
PHYSICAL REVIEW E 102, 053107 (2020)

Whittle maximum likelihood estimate of spectral properties of Rayleigh-Taylor interfacial
mixing using hot-wire anemometry experimental data
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Investigating the power density spectrum of fluctuations in Rayleigh-Taylor (RT) interfacial mixing is a means
of studying characteristic length, timescales, anisotropies, and anomalous processes. Guided by group theory,
analyzing the invariance-based properties of the fluctuations, our paper examines raw time series from hot-wire
anemometry measurements in the experiment by Akula et al. [J. Fluid Mech. 816, 619 (2017)]. The results
suggest that the power density spectrum can be modeled as a compound function presented as the product of
a power law and an exponential. The data analysis is based on Whittle’s approximation of the power density
spectrum for independent zero-mean near-Gaussian signals to construct a maximum likelihood estimator of
the parameters. Those that maximize the log-likelihood are computed numerically through Newton-Raphson
iteration. The Hessian of the log-likelihood is used to evaluate the Fisher information matrix and provide an
estimate of the statistical error on the obtained parameters. The Kolmogorov-Smirnov test is applied to analyze
the goodness of fit, by verifying the hypothesis that the ratio between the observed periodogram and the estimated
power density spectrum follows a χ 2 probability distribution. The dependence of the parameters of the compound
function is investigated on the range of mode numbers over which the fit is performed. In the domain where the
relative errors of the power-law exponent and the exponential decay rate are small and the goodness of fit is
excellent, the parameters of the compound function are clearly defined, in agreement with the theory developed
in the paper. The study of the power-law spectra in RT mixing data suggests that rigorous physics-based statistical
methods can help researchers to see beyond visual inspection.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) develops at the inter-
face between fluids with different densities accelerated against
their density gradient [1,2]. Intense interfacial Rayleigh-
Taylor (RT) mixing of the fluids ensues with time [1–7]. Its
dynamics is believed to be self-similar [1–7]. Particularly in
RT mixing induced by constant acceleration, the length scale
in the acceleration direction grows quadratically with time
[1–7]. RTI and RT mixings play important roles in a broad
range of processes in nature and technology [8–10]. Exam-
ples include supernovas, inertial confinement fusion, material
transformation under impact, and fossil fuel extraction [8–11].
The development of reliable methods of analysis of exper-
imental and numerical data is required to better understand
RT-relevant phenomena and to achieve a bias-free interpreta-
tion of the results [8,12,13].

There are several challenges in studying RTI and RT
mixings: the stringent requirements on the flow implementa-
tion, diagnostics, and control in experiments [8,12–17]; the
necessity to accurately capture interfaces and small-scale dis-
sipation processes in simulations [18–21]; and the need to
account for the nonlocal, multiscale, anisotropic, heteroge-
neous, and statistically unsteady character of the dynamics in
theory [3,4,12,22–24]. Furthermore, a systematic interpreta-

*david.pfefferle@uwa.edu.au
†Corresponding author: snezhana.abarzhi@gmail.com

tion of RT dynamics from data alone is not straightforward
and requires a substantial range of highly resolved temporal
and spatial scales [12–14].

Remarkable success was recently achieved in the un-
derstanding of the fundamentals of RT mixing [3,4,12].
Particularly, group theory analysis found that symmetries,
invariants, scaling, and spectral properties of RT mixing
may depart from those of isotropic homogeneous turbulence;
RT mixing may keep order due to its strong correlations,
weak fluctuations, and sensitivity to deterministic conditions
[3,4,12]. This theory explained experiments where the order
of RT mixing was preserved even at high Reynolds numbers
[6,15–17,23] and simulations where departures of RT dynam-
ics from canonical turbulent scenario were noted [18–21].

An important aspect of RT mixing that requires better
understanding is the effect of fluctuations on the over-
all dynamics [3,4,12]. The appearance of fluctuations in
RT flows is usually associated with shear-driven interfacial
vortical structures and with broadband initial perturbations
[3,4,6,12,13,15–17]. It is commonly believed that the former
may produce small-scale irregularities, the latter may enhance
the interactions of large scales, and that both may lead RT
flow to a self-similar state. Yet, we still need to identify the
very nature of fluctuations in RT mixing in order to accu-
rately quantify their properties. By confirming group theory
results, experiments [23] unambiguously found that in a broad
range of setups and Reynolds numbers up to 3.2×106, the
self-similar RT mixing is sensitive to deterministic—the ini-
tial and the flow—conditions. We, thus, need to determine
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whether in other experiments the fluctuations in RT mixing
are chaotic and are set by deterministic conditions, or whether
they are stochastic and independent of deterministic condi-
tions.

In this paper, the properties of RT mixing are studied
through scrupulous analysis of experimental data [6]. The
data were obtained at the gas tunnel facility [6]. The exper-
iments investigated the unstably stratified free shear flows
and the coupling of Kelvin-Helmholtz and Rayleigh-Taylor
instabilities. One of the ten setups implemented in these ex-
periments represented “pure” Rayleigh-Taylor dynamics at
Reynolds numbers up to 3.4×104 [6]. Hot-wire anemometry
was employed to obtain the fluctuations spectra of the ve-
locity field. The measurements called for a formal analysis
of Rayleigh-Taylor experimental data that would see beyond
visual inspection [6].

In this paper, our data analysis method is guided by
group theory considerations [8,12]. Group theory outlines
the invariance-based properties of fluctuations, including their
spectra and the span of scales [8,12,24]. The resulting model
is a combination of power-law and exponential functions
which describe the self-similar and scale-dependent parts of
the spectrum. We analyze the experimental data represented
by raw time series from hot-wire anemometry measurements
for the pure Rayleigh-Taylor dynamics in experiments [6].
We further choose one of the velocity components which
is expected to be the least influenced by the deterministic
experimental conditions [6]. A formal statistical method is
applied to analyze RT mixing data. The method is based on
Whittle’s approximation of the power density spectrum. It
constructs the maximum likelihood estimator (MLE) of the
model parameters, numerically solves the optimization prob-
lem through the Newton-Raphson iteration algorithm, and
estimates statistical errors via the use of the Fisher information
matrix obtained from the Hessian of the log-likelihood. The
Kolmogorov-Smirnov (KS) test [25,26] is further applied to
verify the goodness of fit. We find that, in agreement with
the group theory consideration, the power density spectrum
of experimental quantities can be described by the product of
a power law and an exponential. Our approach is based on
a lucid physics background and applies a rigorous statistical
technique in order to obtain reliable information from the
data describing Rayleigh-Taylor dynamics. Our paper pro-
vides data analysis at a deeper level than visual inspection,
which is traditionally used in experiments and simulations
on Rayleigh-Taylor instability and Rayleigh-Taylor interfacial
mixing.

II. DYNAMICS OF SELF-SIMILAR RT MIXING

A. Theory

1. Symmetry and invariance

Self-similar RT mixing has a number of symmetries, in
a statistical sense, and is invariant with respect to scal-
ing transformations. These symmetries and transformations
are distinct from those of canonical Kolmogorov turbulence
[3,4,12,24]. Self-similar canonical turbulence is isotropic and
homogeneous; it is inertial and is invariant with respect to
Galilean transformations [27–29]. Self-similar RT mixing is

anisotropic and inhomogeneous; it is accelerated and is, thus,
noninertial and is not Galilean invariant [3,4,22]. In canonical
turbulence, the invariant quantity of the scaling transformation
is the rate of dissipation of specific kinetic energy ε ∼ v3/L ∼
v3

l /l , where v(vl ) is the velocity scale at large (small) length
scale L(l ) [14,27–29]. Its invariance is compatible with the
existence of an inertial interval and a normal distribution of
velocity fluctuations [14,22,27–29]. In RT mixing, the invari-
ant quantities of the scaling transformation are the rate of
loss of specific momentum μ ∼ v2/L ∼ v2

l /l along with the
rate of gain of specific momentum μ̃ ∼ g in the direction
of acceleration with magnitude g with μ̃ ∼ μ, whereas the
rate of dissipation (gain) of specific energy is time-dependent
ε(ε̃) ∼ g2t , where t is the time [3,4,12,24].

2. Fluctuations spectra

In canonical turbulence, the invariance of the energy dis-
sipation rate leads to the spectral density of fluctuations of
specific kinetic energy S(k) ∼ ε2/3k−5/3 [or S(ω) ∼ εω−2],
where S(k) [or S(ω)] is the spectral density and k(ω) is
the wave-vector (frequency). The span of scales is constant
L/lν ∼ L(ε/ν3)1/4 where lν ∼ (ν3/ε)1/4 is a viscous scale
and ν is a kinematic viscosity [14,27–29]. In RT mixing, the
invariance of the rate of momentum loss leads to the spectra
for kinetic energy fluctuations S(k) ∼ μk−2(S(ω) ∼ μ2ω−3)
and the span of scales L/lν ∼ t2(μ4/ν2)1/3 growing with time
L ∼ μt2, lν ∼ (ν2/μ)1/3 [3,4,12].

3. Sensitivity to deterministic conditions

In addition to the symmetries, invariances, and spectra,
an important property of self-similar dynamics is sensitiv-
ity of fluctuations to deterministic conditions. In canonical
turbulence the invariance of the rate of energy dissipation
ε ∼ v3/L ∼ v3

l /l leads to a diffusion scaling law for veloc-
ity fluctuations with v ∼ T 1/2, vl ∼ τ 1/2, where T (τ ) is the
characteristic timescale at the large (small) length scale L(l ).
Fluctuations caused by self-similar turbulence are stronger
than noise set by deterministic conditions. Canonical turbu-
lence is a stochastic process with no memory of deterministic
conditions [14,27–29].

In RT mixing, the invariance of the rate of momentum
loss μ ∼ v2/L ∼ v2

l /l leads to a ballistic scaling law for ve-
locity fluctuations with v ∼ T, vl ∼ τ . Fluctuations caused
by self-similar RT mixing are comparable to the noise set
by deterministic conditions. RT mixing appears as a chaotic
process sensing deterministic conditions [3,4,12,23,24].

B. Experiment

1. Experiments on the unstably stratified shear flows

In this paper, we consider experimental data from three-
wire anemometry of RT mixing obtained at the multilayer
gas tunnel facility designed to study the unstably stratified
shear flows and the coupling between the Kelvin-Helmholtz
and the Rayleigh-Taylor instabilities [6]. The details of the
experiments, the diagnostics, and the data can be found in
Akula et al. [6].

In the experiments [6], the fluids with different densities
first coflow in separate channels parallel to one another, in
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fluid streams with the same or with different speeds, and with
the heavy fluid positioned above the light fluid. Next, at the
end of the channels, the fluid streams meet, the unstable in-
terface between the fluids forms, the initial perturbation is in-
duced at the fluid interface (by, e.g., a flapping wing), and the
fluids enter the tunnel section and start to mix. It is believed
that the mixing occurs under the effect of buoyancy when the
speeds of the fluid streams are the same and their densities are
distinct or under the combined effects of the buoyancy and the
shear when the speeds of the streams are distinct.

The experiments [6] were conducted over ten setups with
various values of the fluid density ratio and with various
amount of shear of the coflowing streams. By measuring the
mixing width gradient variation along the test section, the
experiments suggested that, although at early times the flow
might be governed by Kelvin-Helmholtz dynamics, at late
times the flow might be driven primarily by Rayleigh-Taylor
dynamics. The Reynolds number of the fluid mixing was
estimated as ∼103–104 and up to ∼3.4×104.

2. Outline of diagnostics

For quantifying velocity fluctuations, the experiments [6]
employed hot-wire anemometry, an experimental technique
whereby fine temperature fluctuations are acquired at a fixed
(Eulerian) position in a flowing gas stream. The change in
resistance of the wire is due to heat exchange with the fluid
and is some measure of the flow velocity. For isotropic,
homogeneous, and statistically steady flows, the measured
temperature fluctuations can be viewed as fluctuations of
specific kinetic energy of the fluid. This makes hot-wire
anemometry a robust and reliable method of diagnostics for
canonical turbulence [13,14,30]. RT mixing is anisotropic,
inhomogeneous, and statistically unsteady. More caution is
required in the interpretation of hot-wire anemometry mea-
surements of RT mixing [13]. To obtain some information
on the properties of fluctuations in RT mixing, multiple wires
with different orientations can be used to measure temperature
(resistance) fluctuations in the direction of acceleration and in
the other two transverse directions.

In the experiments [6], for simultaneous measurements of
fluctuations of the velocity and the density fields, the hot-wire
probe and the cold-wire probe are placed in the flow in close
proximity to one another. The hot-three-wire probe with the
diameter of 5 μm is used to measure the velocity fluctuations,
and the cold-wire probe is used to measure temperature. The
velocity fluctuations obtained in these measurements depend
upon the density fluctuations with the combined spatial res-
olution of the measurements evaluated as ∼6 mm. For the
fluctuations of the velocity component, which is normal to the
direction of the acceleration and is normal to the direction of
the coflowing streams of the fluids, and which is relatively
independent of the density fluctuations especially for fluids
with close densities, the spatial resolution is substantially—
fewfold—higher and is set by a spatial resolution of the probe
itself [6]. By applying the method of visual inspection, the
experiments [6] analyzed the velocity fluctuations spectra for
each of the ten setups of the unstably stratified shear flows
at intermediate and at late times. The spectra were compared
with the scaling laws for various buoyant flows and with

the −5/3 turbulent scaling law. The inertial subrange was
estimated to span one decade or so in the presence of shear.

C. The method and the experimental setup and data

Although the results of the experiments [6] are interesting,
some fundamental aspects require better understanding. For
instance, based on the observations [6] at Reynolds num-
bers up to ∼3.4×104, one might assume that the late-time
dynamics of RT mixing is insensitive to the deterministic
conditions. One might further speculate that in the unstably
stratified shear flows, the shear serves to transition the flow
to a turbulentlike regime and to enlarge the inertial subrange.
One might also try to reconcile these hypotheses with the
experimental results [23] that unambiguously observed the
sensitivity of RT mixing to the deterministic conditions at
Reynolds numbers up to ∼3.2×106. To address these issues,
a formal physics-based method of analysis of data is required.

The focus of this paper is on the development of data
analysis method. Due to the sensitivity of RT dynamics to
the deterministic conditions [23], special care is required in
choosing the experimental setup and the data set among those
of experiments [6]. First, to isolate the buoyancy effect from
the shear, we need to study the pure Rayleigh-Taylor flow
setup. Second, to ensure that the flow is self-similar, we ought
to analyze the data taken at the very last times. Third, we have
to consider the component of the flow that is expected to be
the least affected by the deterministic (the initial and the flow)
conditions.

In the experiments [6], the pure Rayleigh-Taylor instability
corresponds to the so-called setup A1S0. The data taken at the
very late time is presented in Ref. [6, Fig. 22(e)]. The velocity
component that is the least affected by the flow conditions is
the so-called v component. This component of the velocity is
chosen as the least affected since it is normal to the accelera-
tion and is normal to the direction of the coflowing streams of
the heavy and the light fluids.

The brief outline of the experimental conditions for this
particular data set is as follows [6]. The density of the
heavy (light) fluid is ρh(l ) = 1.18(1.10) kg/m3 leading to
the Atwood number A = (ρh − ρl )/(ρh + ρl ) = 3.5×10−2

and the effective acceleration g = Ag0 = 3.43×10−1 m/s2

where g0 = 9.81 m/s2 is the Earth’s gravity. The dynamic
viscosity of the heavy (light) fluid is μh(l ) = 1.83×10−5 Pa s
leading to the kinematic viscosity νh(l ) = μh(l )/ρh(l ) =
1.55(1.66)×10−5 m2/s. This evaluates the wave-vector
kν = (g/ν2)1/3 as kν = (g/ν2)1/3 = (1.13 − 1.08)×103 m−1,
the viscous length scale lν = 2π/kν as lν = 2π/kν =
2π (ν2/g)1/3 = (5.58 − 5.84)×10−3 m, and the viscous
timescale τν = (gkν )−1/2 as τν = (gkν )−1/2 = (ν/g2)1/3 ∼
(5.09–5.21)×10−2 s. The scales kν, lν , and τν are also
comparable to those of the mode of fastest growth. The
largest horizontal length scale corresponds to L ∼ 31.5 m.
The longest vertical length scale is given by the tunnel width
H = 1.2 m, which is also used to scale the values of lengths.
In this data set, the total sampling time is 5×101 s. Time
series of the data are acquired at a rate of 103 Hz so that the
set consists of 5×104 data points.

For the pure Rayleigh-Taylor setup A1S0 and for the
fluctuations of the v component of the velocity, the spatial
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resolution is set by the spatial resolution of the probe and is
evaluated as lres = 1.26×10−3 m with the corresponding di-
mensionless wave-vector kres = 6.00×103 [6]. This indicates
that the viscous length scale lν = (5.58 − 5.84)×10−3 m and
the corresponding dimensionless wave-vector kν = (1.36 −
1.30)×103 are well resolved in the experiments [6]. Note
that whereas the pure RT setup A1S0 and the fluctuations of
the v component of the velocity allow one to consider wave
vectors up to the resolution limit kres, for the experimental
data analyzed in this paper the signals with dimensionless
wave-vector values k > 4.00×103 (and with the correspond-
ing length scales l < 1.88×10−3 m) are interpreted as the
instrumental noise. We employ this cautious interpretation
for the purposes of consistency because in other experimen-
tal setups in the experiments [6], the signals with very high
values of the wave-vector k > 4.00×103 are interpreted as the
instrumental noise. For further experimental details, the reader
is referred to the paper [6].

III. RESULTS

Fitting a theoretical power density spectrum to measure-
ments is usually approached by least-squares techniques. The
latter may yield some bias when the measurement errors are
non-Gaussian. This may happen, for instance, when the data
are acquired from complex processes. MLEs may be used for
providing: (i) an estimate of the model parameters, (ii) an
estimate of the standard error, and (iii) a fit rejection criterion
to assess the match between observed and theoretical spectra.
Some examples of successful use of the MLEs include: the
estimate of the Batchelor cutoff wave number in temperature
gradient spectra of stirred fluid [31], peak significance testing
in the periodogram of x-ray light curves of active galaxies
[32], the estimate of dissipation in turbulent kinetic energy
in environmental flows [33], and the spectral power density in
other applications [34].

In this paper, we develop an MLE-based method to analyze
the raw RT data from hot-wire anemometry in order to: (i)
estimate the parameters of a theoretical power density spec-
trum in the form of a power law multiplied by an exponential,
(ii) estimate the errors on those coefficients, and (iii) test the
statistical relevance of the fitted model against the data.

A. Theoretical model of realistic data

From the theoretical point of view, we expect a power-
law spectra to be displayed over scales that are far from
the largest and smallest scales and that span a substan-
tial dynamic range [3,4,12,14,27–29]. For the wave-vectors
k ∈ (kmin, kmax), this implies that log10(kmax/kmin) � 1 with
kmin � K and kmax � kν , where K ∼ L−1, kν ∼ l−1

ν . Simi-
larly, for the frequency ω ∈ (ωmin, ωmax), this implies that
log10(ωmax/ωmin) � 1 with ωmin � 	 and ωmax � ων , where
	 ∼ L/v, ων ∼ lν/vν . Although such conditions are easy to
implement in “mathematical” fluids, they are challenging to
achieve in experiments and simulations where the values of
K, kν are usually finite [6,12,14,30]. Hence, one may expect
the spectra to be influenced by processes occurring at scales
∼K and ∼kν . The former corresponds to long wavelengths
and low frequencies and is usually associated with the initial

conditions and with the effect of slow large-scale processes
[12,14,27–30]. The latter requires more attention since it is
associated with fast processes at small scales. Its influence
may lead to substantial departure of realistic spectra from
canonical power laws. In isotropic homogeneous turbulence,
these departures are known as anomalous scalings [14,27–30].

In experiments, we expect the dynamics to be scale in-
variant at scales k � kν and be scale dependent at scales
k ∼ kν [3,4,12,14,27–30]. Scale-invariant functions are power
laws and logarithms, and scale-dependent functions are ex-
ponentials [29]. A function behaving as a power-law kα

for scales k � kν and as an exponential exp(βk) for scales
k ∼ kν is of a compound function S(k) ∼ kα exp(βk) [or
S(ω) ∼ ωζ exp(σω)]. For turbulent and ballistic dynamics,
larger velocities correspond to longer length scales (smaller
frequencies). This defines the signs of parameters as α, β < 0
(or ζ , σ < 0).

The compound function S(k) ∼ kα exp(βk) has already
been successfully applied in turbulence to describe realistic
spectra in experiments and simulations [14,35–39]. Kraichnan
[35] derived the compound spectral function for isotropic
turbulence at very high Reynolds numbers. Sreenivasan [36]
Khurshid et al. [38], and Buaria and Sreenivasan [39] iden-
tified experimentally the anomalous behavior at small scales
of the energy dissipation rate in isotropic homogeneous tur-
bulence. The importance of the compound function was
recognized for understanding, e.g., passive scalar turbulent
mixing [14] and turbulent layers [37].

From the physics perspectives, for canonical turbulence,
the use of the exponential function in the compound spectrum
is justified by the constancy of the scale kν , which, in turn, is
enabled by the invariance of the energy dissipation rate ε ∼
v3/L ∼ v3

l /l leading to a constant value of kν ∼ (ν4/ε)1/4

[27–29,35]. For Rayleigh-Taylor mixing, upon formal sub-
stitution of the time-dependent energy dissipation rate ε ∼
g2t , the value (ν4/ε)1/4 ∼ [ν4/(g2t )]1/4 is time dependent.
Remarkably, according to group theory results [3,4,23,24],
Rayleigh-Taylor mixing is characterized by the invariance of
the rate of momentum loss μ, which, in turn, defines the
scale kν as kν ∼ (ν2/μ)1/3. The latter is constant, is set by the
acceleration μ ∼ μ̃ ∼ g, and is comparable to the mode of
fastest growth ∼(ν2/g)1/3. Hence, for Rayleigh-Taylor mix-
ing, the use of the scale-dependent exponential function in the
compound spectrum is acceptable and physically justified.

Note also that some attempts were recently made to
describe turbulent spectra in convective flows, such as Benard-
Maragoni and Raleigh-Benard convection, by a stretched
exponential function [40]. Since the (stretched) exponen-
tial function is scale dependent, and since the existence
of self-similar dynamics in RT mixing was unambiguously
demonstrated by the experiments at high Reynolds numbers
∼3.2×106 [23], we apply here the compound function S(k) ∼
kα exp(βk) to describe the spectral properties of RT mixing.

B. Periodogram smoothing via Whittle MLE
(spectrum fitting method)

The experimental data are given in the form of N = 5×104

reals X0, . . . , XN−1 recorded at constant sampling intervals
�t = 10−3 s in time, see Fig. 1. The signal consists of a
zero-mean stationary times series with one-sided power
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FIG. 1. Experimental time series for the normal component
v/

√
〈v2〉 of the flow. The data are normalized by the standard

deviation.

spectral density S(k). In particular, the joint marginal distri-
bution of any part of the series is assumed to be the same as
any other part with the same length [41].

With N even, we compute the discrete Fourier transform
(DFT) as the list of complex numbers X̃1, . . . , X̃N/2−1,

X̃k =
N−1∑
j=0

Xje
−2π i jk/N . (1)

The zeroth Fourier coefficient vanishes X̃0 = ∑N−1
j Xj = 0

because only the fluctuating part is considered. The pe-
riodogram consists of the list of reals Ik = |X̃k|2/N, k =
1, . . . , N/2 − 1, see Fig. 2.

For an easier graphical comparison between signals with
presumably different length scales, the data are normalized
by the standard deviation and the periodogram by the data
variance. The latter is motivated by the following property of
the DFT,

〈X 2〉 ∼ ∑N−1
n=0

X 2
n

N = ∑N/2−1
k=0

2Ik
N ⇒ Ī := I

N
2 〈X 2〉 . This nor-

malization is not enforced in the fitting procedure because the
true variance is unknown.

We presume that, under suitable conditions [42], each
Fourier coefficient X̃k forms a pair of normally distributed

10 0 10 1 10 2 10 3 10 4

10 -8

10 -6

10 -4

10 -2

FIG. 2. Periodogram of the v components of the RT flow rate
on a log-log scale (normalized by the data variance). The black line
is the resulting fit from the MLE of the power law and exponential
decay rate coefficients α = 2.04 ± 3.6% and β = −1×10−3 ± 6.4%
over a broad range of mode numbers k = 101–3000, assuming a
noise level of S

Noise
= 10−7. The KS test returns a p value of pKS =

43.6%. Gray-colored data points (outer most data) were excluded
from the fit.

random variables whose variances are approximately equal
to the power spectral density Var[Re(X̃k )] = Var[Im(X̃k )] =
S(k). The periodogram may, thus, provide an estimate of the
power spectral density such that for a fixed mode number k,
the ratio

Yk := 2Ik

S(k)
d∼ χ2

2 , p(Ik ) = pχ2
2
(Yk )

2

S(k)
= e−Ik/S(k)

S(k)
(2)

is approximately distributed as a χ2 random variable with two
degrees of freedom [42]. Furthermore, the list {Yk}N/2−1

k=1 forms
a collection of (heteroskedastic) random variables that are
approximately independent, i.e., Cov(Yk,Yk′ ) → 0 as N → ∞
for k �= k′. A MLE is constructed by exploiting the asymptotic
behavior of the periodogram [43] and is based on the follow-
ing quasilikelihood function over the range of mode numbers
k = kl , . . . , kr ,

ln L(S; kl , kr |X0, . . . , XN−1) = −
kr∑

k=kl

[
ln S(k) + Ik

S(k)

]
,

where kl and kr are (arbitrary) left and right cutoffs.
As discussed in the foregoing, we propose to model the

RT component of the experimental spectrum in the form of a
power law multiplied by an exponential,

SRT(k) = Ckαeβk = eα ln k+βk+γ . (3)

We also find useful to account for a low level of instrumental
noise [31]. The power density spectrum is then modeled as

S = SRT + S
Noise

, (4)

where the simplest possible noise model is applied. Specif-
ically, a constant white noise of S

Noise
∼ 10−6–10−9 mimics

the flattening of the periodogram at high mode numbers k >

3000, see Fig. 2.
Our objective is to estimate the three parameters control-

ling the RT component of the spectrum. Defining the vectors
θ = (α, β, γ ) and φ(k) = (ln k, k, 1), we compute the gradi-
ent of the log-likelihood as

∂θ ln L(θ ; kl , kr |X0, . . . , XN−1)

= −
kr∑

k=kl

SRT(k)

S(k)

(
1 − Ik

S(k)

)
φ(k), (5)

as well as the Hessian as

∂2
θ θ ln L =: H (θ ) = −

kr∑
k=kl

SRT(k)2

S(k)2

[
Ik

S(k)
+

(
1 − Ik

S(k)

)

× S
Noise

SRT(k)

]
φ(k) φ(k). (6)

The maximum likelihood is obtained numerically through a
Newton-Raphson method within six to seven iterations. The
scheme and stopping conditions are

θ̂i+1 = θ̂i − H−1
i ∂θ ln Li

⇒ θ̂ such that ‖∂θ ln L(θ̂ )‖ < ε ∼ 10−15, (7)

with the initial condition θ̂0 obtained via ordinary least squares
on the logarithm of the periodogram.
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C. Error estimation

The (co)variance on the estimated parameters is bounded
from below by the Fisher information matrix of the likelihood
function, i.e., Cov(θ̂ , θ̂ ) � I−1(θ ) ≈ −H−1(θ̂ )

N . The error on
the model parameters is, thus, estimated as θ̂ ± σ , where

σi =
√

−H−1
ii /N . The error is an indicator of the accuracy

of the parameter estimation with more accurate estimations
having smaller errors, and with the tolerable accuracy being
less that ∼10% for relative errors in physics experiments.

D. Goodness of fit

We apply the KS test [25,26] to determine whether the al-
ternative hypothesis has statistical significance under the null
hypothesis. Our null hypothesis is that the ratio between the
observed periodogram, and the model power density spectrum
is distributed according to a χ2 distribution with two degrees

of freedom Yk = 2Ik
S(k)

d∼ χ2
2 . Departure from the assumed be-

havior is detected through the KS test by quantifying the
probability pKS that discrepancies are due only to statistical
uncertainty. In the event pKS is too low, the discrepancies can-
not be explained by the uncertainty, and so the null hypothesis
is unlikely (rejected).

In detail, the empirical distribution function of the η =
kr − kl + 1 ordered observations Y1 < Y2 < · · · < Yη,

Fη(x) = 1

η

η∑
k=1

1(−∞,x](Yk ), 1A(z) :=
{

1, z ∈ A,

0, z /∈ A
(8)

is compared to the χ2 cumulative distribution function (CDF)
Pχ2

2
. The maximum absolute difference between the two distri-

butions Dη := supx |Fη(x) − Pχ2
2
(x)| is used as a test statistic.

Under the null hypothesis, the value of
√

ηDη is a random
variable distributed asymptotically according to the so-called

Kolmogorov distribution [44], i.e.,
√

ηDη

η→∞−→ K . The null
hypothesis is rejected if the distance is longer than the critical
value at the significance level α. In other words, given a sig-
nificance level of α = 5% (as per the usual convention), one
computes the critical value Kα for which the random variable√

ηDη should remain inferior to 1 − α = 95% of the time. If
the observed data are such that

√
ηDη > Kα, Pr(K � Kα ) = 1 − α, (9)

then accepting the MLE fit consists of a type II error.
The p value of the test pKS := P(K � √

ηDη ) quantifies
the probability under the null hypothesis of witnessing a
discrepancy greater or equal than that observed. A small p
value (typically �5%) indicates strong evidence against the
null hypothesis such that the MLE fit must be rejected. A
large p value (>5%) indicates weak evidence against the
null hypothesis in which case we fail to reject the MLE fit.
We, thus, interpret a high value of pKS > 5% to indicate a
consistent MLE fit. A low value of pKS is interpreted as an
inconsistency of the fitting assumptions with the data with
regard to: (i) the noise model; (ii) the left and right cutoffs
kl and kr ; (iii) the stationarity of the time series. The p value
will be quoted in the results as a measure of goodness of
fit.

The goodness of fit (here the Kolmogov-Smirnov test) is an
important part of data analysis in complex systems [25,26].
It ensures that the residuals (i.e., deviations from the fitted
spectrum) are distributed in accordance with the assumptions
of the fitting technique. In simple words, when the fit is good,
the pKS value is high with a maximum value of 1.00 (100%),
and when the fit is not good, the pKS value is low with the
minimum value of 0.00 (0%). The threshold pKS value of 0.05
(5%) is commonly applied in statistics for rejection of a fit.

E. Effect of a range of wave-vector values

The compound function S(k) ∼ kα exp(βk) is a product of
a power law and an exponential. The exponential exp(βk) is
scale dependent, and its scale ∼|β|−1 establishes the natural
range of k values for the function evaluation. The power-law
kα is scale invariant, and a substantial span of k values is
required for the function evaluation. In the data set considered
in our paper, the range of k values is relatively short. This
can influence the fitting of the parameters of the compound
function S(k) ∼ kα exp(βk). Hence, there is a need to quantify
the effect of the left and right cutoffs kl and kr delimiting
the range of the values [kl , kr] and the fitting interval, which
are included to determine the parameters of the compound
function. Note that this effect commonly exists in turbulent
flows. In our paper, we study the dependence of the compound
function parameters, including the exponent of the power-law
α and the length scale of the exponential |β|−1 on the left and
right cutoffs kl and kr and the range of values [kl , kr] over
which the fit is performed.

IV. PROPERTIES OF RT DATA

A. Spectral properties of experimental data

Figure 2 shows the periodogram computed from the times
series in Fig. 1 characterizing fluctuations in the normal com-
ponent v of the flow. The black line in this figure represents
the model power density spectrum, whose parameters are
adjusted through the fitting procedure described in previous
sections. For this particular MLE fit, a broad range of mode
numbers k = 101–3000 is selected. The active modes are
highlighted by coloring the data in green. The gray data depict
the amplitudes of the periodogram that have been excluded
from the fit. The end “tail” of the periodogram beyond k >

4000 predominantly reflects instrumental noise. The fitted
power density spectrum becomes flat above k > 4000 due to
the choice of noise level at S

Noise
= 10−7. This adjustable pa-

rameter acts effectively as a cutoff by reducing the importance
of amplitudes below S

Noise
in the MLE. S

Noise
is selected to be

visually consistent with the data.
At high mode numbers, an exponential behavior is revealed

by the nonvanishing β coefficients. This exponential behavior
is even more prominent from the strong linear correlation
between k and ln SRT(k) ∼ βk on a lin-log scale (not shown
here). The associated characteristic length scale corresponds
to k ∼ 1/β ∼ 1000, which is comparable to kν , and which is
much lower than both the right fitting limit ∼3000 and the
instrumental noise beyond k > 4000. This indicates that the
corresponding length scale is a physical feature of the flow.
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At low mode numbers, the power law dominates over the
exponential term. The fitted power density spectrum, thus,
approaches a line with slope α on a log-log scale. Below
k < 70, however, the fit overestimates the periodogram as
seen through the rise of the black line well above the data
points. This departure can be interpreted in several ways.
Possible interpretations of this departure may include the ef-
fects of the largest vertical and the largest horizontal scales,
the scale-dependent dynamics at very long length scales, etc.
This behavior is consistent with sensitivity of the dynamics to
the initial conditions at very long length scales (small mode
numbers) and with the exponential character of spectra in
deterministic chaos.

The error estimation of the parameters α and β of the
compound function is discussed in more detail below. Briefly,
the parameters of the compound function can be accurately
identified over a broad range of intervals [kl , kr]. In order
to accurately estimate the power-law exponent α describing
the left part of the spectrum k � kν , one should account for
the significant number of modes on the right-end (kr) of the
periodogram. In order to accurately estimate the exponential
decay rate β describing the right part of the spectrum k ∼ kν ,
one should account for the significant number of modes on the
left-end (kl ) of the periodogram.

The effect of the range of values [kl , kr] and the left and
right cutoffs kl and kr on the parameter estimation is discussed
in more detail below. Briefly, the α coefficient from the MLE
fit becomes smaller in absolute value when the left limit is
lowered. This may mean that the power law loses relevance
when the mode number range is extended very far to the left
since the flattening at low mode numbers can be achieved by
an exponential term. The goodness of fit, however, worsens
as we lower the left limit kl . The fit must actually be rejected
below kl < 30 for v with fixed kr = 3000.

An equivalent MLE fitting procedure can be applied to
verify whether the periodogram can be described only by an
exponential term or only by a power law. The exponential
fit presumes a scale-dependent dynamics, and RT mixing is
self-similar. The power-law fit presumes a self-similar dy-
namics displayed over scales spanning a substantial dynamic
range. The power-law fit is discussed in detail below. Briefly,
although some reasonable parameter estimations might result
from this procedure, the goodness of fit suggests that the
dynamics is characterized by a power density spectrum that is,
at least, as complicated as the compound function represented
by the product of a power law and an exponential decay over
a broad range of scales.

B. Analysis of residuals and goodness of fit

The procedure described above is applied to the MLE
fit reported in Fig. 2 to assess the goodness of fit. The KS
test returns a p value of pKS = 43.6% > 5%. The probability
of witnessing a greater discrepancy between the fit and the
data through statistical uncertainty is larger than the adopted
rejection level of 5% we interpret the MLE fit as being con-
sistent or valid. The top plot of Fig. 3 shows the details
of the goodness-of-fit procedure by comparing the empirical
cumulative distribution function of the collections of ratios
Yk = 2Ik/S(k) (solid colored curve) and the χ2 CDF (dashed

0 2 4 6 8
0

0.25

0.5

0.75

1

0 2 4 6 8

-0.02

0

0.02

FIG. 3. KS test comparing empirical cumulative distribution
function of Yk = 2Ik/S(k) with χ 2 CDF for the MLE fit of Fig. 2. The
dashed black lines in the second row highlight the critical value of the
absolute maximum difference at a 5% significance level. The x axis
is the upper bound of the interval (−∞, x] such that Fη(x) represents
the number of elements in the sample {Yk}kr

k=kl
whose value is smaller

or equal to as per Eq. (8).

black curve). The difference between the graphs is almost
imperceptible. The colored curve on the bottom plot of Fig. 3
is the absolute maximum difference between the empirical
and the χ2 CDF, and the dashed line represents the critical
value from the KS statistics D5% ∼ 2.5×10−2 beyond which
the MLE fit must be rejected. As seen in Fig. 3, the dashed
line is not exceeded.

To highlight the critical importance and sensitivity of the
KS test as a rejection method, an identical MLE fit, based on
the mode number range of k = 101–3000 and with noise level
S

Noise
= 10−7, is repeated after applying MATLAB’s smooth

function to the periodogram, which uses a moving average
method with a span of nine points. Figure 4 shows the

10 0 10 1 10 2 10 3 10 4

10 -8

10 -6

10 -4

10 -2

FIG. 4. Identical to Fig. 2, the MLE is applied to the MATLAB

“smoothed” periodogram with little difference in the resulting pa-
rameter estimations α = −2.04 ± 3.6% and β = −1×10−3 ± 6.4%
over the range of k = 101–3000 with S

Noise
= 10−7. The KS test,

however, severely invalidates the fit as demonstrated in Fig. 5.
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0 2 4 6 8
0

0.25

0.5

0.75

1

0 2 4 6 8
-0.4

-0.2

0

0.2

FIG. 5. Same caption as Fig. 3. KS test rejects the MLE fit of the
smoothed periodogram.

processed periodogram as in Ref. [6] as well as the result-
ing MLE fit (black curve). As a result of the smoothing,
the contours of the periodogram are much cleaner and more
precise. The features already present in Fig. 2 become more
prominent; the signals exhibit exponential decay at a large
mode number before being dominated by a flat spectrum of
instrumental noise. An additional interesting feature appears
in the very high end of the spectrum around k ∼ 5000, namely,
the presence of a local maximum. A more complicated noise
model and/or recording the instrumental noise without flows
would be required to model this bump. The detailed analysis
of S

Noise
is of minor interest and has little impact on the pa-

rameter estimation, knowing that the right mode number limit
never exceeds r < 3000 in our scans.

The parameter estimation resulting from the MLE fit of
the periodograms in Fig. 4 is exactly the same as for Fig. 2,
namely, α = −2.04 ± 3.6% and β = −1×10−3 ± 6.4% for
the v component of the velocity. Nevertheless, the smoothing
adds no benefit to the fitting. To the contrary, it completely
ruins the goodness of fit. The KS test reveals that the resid-

uals have lost consistency with the fitting assumptions. The
top plot of Fig. 5 compares the empirical CDF of the ra-
tios Yk = 2Ik/S(k) (solid colored curve) with the χ2 CDF
(dashed black curve). In this case, the deviation between the
CDFs is clear. The bottom plot of Fig. 5 shows that the
critical rejection distance D5% is exceeded for almost all data
points. The important conclusion from this consideration is
that data processing is unnecessary prior to applying the MLE
fitting procedure and working with raw data is preferable even
though noisier.

C. The effect of the range of wave-vector values
and the left and right cutoffs

In this section, we thoroughly investigate the dependence
of the MLE fit on the range of values [kl , kr], particularly,
on the left and right cutoffs kl and kr , respectively. This is
necessary since the compound function S(k) ∼ kα exp(βk)
has the scale-invariant power-law component and since the
range of values of k of the data set is relatively short.

Figure 6(a) shows that the power-law exponent can vary
between −3 and 0 as a function of the left and right window
limits kl and kr . For a fixed upper limit kr , the power-law
exponent almost vanishes when the lower limit kl is low,
which is explained by the fact that the periodogram flattens
between 1 and 100 on a log-log scale and only the exponential
term may generate this behavior. The power-law exponent
decreases to around −2.25 as the left cutoff kl is raised to
kl ≈ 180. Beyond this value, the evolution of α depends on
the right cutoff kr ; α becomes even more negative if the right
limit is below 1100 or in the range of 1400–1700 but stays
constant if the mode number range is 2000–2400.

Figure 6(b) illustrates the relative error in percent for the
values of α—the exponent of the power law in the compound
function. The error of α varies from 4% to 20% when the
left cutoff value kl varies from 100 to 300, and the right
cut-off value kr varies from 1000 to 3000. The error of α is
significant (>20%) for kl < 100 and for kl > 300 and when
the values of kr are relatively low kr ∼ 800–1000. The high
error of α for kl < 100 and kr ∼ 800–1000 can be attributed

FIG. 6. Dependence on the left and right window limits kl and kr of the estimated fitting parameter α and its relative error σα/α. (a) Power
law exponent α; (b) Relative error σα/α in percent.
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FIG. 7. Dependence on the left and right window limits kl and kr of the estimated fitting parameter β and its relative error σβ/β. (a)
Exponential decay coefficient β; (b) Relative error σβ/β in percent.

to departures of the experimental spectrum from the power
law for small wave-vector values. The departures can be
caused by, e.g., the effect of deterministic and initial condi-
tions and are indicative that for a short dynamics range with
[kl , kr] ∼ [300, 800], log10(800/300) ≈ 0.4, the parameters
of the compound function are a challenge to accurately iden-
tify. For 100 < kl < 300 and 1400 < kr < 3000, the error of
α is insignificant and is less than 10%. It overall decreases
with the increase in kr . This dependence of the error of α on
kr suggests that in order to accurately (<10%) identify the
exponent α of the power-law component of the compound
function, the statistical analysis should accounted for the sig-
nificant number of high frequency modes on the right-end (kr)
of the periodogram.

In Fig. 7(a), the exponential decay rate is shown to vary as a
function of the mode number window inversely to the power-
law exponent, reaching values between −7×10−3 and 0. The
α and β estimates being positions of maximum likelihood,
their variation is correlated with respect to changes in param-
eters, such as kl and kr . The correlation can be understood
by considering the logarithm of the power density spectrum
ln SRT = α ln k + βk + γ as the weighted sum of the three
basic functions ln k, k, and 1, where the power law has an
influence on the exponential term and vice versa under the
projection method that is MLE.

Figure 7(b) illustrates the relative error in percentages
for the value of β—the rate of the exponential decay in
the compound function. The error of β varies from 4% to
10% when the left cutoff value kl is less than 200 and the
right cutoff value kr varies from 800 to 3000. The error of
β varies from 10% to 20% when the left cutoff value kl

varies from 200 to 400, and the right cutoff value kr varies
from 2000 to 3000. The error of β is significant when the
right cutoff values kr are relatively low 800 < kr < 1600, the
left cutoff values kl are relatively high 200 < kl < 400. This
high error of β indicates that for a short dynamic range with
[kl, kr] ∼ [200, 800], log10(800/200) ≈ 0.6, the parameters
of the compound function are a challenge to accurately
identify. For kl < 200 and 2000 < kr < 3000, the error of β

is insignificant and is less than 10%, and it overall decreases

with the decrease in kl . This dependence of the error of β on
kl suggests that in order to accurately (<10%) identify the
decay rate β of the exponential component of the compound
function the statistical analysis should account for the signif-
icant number of low frequency modes on the left-end (kl ) of
the periodogram.

Figure 8 displays the variation of the p value of the KS
test. The rejection region extends to a nearly rectangle bound
by kl < 80 and kr > 1300. In the rejection region with 0 <

kl < 80 and 1300 < kl < 3000, the value of pKS sharply de-
creases from 50% to 0%. This decrease can be attributed to the
departures of the experimental spectrum from the compound
function, which is caused by, e.g., the deterministic and initial
conditions. The value of pKS varies from 50% to 100% when,
overall, the left cutoff values are kl > 80 and the right cutoff

FIG. 8. Dependence on the left and right window limits kl and kr

of the KS-test pKS value in percentages.
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values are kr > 1300. This dependence of the pKS value on
the left cutoff kl and right cutoff kr suggests that in order
for the residuals (the deviations from the fitted spectrum)
to be distributed according to the assumptions of the fitting
technique, the statistical analysis should account for the sig-
nificant number of high and low frequency modes on the left
(kl ) and on the right (kr) ends of the periodogram.

Figure 9(a) summarizes our investigation and presents the
exponent α of the power-law component of the compound
function in the region, which is the intersection of the do-
mains of [kl , kr] where the error of α is less than 10%, the
error of β is less than 10%, and the pKS value is more than
50%. In this domain the compound function parameters α

and β are identified accurately, the goodness of fit is excel-
lent, and the exponent α of the power law is unambiguously
defined over the dynamic range spanning log10(3000/100) ≈
1.5 decade, in consistency with the group theory [3,4,23,24]
and with the results in Fig. 2. Note that for β = β∗ =
1.00×10−3 with 1/β∗ = 1.00×103, the corresponding di-
mensional wave-vector k∗ = (β∗H )−1 = 8.33×102 m−1 and
the length-scale l∗ = 2π/k∗ = 7.43×10−3 m are comparable
to the viscuous scales kν , lν, k∗ ∼ kν , and l∗ ∼ lν with
kν/k∗ = l∗/lν = (1.35–1.29), in agreement with the group
theory [3,4,22–24].

Figure 9(b) presents the exponent α of the power-law com-
ponent of the compound function in a broader domain, which
is the intersection of the intervals of [kl , kr], where the error
of α is less than 20%, the error of β is less than 20%, and the
pKS value is more than 5%. In this domain the exponent α is
flexibly defined.

This paper focuses on the fluctuations spectra of the v

component of the velocity. Similar analyses can be conducted
for fluctuations of other velocity components as well as for the
density field fluctuations. We leave the detailed investigation
of statistical properties of the flow field in RT mixing for
future work. Briefly, the fluctuations spectra of the velocity

and the density can be described by the compound function
S(k) ∼ kα exp(βk). The values of the compound function pa-
rameters α and β are demonstrably distinct for fluctuations
of various components of the velocity and the density and,
thus, reveal anisotropy of RT mixing and its sensitivity to the
deterministic conditions, in agreement with Refs. [3,4,23].

V. PROPERTIES OF THE POWER-LAW SPECTRA

In order to illustrate the importance of physics-based statis-
tical analysis in the data interpretation, we apply our method
to analyze the power-law spectra kα of the velocity fluctua-
tions in RT mixing and compare our results with those from
the visual inspection method in the experiments [6].

The experiments [6] processed the data by applying the
MATLAB SMOOTH function to the periodogram, used visual
inspection to compare the fluctuations spectra with the scaling
laws for various buoyant flows and for canonical turbulence,
and concluded that in the pure RT case the power-law spectra
are steeper than −5/3. Figures 10(a), 10(b), and 11 present
our data analysis results for the power-law spectra kα of the
fluctuations of the v component of the velocity in RT mixing.
Figures 10(a), 10(b), and 11 show, respectively, the values
of α of the power-law exponent, the relative error of α in
percentages and the pKS goodness-of-fit value in percentages
in the fitting intervals [kl , kr] for a broad range of delimiting
values of the left cutoff kl and right cutoff kr . Figures 12(a),
12(b), and 13 show, respectively, the values of α, the relative
error of α, and the pKS value, zoomed in on the narrower
intervals [kl , kr], which are chosen in the experiments [6] for
the estimates of the power-law exponent.

Although these results are generally consistent with the
conclusions [6], the physics-based statistical data analysis
approach identifies important properties of RT mixing that are
challenging to see by the visual inspection method.

FIG. 9. Dependence on the left and right window limits kl and kr of the estimated fitting parameter α. (a) Power law exponent α in
intersection of intervals with errors <10% and pKS > 50%; (b) Power law exponent α in intersection of intervals with errors <20% and
pKS > 5%.
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FIG. 10. Dependence on the left and right window limits kl and kr of the estimated fitting parameters α and their relative error σα/α in the
MLE fits where the model spectrum is considered to be a power-law SRT(k) = Ckα only. (a) Power law exponent α; (b) Relative error σα/α.

Similar to our results for the compound function S(k) ∼
kα exp(βk) in Figs. 2 and 4, in the case of the power-law func-
tion S(k) ∼ kα the MATLABdata smoothing has no influence
on the value of the parameter α. Yet, by making the signal
“crisper,” it completely ruins the goodness of fit and makes
the KS test reject the fitting every single time. We see that
the analysis of unprocessed raw data is necessary to obtain
statistically confident results, Figs. 10–13.

For the power-law fitting function S(k) ∼ kα , our results
further find that one needs to select very cautiously the range
of values [kl , kr] over which the fit is performed in order to ob-
tain the scaling law ∼k−5/3 [27,28] and that this selected range

FIG. 11. Dependence on the left and right window limits kl and
kr on the KS-test pKS value in percentages in the MLE fits where the
model spectrum is considered to be a power-law SRT(k) = Ckα only.

spans less than a decade, in agreement with the conclusions of
Ref. [6]. Power-law functions ∼kα are scale invariant and free
from characteristic scales naturally defining the borders of the
fitting interval [kl , kr]. We see that for the data set with the
short dynamics range, it is necessary to analyze the effect on
the fitting function parameters of the range of k values and the
left and right cutoffs kl (r) in order to obtain reliable results,
Figs. 10–13.

Our results in Figs. 10–13 illustrate that for the power-law
fitting function ∼kα the fluctuation spectra are steeper than
the canonical turbulence scaling law ∼k−5/3. This result is
consistent with the conclusions of Ref. [6].

According to our results Figs. 10–13 for the fluctuation of
the v component of the velocity in RT mixing, and for the
power-law spectral function ∼kα , the statistically confident
value of the power-law exponent departs from the values of
the exponent −5/3 for the canonical turbulence [27–29], the
exponent −7/4 proposed for RT mixing by turbulent models
[45,46], the exponent −2 found by group theory for mathe-
matical RT mixing [3,4], the exponent −11/5 identified for
atmospherical turbulence [47,48], and the exponent −3 ob-
tained for homogenous two-dimensional turbulence [49].

By accounting for the properties of realistic fluids and
the finite span of scales in k in the experiments [6], we ap-
ply the compound function S(k) ∼ kα exp(βk) to explain the
spectral properties of the fluctuations of the v component of
the velocity in RT mixing. The presence of the exponential
terms exp(βk) and the power-law kα with steeper than −5/3
exponent in the compound function S(k) ∼ kα exp(βk) indi-
cate that the dynamics of RT mixing, whereas self-similar, is
more sensitive to the deterministic (the initial and the flow)
conditions, in agreement with Refs. [3,4,12,23,24].

VI. DISCUSSION

We have studied the spectral properties of Rayleigh-Taylor
mixing by analyzing experimental hot-wire anemometry data,
Figs. 1–13. Guided by group theory, we have developed a
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FIG. 12. Dependence on the left and right limits on small “subinertial” ranges kl ∈ [1, 100] and kr ∈ [150, 1000] of the estimated fitting
parameter α and its relative error σα/α for the v component of the velocity in the MLE fits where the model spectrum is considered to be a
power-law SRT(k) = Ckα only. (a) Power law exponent α; (b) Relative error σ/αin percent.

formal statistical procedure for fitting the parameters of a
given model power density spectrum to experimental time
series, Eqs. (1)–(9). The method applies maximum-likelihood
estimation to evaluate the model parameters, the standard
error and the goodness of fit. For the latter, the Kolmogorov-
Smirnov test has been employed. The instrumental noise at
the high end of the spectrum has been incorporated into the
model through a low level of white noise. The dependence of
the fit parameters on the range of mode numbers, particularly,
on the left and right cutoffs has been thoroughly investigated,
including the values of the fit parameters, their relative errors,
and the goodness of fit. We have considered the sensitivity of

FIG. 13. Dependence on the left and right limits on small subin-
ertial range skl ∈ [1, 100] and kr ∈ [150, 1000] of the KS-test pKS

value for the v-component of the velocity in the MLE fits where the
model spectrum is considered to be a power-law SRT(k) = Ckα only.

the parameter estimations to the span of scales, the left and
right cutoffs, and the choice of noise level, Figs. 1–13.

Bias-free methods of analysis and systematic interpreta-
tion of experimental and numerical data is necessary to get
knowledge from the data of Rayleigh-Taylor mixing and to
better understand Rayleigh-Taylor-relevant phenomena in na-
ture and technology [3,4]. Our paper approaches this task [8].
Our analysis of hot-wire anemometry data finds that the power
density spectrum of experimental quantities is described by
the product of a power law and an exponential, Figs. 1–13. In
the self-similar subrange, Rayleigh-Taylor spectra are steeper
than those of canonical turbulence, suggesting that RT mix-
ing has stronger correlation and weaker fluctuations when
compared to canonical turbulence [3,4,23,24]. In the scale-
dependent subrange, the spectra are exponential rather than
power law, suggesting chaotic rather than stochastic behavior
of the fluctuations in Rayleigh-Taylor mixing. These results
agree with group theory analysis [3,4,12,22,23]. They are also
consistent with the existence of anomalous scaling in realistic
experimental spectra of canonical turbulence [14,30].

Our analysis of the experimental hot-wire anemometry
data has applied a number of assumptions, Eqs. (1)–(9).
Particularly, the spectrum of fluctuations is an accurate diag-
nostics of statistically steady turbulence, whereas Rayleigh-
Taylor mixing is statistically unsteady [3,4,12,14,22,23].
Fluctuations in the wire resistance can be viewed as fluctu-
ations of specific kinetic energy in canonical turbulence; a
more accurate consideration may be required for Rayleigh-
Taylor mixing with strongly changing scalar and vector fields
[3,4,13,23]. Maximum-likelihood estimations impose strong
requirements on statistical properties of times series; these
requirements may be challenging to obey in Rayleigh-Taylor
mixing [3,4,8,12,23,41–44]. The Kolmogorov-Smirnov test
reliably quantifies goodness of fit in a multiparameter system
fluctuating about its mean; more caution may be required to
quantify goodness of fit of fluctuations (in a sense—a noise
of the noise) [3,4,8,12,25,26]. Further developments are in de-
mand on the fronts of experiment, theory, simulation, and data
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analysis in order to better understand the statistical properties
of realistic nonequilibrium processes, such as anisotropic,
inhomogeneous, and statistically unsteady Rayleigh-Taylor
mixing [3,4,8,12–14].

Our paper was focused on the development of a physics-
based rigorous method of statistical analysis of raw data.
Since Rayleigh-Taylor interfacial mixing is sensitive to the
deterministic (the initial and the flow) conditions up to the
Reynolds number 3.2×106 [3,4,23] when analyzing the ve-
locity fluctuations data in the experiments [6], we chose to
study the pure Rayleigh-Taylor setup in order to separate the
buoyancy effect from the shear; we analyzed the data taken at
late times in order to ensure that the flow is self-similar; we
considered only one component of the velocity fluctuations,
namely, the component which is expected to be the least af-
fected by the initial and the flow conditions. We found that the
velocity fluctuations can be described by a compound function
presented as a product of a power law and an exponential.
Our results revealed that, for the accurate determination of the
spectral properties of fluctuations, it is required to: (i) consider
the raw unprocessed data; (ii) scrupulously investigate the
range of the wave-vector values and the left and right cutoffs;
(iii) analyze the residuals and the goodness of fit.

The experiments [6] were designed to study the unstably
stratified shear flows at Reynolds numbers up to 3.4×104.
Our data analysis method can be applied to conduct the com-
parative study of the fluctuations of the velocity components
and the density, to investigate the coupling of Rayleigh-Taylor
and Kelvin-Helmholtz dynamics, and to analyze the time

evolution of the fluctuations’ spectra in these and in other ex-
periments [6]. We address these detailed studies to the future.

Note that the technique presented in this paper may require
alterations to treat filtered and processed signals since it relies
on: (i) the canonical relation between the Fourier coefficients
of a zero-mean stationary time series and its power spectral
density; (ii) the asymptotic independence of the signal’s co-
variance matrix as a function of mode number Eqs. (1)–(9).

To conclude, we have developed a method of analysis
of spectral properties of Rayleigh-Taylor mixing from raw
experimental data and have found that, in agreement with
the theory developed in the paper, the power density spec-
trum of experimental quantities is described by the product
of a power law and an exponential. Our results indicate
that rigorous physics-based statistical methods can help re-
searcher to see beyond visual inspection, to achieve a bias-free
interpretation of results, and to better understand Rayleigh-
Taylor dynamics and RT relevant phenomena in nature and
technology.
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