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Persistent random walks of charged particles across magnetic field lines
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We investigate the time evolution of the mean location and variance of a charged particle subject to random
collisions that are Poisson distributed. The particle moves on a plane and is subject to a magnetic field applied
perpendicular to the plane, so it is constrained to move in circles in the absence of collisions. We develop a
procedure that yields analytic expressions of the mean and variance. These results are valid for arbitrary times
after the start of the walk, including early on when, on average, less than one collision is expected. As an example
of their applicability, we use these expressions to model experimental results and simulations of suprathermal
ions propagating in a turbulent plasma in TORPEX (the TORoidal Plasma EXperiment).
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I. INTRODUCTION

Transport of charged particles across magnetic field lines
is a classic problem in physics. Already in 1915, Townsend
[1] estimated diffusion coefficients of ions in gases. By the
1960s, experiments using magnetized low temperature plas-
mas had confirmed many theoretical predictions of diffusive
behavior, although only under restricted conditions [2]. This
prompted a series of investigations, like those of Taylor [3]
and Kurşunoğlu [4,5]. They obtained expressions for the mean
square displacement (MSD) of plasma particles across mag-
netic field lines in the limit of long times, t → ∞. In 1970,
Furuse [6] found more general expressions valid for all times.
Most of these studies used a Langevin [7–9] approach where
the dynamics of the particles is determined by the Lorentz
force, a random driving force (usually white noise [7,8,10])
and a friction term (usually the Stokes force [7]). However,
memory kernels that generalize friction can be introduced
[7,8] as well as non-Gaussian noise [8,9]. These ideas have
given rise to entire fields of research that are still actively
pursued.

One such field is fractional Lévy motion [11], which is
used in models of particle transport featuring a nondiffu-
sive character. In the TORoidal Plasma EXperiment [12,13]
(TORPEX), we have used this approach [8,14–16] to describe
transport of suprathermal lithium-6 ions across magnetic field
lines in a turbulent plasma. Through appropriate choices of
parameters, the Lévy motion models have been shown to re-
produce results from simulations and experiments [8,15] and
their evolution over extended periods of time in certain cases
[14], most recently by including truncation effects for particle
jumps [16].

In this work, we study transport without resorting to a
random forcing in the form of noise, a friction term, or a mem-
ory kernel. Instead, we use a persistent random walk [17–20]
(PRW) approach where particles feature continuous trajecto-
ries and finite propagation velocities that lead to correlations
in location at short time scales. The random dynamics arises
from random instantaneous velocity changes, or collisions,
which follow a Poisson distribution with constant rate. This

velocity jump process was studied by Othmer et al. [21] in
the context of biological dispersal, and by Masoliver and Lin-
denberg [22] in recent studies of the Telegrapher’s equation
in 2D. Here, however, we include an external force to account
for the effect of the magnetic field in the intercollision motion.
We use a method similar to the one developed in Ref. [20] to
obtain analytic expressions of particle location statistics, such
as the mean and the variance, valid for all times t � 0 of the
random walk. Different from Ref. [20], however, motion is not
1D. The higher complexity of the dynamics considered here
demands the development of specific analysis techniques.

We consider a 2D system of a charged particle moving on
a plane and a magnetic field applied perpendicular to it. The
particle is a random walker in a 2D PRW where collisions
are assumed to preserve the walker kinetic energy. These col-
lisions can model interactions with spatially or time-varying
electric fields, as described in later sections. They can also
model other situations, such as elastic interactions (such as
Coulomb) with particles of much larger or much lower mass
[23].

This paper is organized as follows. In Sec. II we describe
the model and the transport equation that determines the time
evolution of the system. In Sec. III, we obtain general expres-
sions for the mean and the variance of the walker location
along one axis of motion and then, in Sec. III C, we focus
on isotropic initial conditions and symmetric collisions. We
compute a complete analytic expression of the variance, valid
for all time. Together with results obtained for anisotropic
initial conditions (Sec. III D), we investigate the suitability of
the formalism to model suprathermal ion transport in TOR-
PEX (Sec. IV). A summary of the main results, as well as an
outlook of future studies, is given in the conclusions, Sec. V.

II. THEORETICAL FRAMEWORK

A. Transport equation

The walker is a particle of charge q and mass m moving
in a magnetic field, so it is subject to the Lorentz force.
The field B is applied in the z direction, perpendicular to
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FIG. 1. Depiction of the system dynamics at different times t1 <

t2 < t3. A particle with q < 0 moves in the xy plane subject to
Bz > 0. At t1 the particle has velocity v(t1) and follows a circular
trajectory (light gray dotted line). A collision occurs at time t2 which
instantaneously changes the direction of motion by a random angle
�. The particle then follows a different circular trajectory (dark gray
dotted line) that takes it to a new location at t3.

the plane of motion xy, so that the walker dynamics is 2D
(Fig. 1) and can be well described by a location r = (x, y)
and a velocity v = (vx, vy). There are no special locations or
directions in xy, so the underlying space where motion takes
place is homogeneous and isotropic. Collisions do not change
the magnitude of v and are assumed to generate instantaneous
velocity changes with no z component.

The existence of collisions makes the walker location ran-
dom. Let p(r, t ) be the probability density function (PDF) of
the random location ρ(t ) = (χ (t ), ψ (t )) of the particle at time
t in the xy plane. Furthermore, let p(r, v, t ) be the PDF of the
walker location and velocity. We note that

p(r, t ) =
∫

p(r, v, t ) dvx dvy ≡
∫

p(r, v, t ) dv.

For collisions which are distributed Poisson(t/τ ) with con-
stant mean collision time τ , one can generalize the transport
equation in Ref. [20] to(

∂

∂t
+ v · ∇r + a · ∇v + γ

)
p(r, v, t )

= γ

∫
f (u, v) p(r, u, t ) du, (1)

where the symbols ∇r and ∇v are shorthand for (∂/∂x, ∂/∂y)
and (∂/∂vx, ∂/∂vy), respectively, γ ≡ 1/τ is the collision
rate, and f (u, v) is a kernel giving the probability that, upon
a collision, a walker moving with velocity u transitions to a
velocity v. Similarly as in Ref. [20], f needs to fulfill the
normalization condition

∫
f (u, v) dv = 1 for all u to conserve

probability. We note that, in general, f (u, v) is not invari-
ant under the exchange u ↔ v (see, for example, Sec. 3 in
Ref. [20]). The acceleration a is given by a = (q/m) v × B =
v × (� ẑ), where

� = q

m
Bz, (2)

and ẑ is the unitary vector in the direction of z (perpendicular
to the xy plane). The values of q and Bz can be negative,
so Eq. (2) allows in general for negative values of �. The
quantity |�|/2π is the cyclotron frequency of the particle.

In all that follows, it is convenient to change the velocity
coordinates to the polar representation

v = (vx, vy) = v (cos(β ), sin(β )),

while nevertheless keeping Cartesian coordinates for position
(Fig. 1). A straightforward calculation then shows that

a · ∇v = −�
∂

∂β
, (3)

independent of v.
In a collision (Fig. 1), a velocity u = u (cos(η), sin(η))

transitions to v by changing the original direction η by a ran-
dom angle � such that β = η + �. The angle � is distributed
h(φ), with φ ∈ (−π, π ]. The PDF h must fulfill certain con-
ditions (see Sec. II B) but is otherwise arbitrary. The collisions
do not alter the speed, so v = u. Then

f (u, v) = 1

v
δ(v − u) h(β − η) = 1

v
δ(v − u) h(φ),

noting that
∫

f (u, v) dv = ∫∫
f (u, v) v dv dβ = 1 for all u,

as required. With this definition of f , the right hand side
(RHS) of Eq. (1) becomes∫

f (u, v)p(r, u, t )du

=
∫ π

−π

h(φ)p(r, v cos(β − φ), v sin(β − φ), t )dφ. (4)

The Lorentz force and the collisions do not change v, so
v is expected to remain constant throughout the walk. We use
the ansatz

p(r, v, t ) = p(r, β, t )
δ(v − v0)

v
(5)

in Eq. (1), replace the results in Eqs. (3) and (4), multiply both
sides by v, and integrate throughout the velocity space to find
the transport equation(

∂

∂t
+ v0 cos(β )

∂

∂x
+ v0 sin(β )

∂

∂y
− �

∂

∂β
+ γ

)
p(r, β, t )

= γ

∫ π

−π

h(φ) p(r, β − φ, t ) dφ (6)

that determines the time evolution of the probability p(r, β, t ),
which does not depend on v. The speed v0 > 0 of the particle
is now a constant parameter. We use initial conditions of the
form

p(r, β, t )|t=0 = g(r) d (β ), (7)

where g and d are PDFs in 2D position space and angle,
respectively. The initial direction of motion, distributed d , is
therefore assumed to be independent [24] of the random initial
location ρ0 = (χ0, ψ0), distributed g.
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B. Transforms

The function p(r, β, t ) is periodic in β, so it can be ex-
pressed [25] as

p(r, β, t ) =
∞∑

n=−∞
pn(r, t ) eı n β

with pn(r, t ) = 1

2π

∫ π

−π

p(r, β, t ) e−ı n β dβ. (8)

Furthermore, we assume that p(r, β, t ) can be Fourier
transformed in r and Laplace transformed in t , according to

p(r, β, t )
F−→ p(κ, β, t ) ≡

∫ ∞

−∞
p(r, β, t ) e−ı κ· r dr,

p(r, β, t )
L−→ p(r, β, s) ≡

∫ ∞

0
p(r, β, t ) e−s t dt,

where κ = (κx, κy) and s are the conjugate variables of the
transforms, so that

p(r, β, t )
F ,L−−→ p(κ, β, s) =

∞∑
n=−∞

pn(κ, s) eı n β. (9)

Using these definitions, we Fourier and Laplace transform
Eq. (6). We then use Eq. (9) to expand p(κ, β, s) and obtain
(see Appendix A for details)

g(κ) dn = (s − ı n� + γn) pn(κ, s)

+ v0

2
(ıκx + κy) pn−1(κ, s)

+ v0

2
(ıκx − κy) pn+1(κ, s), (10)

for all n ∈ Z, where

dn = 1

2π

∫ π

−π

d (β ) e−ı n β dβ,

γn = γ

(
1 −

∫ π

−π

h(φ) e−ı n φ dφ

)
, (11)

assuming that the integrals in the last expressions exist. Eval-
uation at κ = (0, 0) ≡ 0 leads to

pn(κ, s)|κ=0 = dn

s − ı n� + γn
(12)

since g(κ)|κ=0 = ∫
g(r) dr = 1 (as g is a PDF). Since

d0 = 1/(2π ) and γ0 = 0 (h is also a PDF), evaluation
of Eq. (12) at n = 0 yields pn(κ, s)|κ=0, n=0 = 1/(2πs),
which implies

∫
p(r, v, s) dr dv = ∫

p(r, β, s) dr dβ =
2π pn(κ, s)|κ=0, n=0 = 1/s or, performing the inverse
Laplace transform,

∫
p(r, v, t ) dr dv = 1. Thus probability is

conserved for all t � 0.
The transformed function pn(κ, s) allows us to compute

exact analytic expressions for the moments of χ (t ) without
inverse transforming to the original (r, v) space [20,24]. For

example,

∂

∂κx
pn(κ, s)

∣∣∣κ = 0
n = 0

= ∂

∂κx

(
1

2π

∫
p(r, β, s) e−ı (κ· r+n β ) dr dβ

)∣∣∣∣κ = 0
n = 0

= − ı

2π

∫
x p(r, β, s) dr dβ

= − ı

2π

∫
x p(r, β, s)

δ(v − v0)

v
dr v dv dβ

= − ı

2π

∫
x p(r, v, s) dr dv = L

{
− ı

2π
μχ (t )

}
,

where μχ (t ) is the mean value of the walker location along
x. We can compute the second derivative in a similar way and
obtain

μχ (t ) = L−1

{
2π ı

∂

∂κx
pn(κ, s)

∣∣∣κ = 0
n = 0

}
,

σ 2
χ (t ) = L−1

{
−2π

∂2

∂κ2
x

pn(κ, s)
∣∣∣κ = 0
n = 0

}
− [μχ (t )]2 (13)

for the mean and variance of the particle location along x.
Similar results are found for moments of ψ (t ), such as the
mean location along y or the variance, by instead performing
the derivatives with respect to κy. Higher order moments of
χ (t ), such as the skewness and kurtosis, can be computed in
similar ways.

III. MEAN AND VARIANCE OF WALKER LOCATION

A. General expression for mean

We now differentiate Eq. (10) with respect to κx and eval-
uate at κ = 0. Rearranging terms, we obtain

∂

∂κx
pn(κ, s)|κ=0

= − ı μχ0 dn

s − ı n� + γn

− ı v0 [pn−1(κ, s)|κ=0 + pn+1(κ, s)|κ=0]

2 (s − ı n� + γn)
. (14)

Here, μχ0 = ∫
x g(r) dr = 〈χ0〉, the average initial posi-

tion in x. Upon evaluating at n = 0 and using Eq. (12) to
evaluate pn(κ, s)|κ=0,n=±1, we use Eq. (13) to obtain

μχ (t ) − μχ0 = L−1

{
v0

s
Re

(
2π d1

s − ı � + γ1

)}
. (15)

In this equation, Re(·) is the real part of the expression
in parentheses without considering s as a complex variable.
Then, for example, Re(s + ı �) = s (since � is real). In gen-
eral, d1 and γ1 may have a nonzero imaginary part, so the
evaluation of Eq. (15) may be nontrivial when � = 0.
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B. General expression for variance

We differentiate Eq. (10) a second time with respect to κx

and evaluate at κ = 0. Rearranging terms,

∂2

∂κ2
x

pn(κ, s)|κ=0

= −
(
σ 2

χ0
+ μ2

χ0

)
dn

s − ı n� + γn

− ı v0
[

∂
∂κx

pn−1(κ, s)|κ=0 + ∂
∂κx

pn+1(κ, s)|κ=0
]

s − ı n� + γn
,

where σ 2
χ0

is the variance of χ0, the initial location in x. We
then evaluate this expression at n = 0, using Eqs. (12) and
(14) to find the value of the derivatives on the RHS. Finally, we
use Eq. (13) to obtain the general expression for the variance
of the walker:

σ 2
χ (t ) − σ 2

χ0
+ [μχ (t ) − μχ0 ]2

= L−1

{
v2

0

s2
Re

[
1

s − ı � + γ1

(
1 + 2π d2 s

s − ı 2� + γ2

)]}
.

(16)

The function Re(·) follows the same convention as in Eq. (15).
As a straightforward example of the applicability of

Eq. (16), we consider a case with no B field but γ 
= 0. Every
time the particle undergoes a collision, it reverses its direction
of motion, h(φ) = δ(φ − π ). The initial location is x = 0 with
complete certainty, so g(r) = δ(r), and the initial direction of
motion is parallel to the x axis and with equal probability of
going either side, d (β ) = (1/2)[δ(β ) + δ(β − π )]. Using the
definitions in Sec. II B, one can establish the values of the
different parameters appearing in Eqs. (15) and (16), such
as � = 0, d1 = 0, d2 = 1/(2π ), γ1 = 2γ , γ2 = 0, μχ0 = 0,
and σ 2

χ0
= 0. Equation (15) then straightforwardly leads to

μχ (t ) = 0 for all t � 0. Equation (16) leads to

σ 2
χ (t ) = L−1

{
v2

0

s2
Re

(
2

s + 2γ

)}

= v2
0

2γ 2
[(2γ t − 1) + e−2γ t ] ,

a result consistent with expected results in 1D PRW [20,21].

C. Isotropic initial conditions and symmetric collisions

In certain situations, all directions of motion on the xy
plane are equally probable at t = 0. These isotropic initial
conditions can be modeled by choosing

d (β ) = 1

2 π
for all β ∈ (−π, π ] . (17)

A direct computation shows that this choice of d yields
dn = 0 for all n 
= 0. Equation (15) then shows that μχ (t ) =
μχ0 for all t � 0, independent of the B field, collisions, and h.

If h(φ) = h(−φ) for all φ ∈ (−π, π ), collisions are sym-
metric, having equal probabilities of deviating the trajectory to
either side with respect to the precollision direction of motion.

In that situation, Eq. (11) leads to Im(γ1) = 0. For example, if

h(φ) =
{ 1

2 φM
if φ ∈ (−φM, φM ),

0 otherwise,
(18)

where φM ∈ (0, π ) is a constant parameter, then

γ1 = γ

(
1 − sin(φM )

φM

)

≈ γ φ2
M

6
(if φM < 1). (19)

The last line is an approximation when scattering angles
are small. In that case, there can be an interpretation of γ1 as
an angle change (squared), due to collisions, per unit time. A
larger value of γ1 can be obtained by either an increase in γ or
larger φM . On the contrary, if φM → π (isotropic postcollision
direction PDF), then γ1 → γ .

Assuming isotropic initial conditions and symmetric colli-
sions, Eqs. (15) and (16) yield

σ 2
χ (t ) − σ 2

χ0
= L−1

{
v2

0

s2
Re

(
1

s + γ1 − ı �

)}

= v2
0 γ1

γ 2
1 + �2

t + v2
0

�2 − γ 2
1(

γ 2
1 + �2

)2

+ v2
0 e−γ1t(

γ 2
1 + �2

)2

[(
γ 2

1 − �2
)

cos(� t )

− 2 �γ1 sin(� t )
]
. (20)

This expression is independent of the sign of �.
In the limit γ1t � 1, Eq. (20) leads to diffusive behav-

ior characterized by σ 2
χ ∼ tλ with λ = 1. Indeed, σ 2

χ (t )/t ≈
(v2

0 γ1)/(γ 2
1 + �2), as expected from the known result by

Taylor [3]. At early times of the walk, when t � |�|−1 and
t � γ −1

1 , σ 2
χ (t ) ≈ σ 2

χ0
+ (v2

0/2) t2. Provided σχ0 � v0/|�|,
the motion will instead be ballistic, with λ = 2.

In the case of no collisions (γ = 0), Eq. (20) shows
that σ 2

χ (t ) = σ 2
χ0

+ (v0/�)2[1 − cos(� t )], a nondecaying os-
cillatory motion with angular frequency �. If, instead,
we take Bz = 0 but γ1 
= 0, then we obtain σ 2

χ (t ) =
σ 2

χ0
+ (v0/γ1)2[(γ1t − 1) + e−γ1t ], similar to 1D PRW (see

Sec. III B) but at a slightly slower pace (notice the different
factor preceding the square brackets). The case γ = 0, Bz =
0, can be computed as a limiting situation of Eq. (20), but
is easier to obtain from Eq. (16). It yields σ 2

χ (t ) = σ 2
χ0

+
(v2

0/2) t2, identical in value to early stages of the walk at
arbitrary γ1 and Bz (as seen before), but valid for all time
t � 0.

If Bz 
= 0, Eq. (20) can be used to express (�2/v2
0 )[σ 2

χ (t ) −
σ 2

χ0
] in terms only of � t and γ1/�. This means that the

functional form of the time evolution only depends on the ratio
of γ1 to � and not on the individual values. Figure 2 shows
the evolution of the variance for different γ1/�. Whenever
γ1/|�| � 1, oscillations occur up to |�| t ≈ 3 |�|/γ1 with no
significant increment of the amplitude. Then, the variance
transitions to having a linear dependency with time [20], re-
covering the diffusive behavior expected from the preceding
discussion. When γ1/|�| � 1, no oscillations are visible and
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FIG. 2. Evolution of σ 2
χ (t ) for different values of γ1/�.

an initial slope of value 2 (ballistic) in the plot transitions
smoothly to 1 (diffusive).

Interestingly, given a particular choice of γ1/�, the long
term value of (�2/v2

0 ) σ 2
χ (t ) is approximately equal to the one

obtained using the reciprocal, (γ1/�)−1. This is because(
�2

v2
0

)
σ 2

χ (t )
γ1t�1−→ �2 γ1

γ 2
1 + �2

t = (γ1/�)

1 + (γ1/�)2
(� t )

= (�/γ1)

(�/γ1)2 + 1
(� t ).

Then, whenever γ1 = |�|, one obtains a maximum vari-
ance [3] for given � and v0. This result can be verified in
Fig. 2 in the region where |�| t � 10. All these results are
in good agreement with numerical simulations performed in
MATLAB (see Appendix B).

D. Anisotropic initial conditions and isotropic collisions

Collisions become isotropic by letting φM → π in
Eq. (18). Equation (11) then shows that γn = γ for all n 
= 0.

We now consider anisotropic initial conditions generated
with a von Mises [26] distribution, defined as

d (β; β0, c) = ec cos(β−β0 )

2π I0(c)
,

with mean angle β0 and width set by the parameter c � 0.
In is the modified Bessel function of the first kind [25] of
order n � 0. If c = 0, then we recover an isotropic distribution
[Eq. (17)]. If c � 1, then d (β; β0, c) is approximately Nor-
mal with mean β0 and variance 1/c. From the characteristic
function [26] it is straightforward to show that

dn = In(c)

2π I0(c)
e−i n β0 ,

valid for n � 0.
Replacing γ1 and d1 in Eq. (15) leads to a complicated

analytic expression for the mean of χ for arbitrary values of
β0. Evaluation at β0 = 0 yields an example with the simpler
expression

μχ (t ) − μχ0 = I1(c)

I0(c)

v0

γ 2 + �2
{� e−γ t sin(� t )

+ γ [1 − e−γ t cos(� t )]}.

FIG. 3. Evolution of σ 2
χ (t ) for γ /� = 0.1 and different values of

the width parameter c. Solid lines correspond to β0 = 0 and dotted
lines to β0 = π/2 (same color coding). The case c = 0 yields an
isotropic result compatible with the model of Sec. III C. Notice the
large slope at |� t | � 1 for the curves with c � 10.

The case c = 0 recovers μχ (t ) = μχ0 as expected from
Sec. III C.

The situation is still more complicated for the variance.
Replacement of γ1, γ2, d2, and μχ (t ) in Eq. (16) yields ana-
lytic results that are cumbersome to present explicitly. Results
assuming γ /� = 0.1 are nevertheless plotted in Fig. 3 for
β0 = 0, π/2, where the biases in initial direction are seen to
have an impact on the evolution of σ 2

χ . Interestingly, transport
can behave supraballistically, with σ 2

χ ∼ t3, in certain situa-
tions. For example, the trace for c = 100, β0 = 0, is seen to
have a slope ≈3 in 0.1 � |�| t � 1, which in this log-log plot
(Fig. 3) establishes a t3 dependency of the variance in that
interval. Taylor-expanding the analytic expression of σ 2

χ (t )
near t = 0 (not shown) indeed verifies this observation.

The reason for the supraballistic behavior is likely a dif-
fusion of velocities along x caused by early collisions, as
explained in Ref. [20]. The effect is more clearly seen at large
values of c since, for those cases, the distribution of initial
velocities has smaller width.

IV. APPLICATION OF MODEL TO SIMULATIONS OF
SUPRATHERMAL IONS IN TORPEX

A. Suprathermal ion studies in TORPEX

As an example of application of the results of Sec. III, we
consider the case of suprathermal ion transport in TORPEX
(Fig. 4).

TORPEX [12,13] is a basic toroidal plasma physics device
located at the Swiss Plasma Center in Lausanne, Switzerland,
of major radius 1 m and minor radius 20 cm. In the typi-
cal simple magnetized torus (SMT) configuration, where a
small vertical field Bv ≈ 2 mT is superposed on a dominant
toroidal field Bφ ≈ 74 mT, hydrogen plasmas of densities
ne = 1015–1017 m−3, electron temperatures Te ≈ 1–5 eV, and
plasma potentials Vp = 10–20 V are produced which exhibit
turbulent behavior [27]. Plasma structures, elongated along
the B field, can detach from the main plasma and propagate
radially outward [13,28,29], giving rise to so-called “blobs.”
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FIG. 4. Suprathermal ions in TORPEX. We use a magnetic con-
figuration with open helical lines (depicted with the solid purple
line). Lithium-6 ions are injected in a turbulent hydrogen plasma
using a miniature source. As they propagate, the ions spread in the
perpendicular direction (xy plane). A detector measures the ions
arriving at different (x, y) locations. The toroidal distance between
source and detector can be changed to resolve different propagation
times.

In these conditions, a beam of lithium-6 ions (6Li +) is
injected with an energy much larger than Te (see Fig. 4). These
suprathermal ions have no effect on the plasma or the fields
(they act as tracers). They propagate mostly parallel to the he-
lical B-field lines, but the existence of a nonzero curvature and
∇B leads them to drift across field lines. Furthermore, the ions
interact with the electric field produced by the fluctuating Vp.
Plasma structures are B field aligned [13], so Vp has negligible
gradients parallel to the field. The 6Li + are then subject to
a fluctuating force that affects their perpendicular motion and
leads to 2D transport on the xy plane (Fig. 4).

Extensive studies [8,13,15] of this setup have been per-
formed experimentally and with simulations. The simulations
use the GBS code [30] to generate the turbulent electric
field where particles are traced. The results show nondiffu-
sive perpendicular transport features which change with 6Li +
propagation time and with ion injection energy.

B. Simulations and PRW model

The PRW formalism developed in Secs. II and III can
be used to model the perpendicular motion of the 6Li + by
replacing the effect of the fluctuating potential with random
changes in direction on xy. Since the model assumes a con-
stant B field perpendicular to xy, we look only at location
statistics along x to avoid complications arising from the
drifts (directed along y; see Fig. 4) caused by the 3D spatial
variation of B. Furthermore, the model assumes no changes in
ion kinetic energy, even though some heating may occur due
to large electric field gradients [31]. 3D effects arising from
plasma variations along B-field lines are also neglected, since
they are expected not to be important (see Sec. IV A). The
formalism is admittedly a simplification, but it does capture
some of the main features of experiments and GBS simulation
results, as described next.

We consider preexisting and well analyzed experimental
data and simulations [8,13,15] of suprathermal ions with in-
jection energies ≈30 eV and ≈70 eV. In both cases, the
injection is performed at an angle of 5.7o ± 4.6o with respect

FIG. 5. PRW model (lines), experimental data (squares), and
GBS simulations (bands) of 6Li + location variance (along x) for
30 eV (top) and 70 eV (bottom). Data error bars are the 1σ uncer-
tainties corresponding to the square of the 1σ errors in Refs. [8,15].
Dashed lines correspond to isotropic initial conditions and solid lines
to injection biased in the +x direction. See text for a discussion on
parameter values. Initially, transport is ballistic with λ ≈ 2, while
at long times (|�| t � 100) it is diffusive (λ ≈ 1). A subdiffusive
(λ < 1) regime is observed in the 70 eV case in the region between
vertical dotted lines.

to the B-field lines. The angle spread, as well as variations in
the initial energy, give rise to a spread in initial perpendicular
velocities.

Figure 5 shows experimental data of measured variance
against |�|t . The value of σ 2

χ and the error bars are com-
puted as the square of the measurements of 6Li + ion beam
width versus toroidal propagation distance (i.e., separation be-
tween source and detector) in Refs. [8,15]. The initial location
spreading σ 2

χ0
≈ (0.3 cm)2 = 0.09 cm2 is determined from the

same observations. The mapping to |�|t is performed using
�/2π = 188 kHz [8,15] and 6Li + velocities 4.70 × 104 m/s
and 3.08 × 104 m/s in the direction parallel to B, for 70 eV
and 30 eV, respectively. There is a small uncertainty in the
average value of |�|t of the ions detected at a given detector
distance, due mainly to the spread in experimental injection
energies [8], which is estimated to be <5%. Figure 5 also
shows the GBS-simulated evolution of the spreading of 6Li +
along x for the two injection energies. The shaded bands repre-
sent ranges of simulation results consistent with experimental
uncertainties.

To model the 30 eV case (see Fig. 5), we choose γ1/� =
0.6 (see Sec. III), as it exhibits a rapid transition between bal-
listic (σ 2

χ ∼ t2) and diffusive (σ 2
χ ∼ t) regimes. With isotropic

initial conditions (Sec. III C), a value v2
0/�

2 = 0.13 cm2

yields good agreement with experiments. Compared to the
simulations there is, however, an initial overestimation of the
variance that can be reduced by assuming an injection biased
in the +x direction (c = 1.8, γ /� = 0.6, Sec. III D). This
choice cannot reproduce the simulated variance oscillations at
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times 3 � |�| t � 30. Actually, no choice of parameters was
found that could accomplish this, suggesting that the simplic-
ity of the PRW model may make it unsuitable to capture this
effect in the 30 eV case.

To model the 70 eV simulations, we choose v2
0/�

2 =
0.39 cm2, consistent with the fact that these simulations in-
clude energies up to ≈75 eV, a factor of 3 larger than the
≈25 eV that can be found in the 30 eV case. We also choose
γ1/� = 0.03, as it allows for oscillations of σ 2

χ until |�|t ≈
100. The biased injection (with c = 1.8, γ /� = 0.016) yields
a better fit to the simulations than the isotropic one (Fig. 5),
especially at early times |�| t � 1, but both the isotropic and
biased cases capture the main features of the experimental
data, with a superdiffusive character at early times that be-
comes subdiffusive and, afterwards, progressively transitions
to diffusive.

A physical interpretation of these results can be made
by focusing on isotropic injection (Sec. III C). According to
Eqs. (11), (18), and (19), the value of γ1/� can be regarded,
approximately, as an average cumulative deflection angle per
gyrocycle, provided the deflection angle per collision is small
(�1). Then, the results above suggest that the effect of the
turbulent electric field on the transport of 6Li + ions may be
similar to a collection of random, small angle, changes in
direction with fixed total expected deflection per gyrocycle.
The higher value of γ1/� of the 30 eV case (see Fig. 5)
suggests a larger cumulative deflection compared to 70 eV,
an observation possibly consistent with gyroaveraging [8,15]
of Vp structures.

V. CONCLUSIONS

We have developed a 2D persistent random walk model
of a charged particle in a magnetic field. The particle is
subject to elastic collisions which are distributed Poisson with
constant rate.

Using a procedure similar to the one in Ref. [20], we obtain
general expressions for the mean and variance of the particle
location. The formalism developed in Secs. II and III can be
straightforwardly used to compute higher order moments if
desired. Under the assumption of isotropic initial conditions
and symmetric collisions (Sec. III C), we compute an exact
analytical expression of the variance (along the x axis), valid
for all time t � 0, that has been tested against numerical sim-
ulations (Appendix B). We also investigate anisotropic initial
conditions (with isotropic collisions, Sec. III D) and show that
differences in initial conditions can have an impact on the
properties of transport.

The results are used to model the time evolution of the
variance in experiments and simulations of suprathermal ions
in TORPEX (Sec. IV B). The model is seen to capture the
main features of transport across magnetic field lines as well
as the evolution of the character of transport over time. While
other models based on Lévy motion [14,16] can describe
asymmetrical and nondiffusive behavior in a single regime at
all times, the presented PRW model is successfully able to
incorporate a variety of transitions between different transport
regimes, while always converging to diffusion in the long term
limit. The PRW model therefore offers a consistent method to

describe transient nondiffusive transport, without the require-
ment of invoking non-Markovian or nonlocal assumptions.
The PRW and Lévy motion approaches can therefore comple-
ment each other, depending on the specific system and time
frames under investigation.

The model has been developed in the context of plasma
physics and may find further applications in this field, for ex-
ample, in studies of particle confinement in tokamaks. It may
also be relevant in studies of any 2D system where particles
undergo random elastic collisions and in biology, for example,
in studies of cell motion [32].

ACKNOWLEDGMENTS

This work has been carried out within the framework of
the EUROfusion Consortium and has received funding from
the Euratom research and training programme 2014–2018 and
2019–2020 under Grant Agreement No. 633053. The views
and opinions expressed herein do not necessarily reflect those
of the European Commission. This work was supported in part
by the Swiss National Science Foundation.

APPENDIX A: TRANSFORMING THE TRANSPORT
EQUATION

The Fourier and Laplace transform of Eq. (6) yields

(
s + ı κxv0 cos(β ) + ı κyv0 sin(β ) − �

∂

∂β
+ γ

)
p(κ, β, s)

= g(κ) d (β ) + γ

∫ π

−π

h(φ) p(κ, β − φ, s) dφ. (A1)

The first term on the RHS corresponds to the initial conditions
appearing from the transform of (∂/∂t ) p(r, β, t ).

The function p(κ, β, s) can be expressed as a Fourier series
[Eq. (9)]. Replacing it in Eq. (A1) yields, first,

[ı κxv0 cos(β ) + ı κyv0 sin(β )] p(κ, β, s)

=
∞∑

n=−∞
pn(κ, s) [ı κxv0 cos(β ) + ı κyv0 sin(β )] eı n β

= v0

2

∞∑
n=−∞

pn(κ, s)(ı κx + κy)eı(n+1)β

+ v0

2

∞∑
n=−∞

pn(κ, s)(ı κx − κy)eı(n−1)β

= v0

2

∞∑
n=−∞

pn−1(κ, s)(ı κx + κy)eı nβ

+ v0

2

∞∑
n=−∞

pn+1(κ, s)(ı κx − κy)eı nβ. (A2)
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The third line follows from the basic identities cos(β ) =
(1/2)(eıβ + e−ıβ ) and sin(β ) = (1/2 ı)(eıβ − e−ıβ ). Next,

�
∂

∂β
p(κ, β, s) =

∞∑
n=−∞

pn(κ, s)

(
�

∂

∂β

)
eı nβ

=
∞∑

n=−∞
pn(κ, s)(ı n �)eı nβ, (A3)

where we have assumed that it is possible to differentiate the
series term by term. A similar assumption is made for the sec-
ond term on the RHS of Eq. (A1), this time regarding the
integrals. We have

γ

∫ π

−π

h(φ) p(κ, β − φ, s) dφ

= γ

∫ π

−π

h(φ)

[ ∞∑
n=−∞

pn(κ, s) eın(β−φ)

]
dφ

=
∞∑

n=−∞
pn(κ, s)

(
γ

∫ π

−π

h(φ) e−ınφ dφ

)
eı nβ, (A4)

which, together with Eqs. (A2) and (A3) and using the ex-
pansion of d (β ) in a Fourier series [Eq. (11)], leads to the
complete expanded form of Eq. (A1):

0 =
∞∑

n=−∞

[
(s − ı n � + γn) pn(κ, s) + v0

2
(ıκx + κy) pn−1(κ, s)

+ v0

2
(ıκx − κy) pn+1(κ, s) − g(κ) dn

]
eı n β.

Here γn is defined as in Eq. (11). This series can only yield
zero if all the coefficients accompanying the exponentials are
zero, so the term in brackets is zero for all n. This result is
equivalent to Eq. (10).

APPENDIX B: NUMERICAL TESTS

We test the main results of Sec. III C by comparing them
with numerical estimates obtained with a MATLAB code [20].
The code generates N = 105 initial conditions distributed g
and d , and uses them to integrate N random trajectories
with discrete time steps �t = [103 max(γ , |�|)]−1. For each
trajectory n = 1, 2, . . . , N , the location (xn(t ), yn(t )) and the
direction of motion βn(t ) is updated according to

xn(t + �t ) = xn(t ) + v0 �t cos[βn(t )],

yn(t + �t ) = yn(t ) + v0 �t sin[βn(t )],

βn(t + �t ) =
{
βn(t ) − ��t if no collision happens,
βn(t ) + �n if there is a collision.

(B1)

FIG. 6. Comparison between simulated (markers) and theoretical
(solid lines) values of (a) μχ (t ) and (b) σ 2

χ (t ) for different γ1/�

(colors as per legend). Different marker shapes represent different
choices of simulation parameters as described in the text. The purple
shading in (a) corresponds to the expected 1σ statistical uncertainty
area around the theoretical mean [μχ (t ) = 0] for the simulations
with γ1/� = 5.

The random angle �n is generated with a symmetric PDF
h as defined in Eq. (18). The motion is initially isotropic,
with d as in Eq. (17). We choose g to be 2D Normal [24]
with mean 〈ρ0〉 = 0, zero x-y correlation (circular shape), and
σ 2

χ0
= σ 2

ψ0
= (10−4 v0/�)2. The estimation of the mean and

variance at time t is computed using the appropriate sample
statistics of the N locations at t . The implementation of Pois-
son collisions, the choice of �t , and more details of the code
are described in Ref. [20].

Figure 6 shows a comparison of simulation results (mark-
ers) to predictions based on the theory of Sec. III C (solid
lines). The purple x markers correspond to the simulation
parameters v0 = 10 m/s, � = 2π rad/s, γ = 31.42 s−1, and
φM = π , which lead to γ1/� = 5, blue triangles to v0 =
5 m/s, � = −5π rad/s, γ = 22.44 s−1, and φM = 3π/4
(for γ1/� = −1), blue-green crosses to v0 = 2 m/s, � =
8π rad/s, γ = 6.91 s−1, and φM = π/2 (for γ1/� = 0.1), and
yellow circles to v0 = 1 m/s, � = −11π rad/s, γ = 0.35 s−1,
and φM = π (for γ1/� = −0.01). These cases, which repro-
duce situations with differing transport features, show very
good agreement with the theoretical curves of the mean and
the variance along x.
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[5] B. Kurşunoğlu, Brownian motion in a magnetic field, Phys. Rev.
132, 21 (1963).

[6] H. Furuse, Influence of magnetic field on the Brownian motion
of charged particle, J. Phys. Soc. Jpn. 28, 559 (1970).

[7] R. F. Fox, Gaussian stochastic processes in physics, Phys. Rep.
48, 179 (1978).

[8] A. Bovet, Suprathermal ion transport in turbulent magnetized
plasmas, Ph.D. dissertation, École Polytechnique Fédérale de
Lausanne, Switzerland, 2015.

[9] V. Lisy and J. Tothova, Brownian motion of charged particles
driven by correlated noise in magnetic field, Trans. Theo. Stat.
Phys. 42, 365 (2013).

[10] L. C. Evans, An Introduction to Stochastic Differential Equa-
tions (American Mathematical Society, Providence, RI, 2013),
pp. 86–89.

[11] I. Calvo, R. Sánchez, and B. A. Carreras, Fractional Lévy mo-
tion through path integrals, J. Phys. A 42, 055003 (2009).

[12] A. Fasoli, I. Furno, and P. Ricci, The role of basic plasmas
studies in the quest for fusion power, Nat. Phys. 15, 872 (2019).

[13] I. Furno, F. Avino, A. Bovet, A. Diallo, A. Fasoli, K. Gustafson,
D. Iraji, B. Labit, J. Loizu, Müller, G. Plyushchev, M. Podesta,
F. M. Poli, P. Ricci, and C. Theiler, Plasma turbulence,
suprathermal ion dynamics and code validation on the ba-
sic plasma physics device TORPEX, J. Plasma Phys. 81,
345810301 (2015).

[14] A. Bovet, M. Gamarino, I. Furno, P. Ricci, A. Fasoli, K.
Gustafson, D. E. Newman, and R. Sánchez, Transport equation
describing fractional Lévy motion of suprathermal ions in TOR-
PEX, Nucl. Fusion 54, 104009 (2014).

[15] A. Bovet, A. Fasoli, P. Ricci, I. Furno, and K. Gustafson, Non-
diffusive transport regimes for suprathermal ions in turbulent
plasmas, Phys. Rev. E 91, 041101(R) (2015).

[16] F. Manke, M. Baquero-Ruiz, I. Furno, O. Chellaï, A. Fasoli,
and P. Ricci, Truncated Lévy motion through path integrals and
applications to nondiffusive suprathermal ion transport, Phys.
Rev. E 100, 052122 (2019).

[17] J. Masoliver, K. Lindenberg, and G. H. Weiss, A continuous-
time generalization of the persistent random walk, Physica A
157, 891 (1989).

[18] J. Masoliver, J. M. Porrà, and G. H. Weiss, Some two and
three-dimensional persistent random walks, Physica A 193, 469
(1993).

[19] J. Masoliver and K. Lindenberg, Continuous time persistent
random walk: a review and some generalizations, Eur. Phys. J.
B 90, 107 (2017).

[20] M. Baquero-Ruiz, F. Manke, I. Furno, A. Fasoli, and
P. Ricci, Particle transport at arbitrary timescales with
Poisson-distributed collisions, Phys. Rev. E 100, 052134
(2019).

[21] H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in
biological systems, J. Math. Biol. 26, 263 (1988).

[22] J. Masoliver and K. Lindenberg, Two-dimensional telegraphic
processes and their fractional generalizations, Phys. Rev. E 101,
012137 (2020).

[23] L. Conde, An Introduction to Plasma Physics and Its Space
Applications, Vol. 1 (Morgan and Claypool Publishers, London,
2018), pp. 5.5–5.9.

[24] A. Gut, Probability: A Graduate Course, 2nd ed. (Springer, New
York, 2013).

[25] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical
Methods for Physicists, 7th ed. (Academic Press, Waltham, MA,
2013).

[26] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions, 4th ed. (John Wiley and Sons, Hoboken, NJ,
2011).

[27] B. Labit, A. Diallo, A. Fasoli, I. Furno, D. Iraji, S. H. Müller,
G. Plyushchev, M. Podestà, F. M. Poli, P. Ricci, C. Theiler, and
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