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Collisional radiative (CR) models based on ab initio atomic structure calculation have been utilized over
20 years to analyze many-electron atomic and ionic spectra. Although the population distribution of the
excited states in plasmas and their emission spectra are computed using CR models, systematic and analytical
understanding of the population kinetics is still lacking. In this work, we present a reduced model of the
population dynamics in many-electron atomic ions, in which we approximate the dense energy structure of
complex many-electron atoms by a continuum, a continuous CR model (CCRM). Using this simplification,
we show an analytical population distribution of many-electron atoms in plasmas and its electron-density and
temperature dependence. In particular, the CCRM shows that the population distribution of highly excited
states of many-electron atoms in plasmas resembles a Boltzmann distribution but with an effective excitation
temperature. We also show the existence of three typical electron-density regions and two electron-temperature
regions where the parameter dependence of the excitation temperature is different. Analytical representations of
the effective excitation temperature and the boundaries of these phases are also presented.
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I. INTRODUCTION

The spectra of many-electron atomic ions can be seen
in various optically thin plasmas. In the stellar atmosphere,
neutral and singly charged iron (Fe) are the dominant com-
ponents in the absorption spectra in terms of the number of
lines [1]. Many of the Fe absorption lines have been identified
to study the stellar atmosphere [2–4]. Highly charged tin and
actinide ions play an important role in realizing ultraviolet
light sources [5–7], in which quasicontinuum emission in
laser-produced plasmas is used. Since the radiative power
should be concentrated into a particular energy region for
the commercial light source realization, many works have
been carried out to understand the population dynamics in
plasmas [5,7]. In fusion tokamak plasmas, highly charged
tungsten ions convert electron kinetic energy to strong ra-
diation and therefore need to be controlled [8,9]. The
thermalization process of the nuclei in kilonovas, which has
recently been probed from the emission of neutral transition
metals, is yet to be understood [10,11].

The collisional radiative (CR) model is the key tool to study
the population kinetics of many-electron atoms in plasmas and
their emission and absorption spectra. This model solves the
steady state equation of the excited state population of ions
by taking into account the rates of elementary processes in
plasmas. In order to perform accurate predictions, accurate
atomic data are required, i.e., energy levels and transition rates
of many elementary processes, including electron-impact ex-
citations and spontaneous transitions. Therefore, many works
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have been dedicated to develop and improve ab initio calcula-
tion of these atomic data [12–16].

Although this first-principles approach has been successful
in many cases [7,9,17–19], in order to understand properties
of the simulated population dynamics and spectra, different
approaches are required. One such property is the analyti-
cal criterion of the local thermal equilibrium (LTE), where
the population distribution is perfectly represented by the
Boltzmann distribution. Some criteria have been reported for
hydrogenlike ions by several authors [20–24] and they have
been also applied for few-electron atoms; however, the appli-
cability to many-electron atoms is not yet clear.

Another property of the population dynamics is the
Boltzmann-like population distribution. Busquet et al. pro-
posed the effective ionization temperature to describe the
ion density abundance in laser-produced plasmas [25]. This
concept has been extended to represent the population dis-
tribution in excited states, and has been confirmed both
experimentally and numerically even in the condition far from
the LTE [26–29]. It has been also theoretically explained
that the populations in each configuration [30,31] and in
each superconfiguration [29] become similar to a Boltzmann
distribution. Furthermore, the parameter dependence of the
effective excitation temperature, which determines the slope
of the Boltzmann-like distribution, has been estimated based
on the two-level model [28]. This property of population dy-
namics has been utilized to skip the heavy collisional radiative
model computation in radiation-fluid simulation [25,29].

However, it is not clear whether this property still holds
in complex many-electron atoms, where the configuration is
not well defined because of a strong wavefunction mixing.
The applicability of the two-level model for the excitation
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temperature estimation is not clear either, as many-electron
atoms have huge numbers of levels and the population transfer
among them may be significant. In this work, we show that
the Boltzmann-like distribution also holds for many-electron
atoms. We also present an analytical LTE criterion for many-
electron atoms based on the statistical approximation of their
atomic structure.

For this purpose, We approximate the dense energy levels
of many-electron atoms by a continuum and the transition
between them by kernel integrations. We call this model a con-
tinuous CR model (CCRM). In this CCRM, only two atomic
parameters are used to represent the population kinetics: the
energy scale of the level density growth, and another energy
scale that describes the decay of transition strengths. With
this model, the dependence of the excitation temperature on
electron density (ne) and temperature (Te) is studied using
the CCRM, revealing the existence of three typical ne regions
and two Te regions. The LTE criterion for the many-electron
atoms are also derived. Furthermore, it is shown that in low-Te

regions, the excitation temperature becomes almost Te even in
low-ne plasmas. This indicates much wider applicability of the
Boltzmann method, which is a well-known method to estimate
Te values from the emission spectra in high-ne plasmas, as
well as the new temperature diagnostics based on the line
intensity statistics [32].

It is also found that the above properties of many-electron
atoms are similar to those derived from two-level sys-
tems [28], but the energy interval of the two-level system
should be replaced by the energy scale related to the level
density of the many-electron atom. We also discuss this dif-
ference, which reflects the effect of dense energy levels.

In Sec. II, we briefly describe the principle of the
CR model and show simulation results obtained using an
ab initio calculation code for several many-electron atomic
ions. In Sec. III, we present our CCRM to study the population
kinetics of many-electron atoms and compare it with the ab
initio simulation result. In Sec. IV, we discuss its parameter
dependence.

II. CRM FOR MANY-ELECTRON ATOMS

A. Principle of the CR model

The CR model is a balance equation of the population
of excited states in plasmas. In optically thin plasmas, the
dominant excitation and deexcitation processes are radiative
decay and electron-impact excitation and deexcitation. The
temporal evolution of the population in an excited state p can
be written as

dnp

dt
= Ain

p − Aout
p + C in

p − Cout
p + F in

p − Fout
p , (1)

where Ain
p and Aout

p are the population influx from upper
levels to state p and the outflux from state p to lower levels
by spontaneous decay, respectively. Similarly, C in

p and Cout
p

are the influx and the outflux by electron-impact excitation,
respectively, and F in

p and Fout
p are the influx and the outflux by

electron-impact deexcitation, respectively. Except for extreme
cases, the time scale of the excited state population is very
short compared with that of the bulk plasma parameters (e.g.,

ne and Te). Therefore, the steady state of the population of
excited states can be assumed: dnp/dt = 0.

Many other elementary processes can be included in
Eq. (1), such as ionization, recombination, photoionization,
and photoexcitation. For highly charged ions, dielectronic re-
combination and autoionization may be important. However,
for simplicity, we mainly focus on electron-impact excitation,
deexcitation, and spontaneous decay in this work (excluding
an ab initio calculation in FAC used as a reference).

The excited state population is divided into two compo-
nents, i.e., ionizing and recombining plasma components,
depending on whether the population contributions of the
ground state or the next ionized stage are dominant [33].
However, in this work, we neglect the ionization and recom-
bination processes, and therefore only consider the ionizing
plasma component.

Each term in Eq. (1) is explicitly written as follows:

Ain
p =

∑
q>p

Ap←qnq, Aout
p =

∑
q<p

Aq←pnp

C in
p =

∑
q<p

Cp←qnenq, Cout
p =

∑
q>p

Cq←pnenp

F in
p =

∑
q>p

Fp←qnenq, Fout
p =

∑
q<p

Fq←pnenp, (2)

where Ap←q is the spontaneous transition rate from state q to
state p, Cp←q is the electron-impact excitation rate coefficient
from state q to state p, and Fp←q is the deexcitation rate co-
efficient. Here,

∑
q<p and

∑
q>p indicate the summation over

states q with higher and lower excited energies than the energy
of p, respectively. Then, Eq. (1) becomes a linear equation of
np, which can be solved if we know all the rates.

The radiative transition rate Ap←q is related to the line
strength Spq between states p and q. The transition rate by
electric dipole transitions, which are almost always dominant,
can be written as

Ap←q = γ
1

gq
ω3

pqSpq (3)

with

γ = 4

3
α4 c

a0

1

E3
H

1

e2a2
0

, (4)

where ωpq = Eq − Ep is the energy difference between states
p and q, gq is the statistical weight of state q, EH ≈ 27.2 eV
is the Hartree energy, α is the fine structure constant, e is the
elementary charge, a0 is the Bohr radius, and c is the light
speed.

The electron-impact excitation rate coefficient is more
complicated. Various methods of its approximation are avail-
able, such as the Born method, close-coupling method [34],
distorted-wave approximation [35,36], convergent close-
coupling method [37,38], and R-matrix method [39,40].
Besides such sophisticated methods, it has been known that
the rate coefficients have a nearly proportional dependence on
the line strength in the corresponding level pair [33,41,42],

Cp←q ≈ 1

gq

β√
kTe

Spq exp
[
−ωpq

kTe

]
, (5)
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FIG. 1. Level densities of (a) Fe I, (b) Fe II (Mn-like Fe), and (c) Kr IX (Ni-like krypton). Actual energy levels compiled in NIST ASD
and computed using the FAC are shown by vertical bars in each figure. The gray step lines are histograms for the computed energy levels with
three different bin sizes. The black solid lines are fit by the constant-temperature model [Eq. (10)]. The vertical dashed lines indicate the first
ionization energy.

where k is the Boltzmann constant. Although many ab initio
calculation codes utilize more precise rate coefficients, several
authors have adopted the above simplest approximation to
derive analytical forms. Griem [42] and Fujimoto [33] used

β = 25/2

3
π1/2αa2

0c
√

EH
1

e2a2
0

(6)

to reduce the LTE criterion for hydrogenlike ions. Mewe has
proposed a slightly different form [41],

β = 27/2

3
√

3
π3/2αa2

0c
√

EH
1

e2a2
0

ξ, (7)

where ξ is the Gaunt factor, which is ξ ≈ 0.15 for transitions
associated with a change in the principal quantum number
[which results in almost the same value to Eq. (6)], and
ξ ≈ 0.6 for those without the change.

Once excitation rate coefficients are calculated, either from
accurate methods or the easy methods, the corresponding
deexcitation rate coefficients Fp←q can be deduced from the
detailed balance principle,

Fp←q = gp

gq
Cq←p exp

[ωpq

kTe

]
. (8)

B. Flexible Atomic Code

Although an application of an ab initio simulation code is
not an essential purpose of this paper, we use it as a reference
to compare with our model presented in the next section.
Some concrete examples will also help the discussion. There-
fore, only in this section, we simulate the atomic structure, rate
coefficients, and resultant population distribution for some
example atoms with an ab initio calculation code.

There are several integrated packages of the atomic struc-
ture calculation and CR model for studying many-electron
atomic spectra [12–16]. One common package is the Flexible
Atomic Code (FAC) [13]. In the FAC, the electron wavefunction
of a many-electron atom is approximated by a linear com-
bination of single-body product wavefunctions. Their mixing
coefficients are calculated based on the configuration interac-

tion method, and the line strengths are computed from these
mixing coefficients. The electron-impact excitation cross sec-
tions are computed via distorted wave approximation, which
is believed to be more accurate than Eq. (5) [13]. The electron-
impact ionization cross sections and autoionization rates are
also computed using the FAC (although the CCRM introduced
later does not include these processes). Using these cross
sections and rates, Eq. (1) is solved, and the population dis-
tribution is simulated with given pairs of ne and Te.

As examples of complex many-electron atoms, we con-
sider neutral iron (Fe I), manganeselike iron (Fe II), and
nickel-like krypton (Kr IX), which have different numbers of
electrons and different effective charges. The details of the
configurations included in each calculation are presented in
Appendix B.

The vertical bars in Figs. 1(a)–1(c) show the energy levels
calculated with FAC. For comparison, the energy levels com-
piled in the Atomic Spectra Database (ASD) by NIST [43] are
also shown in Fig. 1 by vertical bars.

The population distributions normalized by the statistical
weight with several Te and ne combinations are shown in
Fig. 2. In high-electron-density plasmas, the distributions be-
come closer to the Boltzmann distribution,

np/gp ∝ exp

(
− Ep

kTe

)
, (9)

where Ep is the excited energy of state p. In low-electron-
density plasmas, the distribution deviates from Eq. (9), but it
still decreases exponentially against the excited energy par-
ticularly in highly excited states. In lower-density plasma, the
slope becomes steeper and the scatter becomes bigger. This
observation is consistent with the previous works [26–29].

III. CONTINUOUS CR MODEL FOR MANY-ELECTRON
ATOMS

In this work, we present an analytic form of Eq. (1), using
the statistical theory of the atomic structure of many-electron
atoms. In particular, we assume the following two properties:
(i) exponential increase in the level density over the excited

053211-3



NISHIO, BERENGUT, HASUO, AND FUJII PHYSICAL REVIEW E 102, 053211 (2020)

FIG. 2. Population distribution n/g of (a) Fe I, (b) Fe II, and (c) Kr IX computed using the FAC. The upper panels show the computation
with Te values smaller than ε0, and the lower panels show those with larger values. Three different colored dots in each panel show the results
with different ne values. In higher density, the population distribution stays on one line, Eq. (9). At lower density, the population is scattered
around an exponentially decaying line (a straight line in the semilogarithmic plot) with a steeper slope. The gray solid lines in each panel show
the result of our simplified model with Eqs. (16)–(23) with the same Te and ne values. Note that the scales of these lines are adjusted to fit those
of the FAC result and, therefore, only the slope is important.

energy, and (ii) independently and identically distributed line
strength. These probabilistic assumptions, as well as the huge
number of energy levels and transitions, allow us to approxi-
mate the summations in Eq. (2) as integrals.

In Sec. III A, we present the details of the probabilistic
assumptions. In Sec. III B, we construct the CCRM by approx-
imating the summations in Eq. (2) by integrals. In Sec. III C,
we focus on highly excited states, which allows us to further
simplify the CCRM.

A. Atomic structure approximation

1. Level density of many-electron atoms

It is known that in fermionic many-body systems, the level
density ρ(E ), the number of excited states per unit energy, has
a nearly exponential dependence on the excited energy. Step
lines in Figs. 1(a), 1(b), and 1(c) show the level densities of
Fe I, Fe II, and Kr IX, respectively, which are computed from
the simulated energy levels using the FAC. In order to present
an overall dependence without the finite bin-size effect, we
show three histograms with different bin sizes for each atom.
It is clear that the level density of these many-electron atoms
increases nearly exponentially.

Two of the most common models of the level densities of
another fermionic many-body system, heavy nuclei, are the
back-shifted Fermi gas model and the constant-temperature
model [44,45]. Applications of these models to the level
densities of many-electron atoms have been also reported by
several authors [46,47]. In the constant-temperature model,

the level density is expressed as follows:

ρ(E ) = ρ0 exp

(
E

ε0

)
, (10)

where ε0 is an energy scale parameter indicating the inverse
of the level density increase rate. This value in principle can
be estimated based on the number of valence electrons and
shell-separation energy [47].

The solid lines in Fig. 1 show the fit using the constant-
temperature model, where ρ0 and ε0 are adjusted so that
Eq. (10) matches the computed histogram. The histograms
shown in the figure are in good agreement with Eq. (10),
particularly in the highly excited energy regions.

Figure 3 shows the ionization-energy dependence of the
scale parameter ε0 for several atomic ions. In the figure, the
computed values of ε0 for neutral and singly charged ions of
transition metals and the isoelectronic sequence of Fe-like and
Ni-like ions are shown. The first ionization energy data χ are
taken from the NIST ASD [43]. ε0/χ is almost constant over
the wide variety of atoms and charges. The value

ε0/χ ≈ 0.2 (11)

may be a good empirical approximation for transition metals.
Atomic parameters for the atoms used in this work are pre-
sented in Table I. Note that the uncertainty of ε0 is ≈ 20%,
which originates from the variation of the FAC computation
result over the change in hyperparameters, e.g., the number of
basis states and central potential.
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FIG. 3. The scale factors of the level density (ε0) and line
strength (σ ) for several atomic ions. The values are normalized by
their first ionization energy χ . Data points around χ ≈ 8 eV are for
neutral transition metals from Sc to Ni, and those around χ ≈ 15 eV
are for singly charged ions of transition metals. The other five points
are the isoelectronic sequence of Fe and Ni.

2. Line strength distribution

The line-strength distribution of fermionic many-body
systems has been approximated as independent and iden-
tical [48]. This approximation is valid if the wavefunction
mixing is so large that the system can be viewed as a quantum
chaotic system. For heavy nuclei, the line-strength distribution
was approximated by the Porter-Thomas distribution [49–51],

p(S|ω) = 1√
2πSS(ω)

exp

(
− S

2S(ω)

)
, (12)

where S(ω) is the mean value of S, the so-called gamma
strength function, which is only a function of the energy dif-
ference ω of the initial and final states. This distribution was
also tested for the line-strength distribution of many-electron
atoms [46,52]. Equation (12) is based on the Brink-Axel hy-
pothesis [53,54], where the line strength depends only on the
transition energy, but does not depend on properties of the
initial and final states. Recently, experimental evidence of this
hypothesis for heavy nuclei has been reported [55].

We also adopt this assumption, as in Ref. [32], for
many-electron atoms. In Ref. [32], we assumed a uniform
line-strength distribution over the energy difference, S(ω) ∝
ω0, for simplicity. However, in this work, we adopt a more
realistic assumption for S(ω) that can be consistent with the
sum rule of the oscillator strength,

N =
∑

j

fi→ j

≈
∫ E

0
f (E , E − ω)ρ(E − ω) dω

+
∫ ∞

0
f (E , E + ω)ρ(E + ω) dω, (13)

where N is the number of electrons in the atom, and f (E , E +
ω) is the oscillator strength from the state at E to that
at E + ω. With f ∝ Sω ∝ ω1, the second integral on the
right-hand side of Eq. (13) diverges. Although there are
no well-established model distributions for line strengths of
many-electron atoms, we assume an exponentially decreasing

TABLE I. Scale factors of the level structure ε0 [Eq. (10)] and
line strength σ [Eq. (14)] used in this work. The ionization energy χ

is also shown.

Ion ε0 (eV) σ (eV) χ (eV)

Fe I 1.6 0.62 7.902
Fe II 3.9 2.3 16.2
Kr IX 36 23 233.0

function,

S(ω) = S0 exp

(
−|ω|

σ

)
, (14)

where σ is a scale parameter. With σ < ε0, Eq. (13) does not
diverge. Equation (14) can be understood from the statistical
theory because the line strength between orbitals near E and
orbitals near E + ω is distributed over the ergodically mixed
states, resulting in an exponential decay.

Figure 4(a) shows the density distribution of S values com-
puted using the FAC for Fe I, Fe II, and Kr IX, as a function
of the energy difference ω and its actual value. The strength
function values are computed by averaging these points in
certain energy bins, and are shown by solid lines. This func-
tion decreases exponentially against the transition energy. Our
modeled strength functions [Eq. (14)] are shown by dotted
lines in the figure, σ values of which are estimated from
the computed S values. In Fig. 4(b), the strength functions
computed from the different energy range of the initial states
are shown. Although a slight initial-energy dependence can
be seen, this approximation agrees well with the FAC compu-
tation.

In Fig. 3, we also plot σ values for several transition metals
and their isoelectronic sequence. Although it shows more
scatter than that of ε0,

σ/χ ≈ 0.1 (15)

may be a reasonable estimate.

B. Continuous balance equation

The spontaneous transition rate can be directly computed
from Eq. (3) with given S distributions. Let us approximate
Ain

p by using Eq. (10) and Eq. (3):

Ain
p =

∑
q>p

Ap←qnq

≈
∫ ∞

0
γω3S(ω)ρ(Ep + ω)n(Ep + ω) dω

= γ ρ0S0eEp/ε0

∫ ∞

0
ω3e−ω/δn(Ep + ω) dω (16)

with

δ = 1
1
σ

− 1
ε0

. (17)

n(Ep) is the population of state p. Here, we approximate
g ≈ g and S ≈ S(ω), where g is the mean value of the sta-
tistical weight. Note that this approximation comes from the
central limit theorem and is valid if the distribution of S is
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FIG. 4. Strength functions for the line strengths of Fe I, Fe II, and Kr IX. (a) The density distribution of the line-strength values as a function
of the transition energy ω and their actual values. Note that the density scale is different in ω < 0 and ω > 0. The solid lines indicate their
averaged values, i.e., the strength function S(ω), computed from these data. The dotted slope lines indicate Eq. (14), the energy scale σ of
which is computed from the weighted expectation. (b) Initial energy dependence of S(ω). 4–6, 6–8, and 8–10 eV for Fe I; 6–10, 10–14, and
14–18 eV for Fe II; and 140–200 and 200–240 eV for Kr IX are shown.

independent. Therefore, the shape of the distribution is not
restricted to Eq. (12), but is rather arbitrary.

Similarly, the total radiative outflux Aout
p can be approxi-

mated as

Aout
p =

∑
q<p

Aq←pnp ≈
∫ Ep

0
γω3S(ω)ρ(Ep − ω)n(Ep) dω

= γ ρ0S0eEp/ε0
[
6μ4 − (

6μ4 + 6μ3Ep + 3μ2E2
p + μE3

p

)
e−Ep/μ

]
n(E ), (18)

with

μ = 1
1
σ

+ 1
ε0

. (19)

Using Eq. (11) and Eq. (15) we may further approximate δ ≈ χ/5 and μ ≈ χ/15.
Although the electron impact excitation rate has a much more complex dependence on S, we adopt the simpler approximation

in Eq. (7) with ξ = 0.6 [41]. With this dependence, we can also approximate C in, Cout, F in, and Fout as follows:

C in
p =

∑
q<p

Cp←q(Te )nenq ≈
∫ Ep

0
C(Te, ω)nen(Ep − ω)ρ(Ep − ω) dω

= β
ne√
kTe

ρ0S0eEp/ε0

∫ Ep

0
exp

[
−

(
1

kTe
+ 1

μ

)
ω

]
n(Ep − ω) dω, (20)

Cout
p =

∑
q>p

Cq←p(Te )nenp ≈
∫ ∞

0
C(Te, ω)nen(Ep)ρ(Ep + ω) dω

= β
ne√
kTe

ρ0S0eEp/ε0
1

1
kTe

+ 1
δ

n(Ep), (21)

F in
p =

∑
q>p

Fp←q(Te )nenq ≈
∫ ∞

0
F (Te, ω)nen(Ep + ω)ρ(Ep + ω) dω

= β
ne√
kTe

ρ0S0eEp/ε0

∫ ∞

0
e−ω/δn(Ep + ω) dω, (22)

Fout
p =

∑
q<p

Fq←p(Te )nenp ≈
∫ Ep

0
F (Te, ω)nen(Ep)ρ(Ep − ω) dω

= β
ne√
kTe

ρ0S0eEp/ε0μ(1 − e−Ep/μ)n(Ep). (23)
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Here, we again use the averaged value of Spq ≈ S(ωpq) =
S0 exp(−|ωpq|/σ ). C and F are the rate coefficients defined
in Eq. (5) and Eq. (8), respectively, with S substituted by S.

We solve Eq. (1) by substituting Eqs. (16)–(23). Solid lines
in Fig. 2 show the numerical solutions, whose vertical scales
(n0) are chosen to fit the FAC results. Although our CCRM
assumes a smooth population distribution and therefore does
not reproduce the vertical scatter (relative scatter up to 102

depending on ne and Te), its slope agrees well with the FAC

results, particularly in highly excited states. Recall that in our
model, we only use two parameters to represent the atomic
structure, ε0 and σ . In light of this huge simplification, the
consistency between our CCRM and the FAC computation is
surprising. This suggests that the probabilistic approximation
is reasonable for many-electron atoms.

C. Further simplification for highly excited states

In highly excited states with E � ε0, the following ap-
proximation for the finite-range integration in Eqs. (16), (20),
and (22) may be valid:

∫ E

0
· dω ≈

∫ ∞

0
· dω, (24)

as the integrands decreases quickly for large ω due to the
exponential decrease in the rate coefficient over the energy
difference ω. Note that “·” indicates any of the integrands in
Eqs. (16), (20), and (22). Then, all of Eqs. (16)–(23) become
translation invariant; i.e., n(E ) ∝ n(E + 
) holds for any en-
ergy E . Therefore, n(E ) should have the following form:

n(E ) = n0 exp

(
− E

kTex

)
, (25)

with an effective excitation temperature Tex and an arbitrary
scale n0.

By substituting Eq. (25) into Eqs. (16)–(23) and assuming
E � ε0, we get

Ain ≈γ ρ0S0n0e−E/τ 6(
1

kTex
+ 1

δ

)4 , (26)

Aout ≈γ ρ0S0n0e−E/τ 6μ4, (27)

C in ≈βne

√
kTeρ0S0n0e−E/τ 1

1 + kTe
μ

− kTe
kTex

, (28)

Cout ≈βne

√
kTeρ0S0n0e−E/τ 1

1 + kTe
δ

, (29)

F in ≈βne

√
kTeρ0S0n0e−E/τ 1

kTe
δ

+ kTe
kTex

, (30)

Fout ≈βne

√
kTeρ0S0n0e−E/τ μ

kTe
, (31)

with

τ = 1
1

kTex
− 1

ε0

. (32)

By substituting Eqs. (26)–(31) into Eq. (1), we have the fol-
lowing equation for Tex:

6γ

{
1(

1
kTex

+ 1
δ

)4 − μ4

}
+ βne

√
kTe

{
1

1 + kTe
μ

− kTe
kTex

− 1

1 + kTe
δ

+ 1
kTe
δ

+ kTe
kTex

− μ

kTe

}
= 0. (33)

Although Eq. (33) is not analytically solvable, its numerical
solution can be found easily with given Te, ne, ε0, and σ .

In Fig. 5, we present the excitation temperatures for the
FAC results and the CCRM. In order to estimate Tex from the
result obtained using FAC, we choose a certain excited energy
range and fit the result in this region by Eq. (25) (see caption of
Fig. 5 for the details). In the high-density limit, Tex approaches
Te. On the other hand, in the low-density limit, Tex approaches
a different value. There is a density region where the transition
between these two phases takes place. These tendencies, and
the actual values of Tex, are consistent between FAC and our
CCRM.

IV. DISCUSSIONS

In Fig. 2, we see that the excited state population distri-
bution changes depending on ne and Te values of the plasma.
In this section, we aim to understand this population kinetics
using our CCRM.

The discussion in this section is largely inspired by the
proceeding works for H-like ions by Fujimoto [33]. They
summarized the population kinetics of H-like ions and its ne

and Te dependence. Figure 10(a) shows the diagram of pop-
ulation kinetics of H-like ions. There are two typical density
regions, corona phase and LTE phase (or saturation phase in
Refs. [24,33]), in which the population kinetics is systemat-
ically different. In the corona phase, excited state atoms are
dominantly generated by electron-impact excitation from the
ground state, while being dominantly depopulated by radia-
tive decay. On the other hand, in higher-density plasmas, the
dominant population path is the excitation from the next lower
level and the dominant depopulation path is the excitation to
the next higher level. The density boundary is given by [21,33]

ne ≈ 0.7 × 3 × 23 γ

β

(
z2EH

2

)3

(kTe )1/2ν−8.5, (34)

where ν represents the principal quantum number of the level
and z2EH/2 corresponds to the ionization energy of an H-
like ion with nuclear charge z. More details can be found in
Appendix A.

We discuss the population kinetics of many-electron atoms.
As we see below, their population kinetics is also systemati-
cally different depending on the ne and Te values in plasmas.
Although the population distribution of many-electron atoms
is found to be Boltzmann-like [Eq. (25)], which is in contrast
with the power-law distribution of H-like ions [see Eqs. (A4)
and (A6) in Appendix A), the density boundaries, Eqs. (36)
and (40), show a similar form to that for H-like ions [Eq. (34)].
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FIG. 5. ne dependence of Tex for (a) Fe I, (b) Fe II, and (c) Kr IX. Markers are generated from the FAC results, and lines are computed from
Eq. (33), at E ≈ 0.7χ . The two horizontal dotted lines in each panel show Tex = Te and Tex = ε0/2k. The four vertical dotted lines indicate
the boundary densities, Eqs. (36), (38), (40), and (41), respectively. The chain curves show the Tex values estimated from two-level model
[Eq. (48)] with 
E = 3

2 ε0.

A. Highly excited states

1. Low-temperature plasmas

In Fig. 6(a), we show the flux composition for highly
excited states of Fe I with Te = 0.3 eV. The upper part of the
figure shows the influx to a certain level, and the bottom part
is the outflux from this level. The total influx and outflux are
normalized to unity, so that their compositions can be clearly
seen.

On the low-ne side, the dominant influx is collisional
excitation from lower levels, and the dominant outflux is
a spontaneous decay to lower levels. On the high-ne side,
the dominant influx does not change (collisional excitation),
and the dominant outflux becomes collisional deexcitation to
lower levels.

Low-density region: Corona phase. The low-ne region is
similar to the corona phase, which is defined for H-like ions.
In the original corona phase, the dominant influx is collisional
excitation from the ground state, whereas in our case the
excitation from all lower levels is considered.

High-density region: LTE phase. In the high-ne region, the
effect of the spontaneous decay is negligible, and C in = Fout

and F in = Cout are satisfied based on the principle of detailed
balance. We call this phase the LTE phase, similar to that in H-
like ions. The population influx and outflux with lower levels
are dominant compared with those with higher levels. This

can be understood by considering the asymptotic value of F in

and Fout. If Te ≈ Tex 	 δ,

F in

Fout
≈ μ

kTe
. (35)

Therefore, if kTe 	 μ, the population balance with lower lev-
els is dominant, and if μ 	 kTe, the population balance with
higher levels becomes dominant [compare with Fig. 6(b)].

Boundary densities. Here, we define two boundary densi-
ties. The lower boundary density (ncor

e ) is at the end of the
corona phase, and another one (nLTE

e ) is at the start of the LTE
phase.

ncor
e may be defined as where Aout = Fout is satisfied. Thus,

the boundary density is evaluated as

ncor
e ≈ 6γ

β
μ3(kTe )1/2. (36)

These density boundaries are shown by the vertical bars in
Figs. 6(a) and 5. This well reproduces the Tex behavior pre-
dicted by the abinitio calculation.

If we substitute Eqs. (11) and (15) into Eq. (36), this be-
comes

ncor
e ≈ 2 × 10−3 γ

β
χ3(kTe )1/2. (37)

FIG. 6. Flux composition for Fe I at (a) Te = 0.3 eV and (b) Te = 10 eV. Here A is due to spontaneous emission processes, C is collisional
excitation, and F is collisional deexcitation.
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FIG. 7. Te dependence of Tex in low-density plasmas, which are
simulated using FAC. In the high-temperature region, kTex ≈ ε0/2
is satisfied, and Tex ≈ Te is a good estimate in the low-Te region,
for all three different many-electron ions. The chain curve indicates
the limiting behavior derived from two-level model [Eq. (50)] with

E = 3

2 ε0.

This form can be directly compared with the boundary density
of H-like ions [Eq. (34)]. Both boundary densities scale as
χ3T 1/2

e . However, the boundary for many-electron atoms does
not depend on the excited energy (except for that discussed in
Sec. IV B), in contrast with the ν−8.5 dependence in Eq. (34).

We also define nLTE
e as the boundary density where Tex =

0.9Te. By substituting this into Eq. (33) we obtain

nLTE
e ≈ 60γ

β
μ2(kTe )3/2. (38)

This boundary density scales as T 3/2
e in contrast with Eq. (36).

However, as can be seen in Figs. 5 and 8, these two boundaries
have similar values in the low-temperature region. This is
because in this region, Te < ε0/2 ≈ μ should be satisfied, as
we see later.

FIG. 8. Phase diagram for the population kinetics of many-
electron atoms. Four typical regions, corona, cascade, and LTE
phases are depicted. Here, we assume ε0 ≈ 0.2χ and σ ≈ 0.1χ .

2. High-temperature plasmas

In Fig. 6(b), we show the flux composition for highly
excited states of Fe I with Te = 10 eV. On the low-ne side, the
dominant influx is a spontaneous decay from higher levels,
and the dominant outflux is a spontaneous decay to lower
levels. On the high-ne side, the dominant influx is collisional
deexcitation from higher levels, and the dominant outflux
becomes collisional excitation to higher levels.

Low-density region: Cascade phase. In the low-density
region, the population balance is established at Ain ≈ Aout.
From Eqs. (26) and (27), Tex can be reduced as follows:

Tex = ε0/2k. (39)

The value of ε0/2k is plotted in Fig. 5 by horizontal dotted
lines. This excitation temperature agrees well with the FAC

result.
High-density limit: LTE phase. In this density region, the

population balance is established at F in ≈ Fout. Because the
effect of spontaneous decay is negligible in this region, Tex =
Te is established, as in low-temperature plasmas.

Boundary densities. We define two boundary densities for
high-temperature plasmas, as in the low-temperature plasmas.
The lower boundary density (ncas

e ) is at the end of the cascad-
ing phase, and another one (nLTE

e ) is at the start of the LTE
phase.

As the dominant outflux changes from Aout to Fout when
the corona phase changes to the LTE phase, ncas

e may be
defined, where Ain = F in is satisfied. From the equality and
Eqs. (27) and (31), the boundary density is reduced as

ncas
e ≈ 6γ

β
μ3 μ

δ
(kTe )1/2. (40)

This density boundary is shown by the vertical bars in
Figs. 6(a) and 5. This boundary density also scales as χ3T 1/2

e ,
similar to Eqs. (34) and (36).

We define another boundary density nLTE
e , where Tex =

0.9Te is satisfied. By substituting this into Eq. (33),

nLTE
e ≈ 60γ

β
δ2(kTe )3/2. (41)

These density boundaries are shown by the vertical bars in
Figs. 6(a) and 5. They well reproduce the Tex behavior pre-
dicted by the ab initio calculation.

3. Temperature boundary

In Fig. 7, we show Tex/Te for the low-density region com-
puted from the FAC results, as a function of kTe/ε0. The ne

values and atomic elements are shown in the figure. All results
are on the same curve. In the figure, we also show the lines
Tex = Te and kTex = ε0/2. It can be seen that these are good
estimates of Tex in the low- and high-Te regions, respectively.
Therefore, the temperature boundary is

T b
e = ε0

2k
. (42)

A diagram illustrating these phases and their boundaries is
shown in Fig. 8.
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FIG. 9. Excited energy dependence of the population kinetics for
Fe I with ne = 1016 (m−3) and (a) Te = 0.3 eV and (b) Te = 10 eV.
[(a-1) and (b-1)] The population distributions computed using the
FAC (markers) and our continuous model. [(a-2) and (b-2)] The local
excitation temperature computed from the derivative of the model
result. [(a-3) and (b-3)] The flux compositions as functions of the
excited temperature E . In low-temperature plasmas, the constant Tex

is reasonable, whereas in high-temperature plasmas, Tex significantly
drops in low excited states because of the contribution of electron-
impact excitation.

B. Low excited states

In the discussion above, we have focused on highly excited
states. In this section, we discuss the energy dependence of
the population kinetics. In Figs. 9(a-1) and 9(b-1), we show
the population distribution of Fe I computed using the FAC

(markers) and our continuous model (lines) with Te = 0.3 and
10 eV, respectively, and ne = 1016 m−3. Results of both FAC

and the CCRM deviate from a Boltzmann-like distribution
[Eq. (25)] in the low-energy region (E < 5 eV for the FAC

and E < 2.5 eV for CCRM). This deviation is clearer in the
high-temperature case.

The observed inconsistency between FAC and our model
is also more prominent in the low-energy region. This indi-
cates that in this energy range the assumptions that we use
to derive our model, i.e., sufficiently large level density and
wavefunction mixing, are not valid. For example, as there
are only even-parity levels in Fe I at E < 2 eV, other even
levels at higher excited energy cannot decay to these levels
by electric-dipole transitions. This situation is far different
from what we consider in Sec. III. Although the applicability
is limited, for completeness, here we discuss the population
kinetics in low-energy levels based on our continuous CR
model.

In Figs. 9(a-2) and 9(b-2), we show the energy dependence
of kTex(E ) = −n(E )/ dn(E )

dE . In low-temperature plasmas, Tex

is almost constant for all excited energies, whereas the drop in
Tex in the low-energy region is significant in high-temperature
plasmas. The flux decomposition is shown in Figs. 9(a-3)
and 9(b-3) as a function of the excited energy.

In high-temperature plasmas, the dominant influx and out-
flux are both spontaneous decay except for E < 0.5 eV.
However, if E � δ, the approximation of Eq. (24) is not valid,
and thus Eq. (27) is not valid either. If E ≈ 0, Eq. (18) can be
approximated as follows, from the Taylor expansion of e−E/μ

up to fourth order:

Aout ≈ γ ρ0S0eE/τ E4/4. (43)

From Aout = Ain, the excitation temperature may be approxi-
mated by

kTex ≈ 1
241/4

E − 1
δ

, (44)

where Tex has E dependence.
As in highly excited states, kTex ≈ ε0/2, the boundary

energy may be defined at 1
241/4

E − 1
δ

= ε0/2. This gives the

boundary energy,

Eb = 241/4μ. (45)

This boundary energy is shown in Figs. 9(b-1) and 9(b-2) by
the vertical bars.

In low-temperature plasmas, the violation of the infinite-
range-integration approximation [Eq. (24)] becomes signifi-
cant also for the influx, i.e., electron-impact excitation. The
decrease in the influx due to the boundary effect compensates
for the decrease in the outflux and, therefore, the change in Tex

is smaller than that in high-temperature plasmas.

C. Relation to the two-level model

The effective temperature, in particular that of less chaotic
systems, has been estimated based on the two-level model,
where the population balance of only two levels is consid-
ered [28]. In this section, we compare our CCRM with the
two-level model.

We consider a two-level system consisting of one of the
excited levels in an many-electron atom (the upper state)
and the ground state (the lower state). Let n(
E ) and n0 be
the populations in the upper and lower states in a two-level
system, respectively, while 
E is the energy interval between
them. Under our approximations of the rates [Eqs. (3) and (5)],
n(
E ) can be written as follows:

n(
E ) = n0e− 
E
kTe (1 + ξ
E3)−1, (46)

with

ξ = γ
√

kTe

βne
. (47)

The effective temperature for the upper state may be repre-
sented by

kTex(
E ) = −n(
E )
dn(
E )

d
E

(48)

= kTe

(
1 + 3ξ
E2

1 + ξ
E3
kTe

)−1

. (49)
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With this model, the limiting behavior of the effective temper-
ature can be written as

Tex

Te
→

{
1 (Te → 0)

E
3kTe

(Te → ∞). (50)

For many-electron atoms, it is not obvious whether this
model is applicable or what value of 
E is appropriate. How-
ever, from the comparison between Eq. (39) and Eq. (50), we
find that


E = 3

2
ε0 (51)

gives a consistent limiting behavior. The ne dependence of Tex,
which is computed by the two-level model, is shown by chain
curves in Fig. 5. This is similar to our CCRM as well as the
simulation results by FAC.

In the limit of ne → 0, Eq. (48) gives

Tex

Te
→

(
1 + 2kTe

ε0

)−1

. (52)

This dependence is shown in Fig. 7 by a chain curve. This
agrees with the first-principles calculation very well.

The similarity between the two-level system and our
CCRM is surprising as the two-level system assumes very dif-
ferent physics from the population kinetics in many-electron
atoms. For example, in low-density and high-temperature
plasmas, the dominant populating flux is the radiative cascade
from the upper levels and the dominant depopulating flux is
to the lower levels. This behavior cannot be accounted for by
two-level systems, as obviously more than two levels are in-
volved. However, very similar behavior of Tex is obtained from
the two-level system with only one tuning parameter, 
E .
This suggests a common underlying mathematical structure
that determines the Tex behavior as well as 
E = 3

2ε0, which
may be investigated in future studies.

D. Limitations of the CCRM

In our CCRM, we neglect some important processes, such
as electron-impact ionization, autoionization, radiative recom-
bination, and dielectronic recombination. In optically thick
plasmas, the radiative excitation, radiative recombination, and
stimulated decay are also important.

From the comparison with the reference FAC simulation,
which includes the population outflux by electron-impact ion-
ization and autoionization processes, it is found that their
effect is negligible within the accuracy of our discussion. This
may be understood from the difference in the level density
between charge states. As can be seen from Eq. (11) the
level density is smaller in the next charge state. There are
much fewer autoionization paths (and electron-impact ioniza-
tion paths) than those of radiative decay (and electron-impact
excitation, respectively). Therefore, even if the rates of au-
toionization and electron-impact ionization are larger, their
total contribution to the population distribution can be smaller.

On the other hand, the radiative recombination and dielec-
tronic recombination are not included either in the FAC or our
CCRM. In order to consider their effect, the ion abundance in

the next charge state is necessary. Statistical treatment of the
ionization equilibrium is the scope of the future study.

With the external radiation field, radiative processes, such
as radiative excitation, ionization, and stimulated radiative
decay become important. If the radiation field can be approx-
imated by a gray body, these processes can be included in
Eq. (1) in a straightforward manner as their rates are simply
proportional to the line strength. However, if the radiation
field has a different spectral dependence, it becomes more
difficult to generalize. The study for such a case is also left
for the future study.

V. SUMMARY

In this work, we studied the population kinetics of many-
electron atoms in plasmas. From the statistical theory of
the many-electron-atom structure, we constructed a contin-
uous CR model that has only two atom-specific energy
scales as parameters, ε0 and σ . From this model, the pop-
ulation distribution in highly excited states was found to be
Boltzmann-like, but with excitation temperature sometimes
smaller than the electron temperature. We also clarified that
there are different phases depending on values of ne and Te

and derived analytical representations of the boundaries.
Some of our findings can be directly used for plasma

diagnostics. For example, the Boltzmann method has been
frequently used to estimate Te, based on the slope of the
population distribution and the assumption of the saturation
phase and, therefore, the applicability of this method has been
limited only to high-density plasmas. However, as can be
seen in Fig. 5, if Tex < ε0/2k, then Tex ≈ Te can be inferred.
This clearly shows much wider applicability of the Boltzmann
method for low-temperature plasmas. This property also en-
ables us to use a temperature diagnostic using line intensity
statistics, which was proposed in Ref. [32]. By contrast, if
Tex � ε0/2k, then the inference of Te may be difficult without
knowing ne.

For highly charged ions in low-density and high-
temperature plasmas, such as heavy ions in tokamak core
plasmas or in electron-beam ion traps, the population is
mostly concentrated in the low excited states, to which our
model is not applicable. However, our finding in Eq. (39) may
still be useful to estimate the cascade contribution from very
highly excited states, which is difficult to consider from first
principles, since there is an infinite number of possible levels.

In this work, we only compared our model with another
simulation model, FAC. Comparison with experimental obser-
vation is desirable; however, because of the difficulty in the
level identification and accurate computation of the transition
rates for highly excited states, it is not available at the current
stage. We leave it for future studies.

In principle, our CCRM could be further developed
to include additional atomic structure data, such as more
sophisticated line-strength functions, based on individual or-
bitals within the statistical theory of many-body quantum
chaos [52]. While this would not add significant computa-
tional overhead, the simplicity of our current formulation,
Eq. (14), allows for analytical exploration of the effective
excitation temperature through phase space.
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FIG. 10. Diagrams illustrating the population kinetics of (a) H-like ions studied by Fujimoto [33] (see also Appendix A) and (b) a many-
electron atom, which is investigated in this work, in ionizing plasmas. The electron temperature is set to Te = χ/k, where χ is the first
ionization energy. The lower-density side in (a) is called the corona phase, where the dominant population process of an excited state is
electron-impact excitation from the ground state, and the depopulation process is spontaneous decay. The higher-density region is called the
LTE phase (or saturation phase), where the dominant population and depopulation processes are electron-impact excitation from the next lower
level and to the next higher level, respectively. The population distribution in this region becomes np/gp ∝ p−6 [Eq. (A6)], where p indicates
the principal quantum number of H-like ions. The density boundary [Eq. (34)] is shown by the gray line. On the higher-density side in (b),
the population distribution is close to the Boltzmann distribution. The dominant population process is deexcitation from higher levels, and the
dominant depopulation process is the excitation to higher levels. The lower-density side in (b) is called the cascade phase, where the dominant
population process is radiative decay from higher levels, and the dominant depopulation process is radiative decay to lower levels. Even in
the lower-density region, the population distribution of many-electron atoms is similar to the Boltzmann distribution, but with the excitation
temperature Tex ≈ ε0/2k, which is independent of Te and ne. The density boundary [Eq. (40)] is shown as a solid vertical line. The dashed
vertical line indicates another density boundary based on the excitation temperature, where Tex = 0.9Te [Eq. (41)] is satisfied.
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APPENDIX A: POPULATION KINETICS OF H-LIKE IONS
IN PLASMAS

The study of CR models was started from the simplest
atoms, H- and He-like ions [33,42,56–58]. It was expanded to
analyze more complex ions and molecules as detailed calcula-
tion of the atomic and molecular structure became available.

For H and other simple ions such as He or alkali metals,
the population kinetics has been understood systematically
by Griem and Fujimoto [21,33]. As shown in Fig. 10(a),
they clarified the existence of two typical phases for ionizing
plasmas. The analytical representation of the boundary has
been also studied. Here, we briefly summarize their works.

The line strength of an H-like atom is known to have the
following asymptotic dependence [59,60]:

Spq = 26

√
3π

p−3q−3(p−2 − q−2)−4z−2e2a2
0gbb, (A1)

where z is the nuclear charge of the H-like ion and gbb is the
bound-bound Gaunt factor, which is close to 1. Although in
Eq. (2), p and q should represent any states, and they are not
necessarily quantum numbers, only in this section, we assume

p and q to correspond to the principal quantum numbers for
H-like ions.

In the low-density limit of ionizing plasmas, the population
is more concentrated on the ground state, because of the strong
population flow to lower levels by spontaneous transitions.
Therefore, collisional excitation from the ground state is the
dominant population process for excited states. In this case,
C in and Aout can be written as follows:

C in ≈ Cp←1nen1

≈ 1

g1

βne√
kTe

exp
[
−ωp1

kTe

]
S1p

≈ 1

2

βne√
kTe

p−3z−2 exp
(
−ωp1

kTe

) 26

√
3π

e2a2
0 (A2)

and

Aout ≈
∑
q<p

Aq←pnp

≈
∑
q<p

γ
1

gp
ω3

pqSpqnp

≈ 0.7
3

25
γ E3

H p−4.5z−4 26

√
3π

e2a2
0np (A3)

Here, we substituted Eq. (A1) into Eqs. (3) and (5) and as-
sumed p � 1 and log p ≈ 0.7p0.5 [33]. From the flux balance
C in ≈ Aout, the population at state p can be written as follows:

np/gp ∝ p−0.5. (A4)

In high-density plasmas, the dominant population process
becomes electron-impact excitation from the next lower level,
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TABLE II. List of configurations to simulate the atomic structure
using the FAC. The notation of n*m indicates the use of all possible
orbital combinations of m electrons in the shell with the principal
quantum number n.

Kr IX Fe I Fe II

3d10 3d8 3d7

3d8 4*2 3d64s2 3d54s2

3d64s4p 3d54s4p
3d64s4d 3d54s4d
3d64s4 f 3d54s4 f

3d84s 5*1 3d64s 5*1 3d54s 5*1
3d94s 4*1 3d7 4*1 3d6 4*1

3d7 5*1 3d6 5*1

and the dominant depopulation process is electron-impact ex-
citation to the next higher level:

Cp+1←pnenp ≈ Cp←p−1nenp−1 ≈ (const). (A5)

This leads to np ∝ (Cp+1←p)−1, and thus [33]

np/gp ∝ p−6. (A6)

In this phase, the population distribution does not depend on
ne. We call this the saturation phase.

The transition boundary between the corona and saturation
phases may be defined when the dominant outflux changes
from spontaneous transition to electron-impact excitation,∑

q<p

Aq←p ≈ Cp+1←pne, (A7)

which leads to [21,23,33] Eq. (34). A schematic diagram of
the population kinetics is shown in Fig. 10(a).

APPENDIX B: FAC COMPUTATION

In this section, we show the detailed setup for the atomic
structure calculation using the FAC.

The FAC utilizes the configuration interaction method,
where a many-body wavefunction is approximated by a linear
combination of single-body wavefunctions. In principle, more
basis wavefunctions give better accuracy. Table II shows the
configurations used to simulate the atomic structure of Fe I,
Fe II, and Kr IX. The total numbers of the basis functions for
Fe I, Fe II, and Kr IX are 5427, 6997, and 3489, respectively.

The configuration interaction method should converge to
the true value if we include an infinite number of basis wave-
functions with any arbitrary central potential. However, in
reality, we may need to tune the potential. We tune them, so
that some of the computed low-lying levels and the ionization
potential match to those data compiled in the NIST ASD.
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