the parallel components rE [Eq. (24)]
generally increases from the equilibrium value of 2/3 as the
compression progresses in all cases, moving towards the max-
imum value of rE ∼ 1. This indicates that the energy becomes
highly anisotropic as the compression progresses. Second,
the fast compression S̄0 achieves n2D > 5/3 for a substantial
duration of compression; thus this rate exceeds the maximum
growth rate for 3D compressions and also the adiabatic growth
rate of thermal energy. Third, in no cases do we see a drastic
falloff of n2D under compression (up to the minimal simulated

(a) (b)

FIG. 3. For the 2D compressions shown in Fig. 2, the decay of
the scaled parallel energy, associated with the scaled NS equations
for 2D compression (12) and (13) (see Sec. III B 2: (a) the (scaled)
energy behavior versus time (increasing compression left to right)
and (b) the instantaneous inferred decay power assuming a power-
law decay as in Eq. (30), but for E‖ and α‖. Shown for comparison
is the 3D compression behavior of scaled energy and decay power,
for the identical initial condition (in the 3D case, the plotted results
hold for all initial compression rates). The smaller, and decreasing,
decay rates in 2D compression lead to a higher, and more sustained,
polytropic index for the turbulence.

L̄), as we do in the 3D compressions shown in Fig. 1. We now
discuss these points in more detail.

As in the analysis of the 3D compression case, we find it
useful to examine the scaled equations, in this case Eqs. (12)
and (13), which govern the evolution of the (scaled) parallel
energy Ê‖. Recall that this energy is simply related to the
laboratory frame parallel energy as E‖ = L̄−2Ê‖. As in the
3D case, these equations no longer have forcing due to the
compression; then, to the extent that the nonlinearity tends to
transfer energy out of Ê‖, which we find to be the case at these
compression rates (Fig. 4, discussed later), these are equations

FIG. 4. Relative contributions to n2D of transfer to Ez (T‖) versus
viscous dissipation of E‖ for the 2D compression cases shown in
Fig. 2 [see Eq. (35) and Sec. III B 2]. When −T‖/εμ,‖ (y value) is less
than 1, n2D is determined primarily by viscous dissipation of E‖; in
the opposite limit, it is determined primarily by transfer of energy
from the compressed directions E‖ to the uncompressed direction
energy Ez.
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for the decay of Ê‖ at constant viscosity (since β = 3/2 at
present).

Writing this decay in the form of an (assumed) power law,
as in the 3D case,

Ê‖ = Ê‖,0(1 + t̂/t0)−α‖ . (32)

The instantaneous decay rate α‖ can be solved for, giving
Eq. (30), but with ÊT → Ê‖ and α3D → α‖.

Using the decay equation for Ê‖, we can write n2D in terms
of the decay rate, as we did for the 3D case in Eq. (28),

n2D → 2 − α‖
2

1

1 + L̄(S̄0/2 − 1)
(1 + χ ) ∼ 2 − α‖

2
, (33)

χ = ∂ ln α‖
∂t∗

ln[(1 + t∗)(1+t∗ )]. (34)

While in the 3D case we assumed α was constant, here we
write the expression accounting for the time (L̄) varying decay
rate. If the decay rate is constant, χ = 0. We write χ using t∗
for conciseness; χ (L̄) is found utilizing Eq. (29).

From Eqs. (33) and (34) we see that if α‖ decreases with
compression (increasing t∗ and decreasing L̄), this causes an
increase in n2D relative to the prediction assuming constant α‖
at the instantaneous value. Comparing Eq. (33) to the 3D case
[Eq. (28)], we can see that if it were the case that α‖ ∼ α3D,
n2D and n3D in the nonlinear phase would not be so different.
That is, if the decay rate of the (scaled) parallel energy in two
dimensions were similar to the decay rate for the (scaled) 3D
energy, the differences in turbulence enhancement in 2D or
3D compression would be slight. Consider, for example, α =
1.355 as observed for our 3D simulation, which yields, for the
nonlinear regime, n3D ≈ 1.22 and n2D = 1.32. This difference
would be decreased for higher decay rates (disappearing at
α = 2).

Figure 3(a) shows the time evolution of Ê‖ for each value
of S̄0 from Fig. 2, and in Fig. 3(b) the corresponding in-
stantaneous decay rate α‖(t∗) inferred from this decay is
shown. Also shown are the results from the 3D decay, from
Fig. 2. Since, in all cases, the evolution is governed by similar
decaying NS equations starting from the same initial state,
all cases are comparable as a function of t∗. The cases dif-
fer as a function of t∗ ∝ t̂ for two reasons. First, L̄, which
can be thought of as a function of S̄0 and t̂ [Eq. (29)],
enters into the viscous dissipation term D [Eq. (10)]. Sec-
ond, L̄ appears explicitly in the evolution of V̂z [Eq. (14)],
which in turn appears in the nonlinear term in the V̂x and V̂y

equations.
There are two key features to note in Fig. 3. First, the

energy decay as a function of t∗ occurs more slowly with
increasing S̄0, observed in Fig. 3(a) and appearing in Fig. 3(b)
as a lower inferred α‖ at later times. Second, α‖ tends to
decrease (monotonically for S̄0 = 1, 10), while for the 3D
case for the same initial condition the decay rate increases
as the decay progresses. Taken together, these suggest that the
growth rate of TKE in 2D compressions can be both larger and
more sustainable than in 3D compressions, within the scope of
the treatment here.

One possible concern in interpreting these observations
is that one could make similar observations from the linear
solution to the 2D compression system. When β = 3/2, the

linear solution (including viscosity) to the 2D compression
system can give n2D → 2 for large compression, consistent
with the scaled energy decay rate going to zero. This occurs
when the initial condition has flow structures with variation
only in the z direction (Fourier modes with kx = ky = 0),
because the energy in such modes grows proportionally to
L̄−2 as L̄ → 0 in the linear solution [11]. Then the fraction of
energy in these modes grows during compression in the linear
solution, eventually dominating the energy. At present, for the
nonlinear simulations, we find that the fraction of energy in
these modes decreases as the compressions progress. Thus,
the smaller, and decreasing, decay power and the associated
larger n2D observed here appear to be “real” effects of the
nonlinear system.

We now discuss a few other features observed in Figs. 2
and 3 before discussing the results of simulations utilizing a
different initial condition which help to further demonstrate
the key features just discussed.

The last value of α‖ for the S̄0 ≈ 10 case in Fig. 3 is
α‖ ∼ 0.74. As an illustration, we use this value to compute
n2D ∼ 2 − α‖/2 from Eq. (33), which gives n2D ≈ 1.63. This
is plotted as a dash-dotted line in Fig. 2(c), where it can be
seen to be slightly lower than the (true) value of n2D. This
slight discrepancy is because χ [Eq. (34)] is nonzero, if small,
as reflected in the slight slope of the S̄0 ≈ 10 curve of α‖ at
late times in Fig. 3.

At early times (t∗ � 1) in Fig. 3, faster compressions show
higher decay rates. Equation (14) for V̂z has a linear damping
term that is proportional to the compression rate, but also
decreases with L̄. We hypothesize that the faster initial decay
rate of the parallel energy in the scaled equations is caused
by stronger early-time damping of V̂z at higher compression
rates, combined with nonlinear transfer of parallel energy to
this damped component. Since these increased rates are only
present for a short time, their net effect on the energy is small,
as can be observed in Fig. 3(a).

We return now to the behavior of rE in Fig. 2. In the case of
slow compression, rE ∼ 2/3 for a substantial amount of time
t∗ � 5, L̄ � 0.8, consistent with an initial decay that is similar
to the 3D case (Fig. 3). At late times (small L̄) the three cases
have rE growing towards 1; it natural to wonder in this regime
about the relative contributions to n2D of transfer to z versus
direct viscous dissipation through Vx and Vy. We make this
comparison by writing Eq. (22) as

n2D = 2 − τcεμ,‖
E‖

(
1 + −T‖

εμ,‖

)
. (35)

Then the relative contribution of transfer to Ez compared to
dissipation by viscosity is given by comparing −T‖/εμ,‖ to 1.
This quantity is plotted versus L̄ in Fig. 4. We can see that,
in the case of S̄0 ≈ 10, it hovers around 0.1 during the period
when rE ≈ 0.98.

Figure 5 shows the behavior of the laboratory frame TKE
components as a function of compression for the three com-
pression rates. Evident here is that, for the initially fast
compression S̄0 ≈ 10, this small comparative transfer of en-
ergy from the growing E‖ is sufficient to support growing Ez.

For the case S̄0 = 10, we plot in Fig. 6 contours of the en-
ergy spectrum for the parallel energy E‖ = (V 2

x + V 2
y )/2 after
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(a) (b)

FIG. 5. Laboratory frame (unscaled) turbulent energy compo-
nents (a) E‖ and (b) Ez versus compression for the 2D compression
cases shown in Fig. 2. The strong growth seen in E‖ for the fastest ini-
tial compression rate S̄0 ≈ 10 is associated with sustained polytropic
index above the isotropic maximum n2D > 5/3. Nonlinear transfer
of energy to Ez, while a small component (see Fig. 4), is sufficient at
times to cause growing or sustained Ez despite there being no direct
forcing of z momentum (see Sec. III B 2 and also Sec. II).

summing over the y direction, E‖(kx, kz ). In Fig. 6(a) the con-
tours of E‖(kx, kz ) reflect the isotropy of the initial condition.
Figure 6(b) shows contours of E‖(kx, kz ) after compression
to L̄ ≈ 0.03. By comparing Figs. 6(a) and 6(b), it can be
observed that energy has primarily been added to modes with
smaller kx but across many values of kz, with this fact causing
a substantial stretching of the contours along the horizontal
axis. This difference between the kx and kz spectral directions
likely stems from the fact that dissipation at a given scale (in
the moving frame) is smaller along z, as indicated by the form

(a)

(b)

FIG. 6. For S̄0 = 10, contour plots of (a) the initial spectrum
and (b) a compressed (L̄ ≈ 0.03) spectrum for the energy in the
parallel direction E‖ = (V 2

x + V 2
y )/2 in two dimensions, showing the

development of an asymmetric energy spectrum. Each contour line
represents a factor of 10 change, with lighter contours representing
larger values, so that the spectral energy E‖(kx, kz ) generally de-
creases as one moves away from the origin (lower left corner) of each
plot. The absolute scale is arbitrary and hence not plotted, but the
plots may be compared; the largest value (lightest contour, lower left)
is the same in each. In (a) this contour for the largest plotted value is
essentially at (0,0). The energy spectrum Ez(kx, kz ) has very similar
structure. Note that for readability we only show the quadrant with
positive kx and kz and a subset of the z modes used the simulation.

FIG. 7. Slices of the flow field during an initially rapid (S̄0 ≈ 10)
2D compression. The top row shows the flow velocity components in
the directions parallel to compression (x and y), while the bottom row
shows |vz|, the flow in the noncompressed z direction. The first three
columns show vertical (y and z) slices through the midplane (constant
x) after three different amounts of compression (increasing from left
to right, with the value of L̄ indicated in the label); the horizontal (y)
direction is stretched in each plot to increase visibility. The rightmost
column shows a slice at constant z for the most compressed L̄. (See
Sec. III B 2.)

of Eq. (10). The change in mode structure with compression is
very similar for Ez(kx, kz ), although the changes in magnitude
are much less dramatic, as would be indicated by the overall
energy changes in Fig. 5 for S̄0 = 10 at L̄ ≈ 0.03.

Figure 7 shows slices (vertical plane y-z) of the flow field
at three points during the compression; at the last data point,
it also shows slices in the x-y midplane. Here the accumu-
lation of energy in kz modes is observed in the fine vertical
structure of the flow fields after compression. It can also be
seen here that while E‖ (Vx, Vy) dominates the energy after
compression, the velocity in the noncompressed direction (z)
grows as substantially as well. Because of the large amount
of compression, the slices are stretched for visibility. For
comparison, we also show, in Fig. 8, flow-field slices for the
S̄0 ≈ 0.1, where we can keep the actual aspect ratio.

FIG. 8. Same as in Fig. 7 but for the slow compression case S̄0 ≈
0.1. Here the flow slices are plotted with the true aspect ratio.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Quantities of interest for 2D compression at various initial rates, as in Figs. 2 and 3 (see also 3D compression in Fig. 1). Here a
different scheme is used to generate the initial state (see Sec. II), resulting in an initial-state energy spectrum with energy more concentrated
in long-wavelength modes; compare (d) to Fig. 1(a), with the latter used in the prior 3D and 2D compression results. (For discussion see
Sec. III C.)

C. Additional simulations for n2D

Here we present results for 2D compression at varying
rates, as above in Sec. III B 2, but for an initial flow state that
has a different energy spectrum, shown in Fig. 9(d). The key
features observed previously are again observed in Figs. 9(e)
and 9(f). Namely, the scaled energy decays more slowly as a
function of t∗ with increasing initial compression rate S̄0 and
the associated instantaneous inferred decay rate α‖ decreases
in time (as the compression progresses).

In the case of a very slow initial compression rate S̄0 ≈
0.02, we see the opposite trend of an increasing decay rate in
time up to the end of the simulated compression [Fig. 9(f)],
consistent with the 3D case shown in Fig. 1. For this 2D
compression case (S̄0 ≈ 0.02) we may expect this trend to
eventually reverse, as the aspect ratio of the domain becomes
large and the x-y plane flow becomes simple (see the discus-
sion below), although the (laboratory frame) TKE will have
decayed very substantially from its initial value by this time.

The 2D compression results for n2D and rE are shown in
Figs. 9(a)–9(c). The slow compression case S̄0 ≈ 0.02 has rE

fluctuating around the isotropic value of 2/3, while the S̄0 ≈
2 and 20 cases show growing rE , with both cases eventually
reaching rE ≈ 1 and n2D ≈ 2.

The S̄0 ≈ 20 case shows an intermediate plateau regime in
n, and in rE . Since L̄ is small during this regime, we can ignore
the contribution of L̄(S̄0/2 − 1) in the denominator of n2D as
written in Eq. (33). We define an effective α‖,

α‖,eff = α‖(1 + χ ), (36)

so that

n2D ∼ 2 − α‖,eff

2
. (37)

In other words, α‖,eff is the apparent power of the assumed
decay (32) when α‖ changes in time (L̄).

In Fig. 9(f) we show both α‖ (green solid line) and α‖,eff

(red dashed line) for S̄0 = 20. Since α‖ decreases in time, χ

[Eq. (34)] is negative and α‖,eff < α‖ [Eq. (36)].
There is an approximate plateau at α‖,eff ≈ 0.35 (purple

dash-dotted line), which matches the apparent slope of Ê‖ in
Fig. 9(e). This figure also shows [Fig. 9(c)] that n2D calculated
using this value of α‖,eff, through Eq. (37), matches n2D during
the plateau regime, n2D ≈ 1.83.

Flow slices for the S̄0 ≈ 20 case are shown in Fig. 10,
including, in the second column, slices during this plateau

FIG. 10. Slices of the domain showing the flow field in a 2D
compression at an initially fast rate (S̄0 ≈ 20), as in Fig. 7, but with
the alternate initial condition used in Fig. 9. Of note is the simple flow
structure of the parallel (to compression) flow components, observed
in a slice of the compression plane x-y, the top right panel. (See
Sec. III C.)
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regime (at L̄ ≈ 0.01). During this time rE ≈ 0.98, and we
find −T‖/εμ,‖ ∼ 0.3, indicating that transfer of energy to the
z direction still plays a role during this stage [Eq. (35)] before
falling off as n2D ∼ 2.

The x-y flow slices in Fig. 10 (right column) show that, at
the last simulated point (L̄ ≈ 0.002 and t∗ ≈ 50), the Vx and
Vy flow consists primarily of flow with a single oscillation in
the domain (kx ∼ ky ∼ 2π ). Compare this with the x-y flow
slices (right column) in Fig. 7, for the previously discussed
initial condition, which are shown after a similar magnitude
of initial decay times t∗ ≈ 42; this initial condition shows a
higher-mode (kx and ky) structure still at this time. Thus, the
precompression initial state used in this section, for the results
in Figs. 9 and 10, reaches a long-wavelength-dominated state
more quickly, owing to its initial spectrum, and this state is
seen to be associated with n2D ∼ 2.

Although a detailed analysis is beyond the scope of the
present work, we now discuss, qualitatively, a possible expla-
nation for the observed smaller (compared to 3D) decay rates
of the scaled energy and for the fact that these rates decrease
during the compression. It is these key features that are asso-
ciated with larger n2D, which can apparently be sustained even
during compression at initially modest rates S̄0 ∼ 1, 2, unlike
in the 3D compression case.

As L̄ becomes smaller, there is a tendency for the Vx and
Vy Eq. (5) and (6) to have reduced relative influence from Vz

and Z derivatives, as evidenced by the L̄ scaling factors in
the equations (including the continuity equation as well). If
we took this to the extreme, we would drop the Z derivative
term (last term) from the convective term (9), the dissipation
term (10), and the continuity Eq. (8). After rescaling Vx and Vy

to V̂x and V̂y, as before, we would then have a system that, for
β = 3/2, is the (unforced) 2D NS equations (we can write an
equation for the scaled z vorticity to eliminate the pressure).

In true 2D turbulence, the energy decay can become neg-
ligible at high Reynolds numbers [41,42]. At present, if the
energy decay in the scaled variables becomes negligible, we
would find n2D → 2. Thus, if the effects of 2D contraction
lead to a tendency toward decoupling from the Vz flow, we
may expect a reduced decay of the scaled energy compared to
the 3D case and an associated large and sustained growth rate
for the (unscaled) energy. Since in general Vz is not decoupled
from the dynamics, the 2D compression system is perhaps
more akin to other 3D systems exhibiting partially reduced
dimensionality [42,43].

IV. SUMMARY

Here we have studied the 2D compression of initially
isotropic 3D turbulence and made a comparison to the
(isotropic) 3D compression of such turbulence. In analogy
with thermal energy, we may define a turbulent pressure
associated with the incremental work done on (or by) the
turbulence in an incremental change of volume. Then we
can write a polytropic relation for this pressure pV n = C and
find the polytropic (or adiabatic) index n associated with the
turbulent pressure in compressions.

In the case of 3D (isotropic) compressions, n3D for the
turbulent pressure is n3D � 5/3; then, in a compression that
is adiabatic for the thermal energy, we will find that the rate

of growth (nth) of the thermal energy is at least as large as the
turbulent growth. Since, in a self-consistent adiabatic model,
dissipated turbulent energy will appear as thermal energy, we
expect that in general for 3D compressions nthermal > n3D.

On the other hand, in a 2D compression, the compression
only does work against flows in the compressed direction; if
energy input into these flows is not efficiently equilibrated
into the uncompressed third direction, the polytropic index
for the turbulence n2D may exceed the isotropic, adiabatic,
value of 5/3, n2D > 5/3. As a result, energy input by the
compression may preferentially flow into the turbulence even
in a compression with adiabatic temperature growth. We find
that n2D > 5/3 can occur in 2D compressions. This is a result
of sustained anisotropy of the turbulence, which we find here
becomes highly anisotropic in energy content, with the vast
majority of energy parallel to the plane of compression.

Moreover, we find that, compared to 3D compression at
a similar rate, turbulence in 2D compressions can be more
easily sustained or enhanced; this is reflected by the behavior
of the scaled energy at late times. In three dimensions, this
scaled energy experiences an increasing decay rate at late
times (large compression), associated with late stage decay
of turbulence. In two dimensions, the comparable scaled en-
ergy experiences a decreasing decay rate at late times (large
compression); this decrease is likely due to the large aspect
ratio of such 2D compressions at late times, which causes a
tendency toward two-dimensionalization.

When n2D > 5/3, the turbulent Mach number may increase
with compression as the turbulence is preferentially enhanced
relative to the thermal energy. We can make a simple estimate
of an extreme (adiabatic) case by taking n2D = 2 and nth =
5/3. Then the Mach number (normalized to initial value M̄)
for the parallel flow will scale as M̄ ∼ V̄ (nth−n2D )/2 ∼ V̄ −1/6; a
doubling would require a compression in volume (V̄ = V/V0)
by a factor of approximately 64. This simple estimate ignores
the flow of dissipated turbulence into thermal energy, which
would tend to increase nthermal, but which diminishes as n2D →
2. It also assumes adiabatic increase of the thermal energy; in
general, conduction, radiation, or other loss mechanisms will
reduce the polytropic (adiabatic) index of the thermal energy
in the compression, enhancing the effect.

Throughout, we have used periodic boundary conditions.
One result of this is that kx = ky = 0 Fourier modes, which
can be linearly important in the 2D compression problem [11],
are permitted; however, we find that the energy in such
modes generally decreases in the present simulations. More
generally, physical boundary conditions, say, associated with
a cylindrical liner in MagLIF experiments, should be con-
sidered; such boundary conditions may provide damping at
large scales, which could, for instance, reduce the observed
values of n2D. The present treatment neglects any electric or
magnetic fields; some existing laboratory experiments which
compress plasma in two dimensions have (strong) applied
magnetic fields, the effects of which may then be important
in turbulence dynamics. Nevertheless, if they do not tend to
help maintain isotropy, some of the intuition from the present
work may still hold.

The compressions considered here proceed with a con-
stant (compression) velocity L ∝ Ubt [Eq. (2)]. This preserves
spatial homogeneity in the equations when the background
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pressure is assumed to be uniform in space [5,24,30], greatly
simplifying the present analysis of the turbulence. In various
compression experiments, including Z-pinch compressions
such as MagLIF, the compression velocity changes in time.
This case can be treated in the present framework by consider-
ing a background pressure which depends on space [5,24,30],
but then for consistency with the ideal gas law, the tem-
perature (and therefore viscosity) would depend on space,
breaking homogeneity. Nevertheless, to the extent the turbu-
lence results do not depend on the changing viscosity (due
to high Reynolds number), the present framework could treat
this case.

More generally, if we allow for density perturbations, a
term associated with the accelerating compression enters the
momentum equation [30]. We now roughly estimate the size
of this term compared with the compression forcing term due
to volumetric contraction considered here [e.g., the second
term on the left-hand side of Eq. (4) and similarly for two
dimensions], for a specific case. The ratio of this acceleration
term to the volumetric forcing is of the magnitude [ρ ′/(ρ̄ +
ρ ′)](L̈x/L̇v′). Here ρ ′ is the density perturbation and ρ̄ the
mean density. We assume that the flows are relatively com-
pressible so that ρ ′ ∼ ρ̄ and this term is order unity, leaving
us with the ratio L̈x/L̇v′.

As an example, we estimate this ratio in the case of an
analytic liner solution used in [14], where the liner radius
r = r0(1 − τ 4), with r0 the initial radius and τ a normalized
time, τ ∈ [0, 1]. While the acceleration term varies spatially
(for example, vanishing at x = 0), we take x ∼ r. Then we
take the perturbed velocity v′ ∝ ṙ [in a special case of 3D
compression, it can be shown that v′ nonlinearly saturates
slightly above the compression velocity (see Ref. [5]); in the
present 2D case, the tendency toward two-dimensionalization
may relax this saturation cap]. With these assumptions we will
find L̈x/L̇v′ ∼ (1 − τ 4)/τ 4.

In this estimation, for this particular analytic liner solution,
the acceleration term is more important for r � r0/2, while
the volumetric forcing considered here is more important for
r � r0/2. If density perturbations are small compared to the
mean density, then the relative magnitude of this accelera-
tion term will be reduced and the compression term will be
dominant for a larger fraction of the compression. In any
event, we note that the 2D compression momentum equations
considered here [Eqs. (5)–(7)] depend explicitly on L̄(t ) and
so even if the acceleration term can be dropped, the time
history of the compression will matter in general.

While we have highlighted potential relevance to vari-
ous Z-pinch compression experiments, the present work may
find relevance elsewhere as well, for example, possibly in
astrophysical situations that produce (quasi-)2D contractions
in elongated structures (such as shock-compressed gas pil-
lars in molecular clouds or jets) or perhaps in contractions
in gas dynamics, though the Z-pinch contractions tend to
cause much larger total volume contraction than many other
applications.

Overall, we hope the present work helps to call attention to
essential differences in the behavior of bulk turbulence under
compression when compressed in two versus three dimen-
sions and the possibility for anisotropy to lead to enhance
turbulent growth in two dimensions when compared to three.
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