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Linear stability analysis of bubble-induced convection in a horizontal liquid layer
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We investigate with a linear analysis the stability of a horizontal liquid layer subjected to injection of gas
bubbles through a bottom wall. The injection is assumed uniform in space and constant in time. Injected bubbles
ascend in the liquid layer due to the Archimedean buoyancy force and are ejected from the top free surface of
the liquid layer. Modeling this two-phase flow system as two interpenetrating liquid and gas continua, we show
that homogeneous upward gas flows become unstable at large gas fluxes. We determine the critical conditions
of this homogeneous-heterogeneous regime transition and show that the critical modes are made of stationary
convection rolls, either multi- or whole-layered depending on liquid viscosity, the radius of bubbles, and the
thickness of liquid layer. By examining the energy transfer from base to perturbation flows, we indicate that
liquid convective motion is driven by the buoyancy on heterogeneously distributed bubbles. We also reveal that
the lift forces on bubbles have significant stabilizing effects by homogenizing bubble distribution close to the
bottom wall.
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I. INTRODUCTION

Bubbly two-phase flows have attracted much attention in
various fields of scientific research because of their impor-
tance in industrial applications and because of interest in
complex multiscale flow phenomena [1]. The flows occur in
a large variety of applications, e.g., frictional drag reduction
of naval vessels [2,3], ultrasound contrast agents [4], and
efficient delivery system of drugs and genes [5].

Bubble column reactors are widely used in chemical and
biological engineering processes as an efficient gas-liquid
contactor for mass and heat transfer [6,7]. Bubbles injected
to liquids ascend due to Archemedian buoyancy forces, ex-
changing mass and heat at liquid-gas interfaces. Depending
on the bubble size, the flow rate of gas injection, and the
geometrical shape of the reactor [8–10], the system exhibits a
variety of flow patterns resulting from multiscale phenomena
embedded in the dynamics of dispersed two-phase systems.
When the gas flux is small, bubbles can rise in liquid with
a uniform spatial distribution [8,11]. Flows in this homoge-
neous regime are destabilized at large gas flux and become
heterogeneous, where the bubble distribution is no longer
uniform. The transition from homogeneous to heterogeneous
regimes is accompanied by convective motion in the liquid
phase of a length scale comparable with the system size.
This large-scale convection is crucial for the design of re-
actors [12]. Theoretical and numerical investigations on the
generation of large-scale convections have been performed
for semibatch and continuous operation conditions of reactors
[12–14]. Different instabilities associated with the pressure
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drop in gas injector arrays [12] and with lift forces on bubbles
[13] are reported.

Convection in bubbly flows has also been investigated
from the viewpoint of stability of fluid systems with in-
verse density profiles [15–17]. When a lower zone of a
two-phase layer is richer in bubbles than in the upper zone,
the layer is overturned by gravity-driven instabilities similar
to the Rayleigh-Taylor (RT) instability. The threshold of the
gravity-driven instabilities of bubble layers is often given as
a Rayleigh number Ra based on the Archimedean buoyancy
of the gas-dispersed liquid phase. Experiments on a RT-like
instability of bubble layers show the formation of bubble
plumes. For Ra � 2.5 × 105, steady counter-rotating convec-
tion rolls were observed by Kimura [15] and Iga and Kimura
[16] (hereafter referred to as IK07). A direct numerical sim-
ulation based on a point bubble model was performed by
Climent and Magnaudet [17] (hereafter referred to as CM99)
for flows developing from a particular two-layer state, in
which a pure liquid layer is superposed on a bubble layer.
The results confirm the formation of convection rolls for
Ra ∼ 2.0 × 105. The point bubble model is based on an Euler-
Lagrange approach. Bubbles are regarded as point sources
of buoyancy subjected to drag and lift forces. A spatially
filtered Navier-Stokes equation is coupled with the equations
of motion for individual point bubbles. This model does not
take into account diffusion-like processes (hydrodynamic dif-
fusion) in the bubble dynamics, which prevents the formation
of highly buoyant bubble clusters [18] and results from direct
hydrodynamic bubble-bubble interactions [19]. The results
of CM99 suggest that no wave number selection exists for
convection roll formation.

Ruzicka and Thomas [18] discuss the analogy between
the homogeneous-heterogeneous regime transition of bubbly
flows and the Rayleigh-Bénard (RB) instability. The authors
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FIG. 1. (a) Schematic illustration of the problem, and (b) (i) profiles of bubble ascending velocity w̄G(z) and (ii) gas volume fraction ε̄G(z)
in the base state with different Pr defined as Eq. (19): the gas injection velocities and gas injection volume fractions at z = −1 of the profiles
equal to wG,0 = 1000 and εG,0 = 0.02, respectively.

consider rising bubbles distributed uniformly in a quiescent
liquid layer, assuming hydrodynamic diffusion in the behav-
ior of bubble swarms. They examine the analogy in detail
and deduce Ra, Prandtl number Pr, and Nusselt number
Nu characterizing bubble convections. Ruzicka and Thomas
[18] estimate the critical value of Ra to be about 105 due
to their experiments [20]. Though the consideration of the
buoyancy-driven instability by Ruzicka and Thomas [18] re-
mains qualitative, the analogy indicates the existence of a
wave number selection mechanism. This contradicts the re-
sults of the afore-mentioned simulation (CM99) of bubbly
flows [17]. This discrepancy might be explained either from
the difference in the base states considered in these studies or
from the effects of hydrodynamic diffusion, which are absent
in CM99 [17].

In the present paper, we revisit the problem of
homogeneous-heterogeneous regime transition to examine the
wave number selection mechanism in the linear stage of tran-
sition by performing a linear stability analysis for ascending
bubbles in a quiescent liquid layer. In contrast to the existing
works on bubble column reactors [12–14], we focus on the
transition provoked by the inherent dynamics of bubbly flows
without any effect of gas injection systems and of lateral
walls. The analysis is based on an Euler-Euler approach by
a spatially filtered Navier-Stokes equation for the liquid phase
coupled with an Eulerian momentum equation for bubbles. In
contrast to the Euler-Euler approach of Ruzicka and Thomas
[18], no hydrodynamic diffusion is taken into account. The
present work would thus determine whether the hydrody-
namic diffusion is essential in the wave number selection
of bubble-induced convection rolls. For simplicity, only the
added-mass, drag, lift, and buoyancy forces are considered in
the momentum exchanges between gas and liquid phases as in
CM99 [17].

The model for bubbly flows is given in Sec. II. We summa-
rize the governing equations (Sec. II A) and apply them to a
homogeneous flows of bubble rising in a quiescent horizontal
liquid layer (Sec. II B). The Rayleigh and Prandtl numbers
and two other numbers characterizing the bubble layer are
introduced in Sec. II C with dimensionless versions of the
governing equations. The linear stability problem of the ho-
mogeneous state is formulated in Sec. III. Results of the
analysis are presented in Sec. IV and discussed in Sec. V.
Section VI is concerned with summary.

II. THEORETICAL MODEL

A. Governing equations

We consider two-dimensional bubbly flows in a horizontal
liquid layer generated by uniform injection of monodisperse
spherical bubbles from the bottom wall [Fig. 1(a)]. Bubbles
rise in the layer due to Archimedean buoyancy forces and are
ejected from the top free surface. The velocity WG,0 and flux
JG,0 of gas injection are maintained at constant values. We
model the dynamics of this immiscible two-phase flow system
using the Euler-Euler approach, in which the liquid and gas
phases are regarded as two dynamical continua exchanging
momentum and energy with each other. The model consists
of the following mass and momentum conservation equations
for gas and liquid phases:

∂εG

∂t
+ ∇ · (εGuG) = 0, (1)

CA
DuG

Dt
= (1 + CA)

Du
Dt

− 3

8Rb
CD‖uG − u‖(uG − u)

−CL(uG − u) × (∇ × u) − g, (2)

∇ · u = 0, (3)

Du
Dt

= − 1

ρ
∇p + ν�u + g + εG

(
Du
Dt

− g
)

, (4)

where εG is gas volume fraction, uG = (uG,wG) and u =
(u,w) are the velocity fields of gas and liquid, respectively,
and p is the pressure field. The bubble radius, density, and
kinematic viscosity of liquid and gravitational acceleration
are denoted by Rb, ρ, ν, and g, respectively. The differen-
tial operator D/Dt stands for the material derivative, i.e.,
DuG/Dt = ∂t uG + uG · ∇uG and Du/Dt = ∂t u + u · ∇u.

In the gas momentum equation [Eq. (2)], the effects of
bubble-bubble interactions inducing bubble clustering and
hydrodynamic diffusion have been omitted, assuming dilute
bubbly flows. We have supposed spherical nondeformable
bubbles, assuming the Galilei number Ga = √

gRbRb/ν and
Eötvös number Eo = ρgR2

b/γ are sufficiently small: Ga �
102, Eo � 10−1 [21,22]. These hypotheses are satisfied, e.g.,
for bubbles of Rb ∼ 0.5mm in water at room temperature.
The first to third terms on the right-hand side of Eq. (2) arise
from the momentum exchange with liquid phase. These terms
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represent the effects of liquid inertia, drag, and shear-induced
lift on bubble motion, respectively. The added-mass and lift
coefficients, CA and CL, are assumed constant and given by
1/2, supposing small bubbles [23]. For simplicity, the drag
coefficient is modeled by

CD = 48

Reb
, with Reb = 2Rb‖uG − u‖

ν
, (5)

where Reb is the bubble Reynolds number (for the effects of
the CD model, see AppendixA). This drag model has been
obtained by computing the viscous energy dissipation around
a spherical bubble in a steady potential flow [24]. The bubble
Reynolds number is of O(102) for bubbles of Rb ∼ 0.5mm
ascending in water at room temperature with the terminal
velocity.

In the liquid mass conservation (3) and the liquid momen-
tum (4), we have assumed dilute bubbly flows and considered
liquid flows effectively incompressible. We have also re-
stricted our attention to flows at scales larger than the mean
distance between bubbles. Bubbles affect the dynamics of the
liquid phase only through the mesoscale cumulative reaction
force, εG Du/Dt , and buoyancy force, −εGg [25]. The same
equation has been used in a Lagrangian analysis of the influ-
ence of bubbles on a carrier phase [26] and in an investigation
on the liquid-gas interfacial coupling in a free-shear flow of
a dilute bubble suspension [27]. Mazzitelli et al. [28] and
Oresta et al. [29] model, respectively, bubble-laden isotropic
turbulent flows and RB convection with vapor bubbles as the
same momentum equation as Eq. (4), though the reaction from
bubbles and buoyancy forces are coupled with the motions of
point bubbles determined in a Lagrangian approach.

The upper surface of the liquid layer is assumed as flat
and shear free for simplicity. At the bottom wall, no-slip
conditions on the liquid velocity, constant gas velocity, and
constant gas flux are imposed,

∂u

∂z
+ ∂w

∂x
= 0, w = 0, at z = d, (6)

u = 0, wG = WG,0, εGWG,0 = JG,0, at z = −d . (7)

B. Base state

Two-dimensional flows would respect the translational
symmetry of the system along the x direction when the flux
of gas injection is small. We thus assume a steady bubbly flow
in the homogeneous regime, where the flow fields are laterally
uniform:

u = 0, uG = w̄G(z) ez, εG = ε̄G(z). (8)

The unit vector in the z direction is denoted as ez. For these
fields, Eqs. (1) and (2) read

d

dz
(ε̄Gw̄G) = 0, (9)

w̄G
dw̄G

dz
= −18νw̄G

R2
b

+ 2g. (10)

We have invoked Eq. (5) for the drag force. The boundary
conditions (7) read

w̄G = WG,0, ε̄Gw̄G = JG,0, at z = −d . (11)

The momentum equation (10) indicates that the gas phase is
accelerated toward the terminal velocity V∞ = gR2

b/9ν. Some
profiles of velocity w̄G calculated from Eq. (10) are shown in
Fig. 1(b)(i). The gas velocity increases in a sublayer attached
to the wall. Outside this sublayer the gas flows at a constant
velocity V∞.

According to Eqs. (9) and (11) the gas volumetric flux
ε̄Gw̄G is constant and given by JG,0. The volume fraction ε̄G is
thus calculated from w̄G as

ε̄G = JG,0

w̄G
. (12)

Some profiles of ε̄G are shown in Fig. 1(b)(ii). As expected
from Eq. (12) and from the w̄G profiles in Fig. 1(b)(i), a
sublayer rich in bubbles is formed on the bottom wall. As
w̄G increases from WG,0 to V∞, the volume fraction decreases
from JG,0/WG,0 to a smaller value JG,0/V∞ in the sublayer.
The stratification in the mean density of liquid-gas mixture is
potentially unstable to the gravity inside the sublayer.

C. Dimensionless governing equations

Adopting scales d of length, ν/d of velocity, d2/ν of time,
and JG,0d/ν of bubble volume fraction, we nondimensionalize
the governing equations (1)–(4) to obtain

∂εG

∂t
+ ∇ · (εGuG) = 0, (13)

DuG

Dt
= 3

Du
Dt

− 18

r2
b

(uG − u)

− (uG − u) × (∇ × u) + 18

Pr · r2
b

ez, (14)

∇ · u = 0, (15)

Du
Dt

= −∇p + �u − 9

Pr · r2
b

ez

+ εG
Ra · r2

b

9Pr

(
Du
Dt

+ 9

Pr · r2
b

ez

)
. (16)

The boundary conditions (6) and (7) read in dimensionless
form

∂u

∂z
+ ∂w

∂x
= 0, w = 0, at z = 1, (17)

u = 0, wG = wG,0, εGwG,0 = 1, at z = −1. (18)

We have introduced the following four dimensionless param-
eters:

Pr = ν

V∞d
= 9ν2

gR2
bd

, Ra = gd2JG,0

V 2∞ν
= 81νd2JG,0

gR4
b

,

wG,0 = WG,0 d

ν
, rb = Rb

d
. (19)

The first two parameters are Prandtl and Rayleigh num-
bers. They compare characteristic timescales: Pr = TR/Tν and
Ra = TνTR/T 2

B , where TR is the bubble residence time TR =
d/V∞, Tν is the momentum diffusion time Tν = d2/ν, and
TB is the buoyancy time TB = √

d/gr with a reduced gravity
gr = (JG,0/V∞) g. IK07 [16] and CM99 [17] employ Pr and
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Ra similar to Eqs. (19) in their numerical investigations on
bubbly convection flows. Throughout the present work, the
injection velocity wG,0 and bubble radius rb are assumed to be
wG,0 = 1000 and rb = 0.01. Some results for other values of
these parameters are given in Appendix B.

III. STABILITY ANALYSIS

We consider perturbations around the base state,

u = u′, uG = w̄Gez + u′
G, εG = ε̄G + ε′

G, (20)

where perturbation components are indicated by primes and
u′ = u′ex + w′ez, u′

G = u′
Gex + w′

Gez (ex: the unit vector in
the x direction). Substituting Eqs. (20) into Eqs. (13)–(16) and
linearizing the resulting equations with respect to perturbation
fields, we have

∂ε′
G

∂t
= −

(
w̄G

∂

∂z
+ dw̄G

dz

)
ε′

G − ε̄G
∂u′

G

∂x

−
(

ε̄G
∂

∂z
+ d ε̄G

dz

)
w′

G, (21)

∂u′
G

∂t
+ w̄G

∂u′
G

∂z
+ dw̄G

dz
w′

Gez

= 3
∂u′

∂t
− 18

r2
b

(u′
G − u′) + w̄Gζ ′ex, (22)

∇ · u′ = 0, (23)

∂u′

∂t
= −∇π ′ + �u′ + ε̄G

Ra · r2
b

9Pr

∂u′

∂t
+ ε′

G

Ra

Pr2 ez, (24)

where ζ ′ is the liquid vorticity perturbation, ζ ′ = ∂zu′ − ∂xw
′,

and π ′ is the perturbation of a reduced pressure. The bound-
ary conditions on the perturbation fields are obtained from
Eqs. (17) and (18). They are

∂u′

∂z
+ ∂w′

∂x
= w′ = 0, at z = 1, (25)

u′ = w′ = w′
G = ε′

G = 0, at z = −1. (26)

We perform a modal analysis to determine the stability of
the base state, expanding the perturbation fields into normal
modes:

(u′
G, u′, ε′

G) =
∫ ∞

−∞
(ûG, û, ε̂G) est+ikx dk, (27)

where k is the wave number and s = σ + iω is the complex
growth rate consisting of a growth rate σ and a frequency ω.
Hatted quantities are the complex amplitudes of perturbation
fields.

For a mode of wave number k, Eqs. (21)–(26) can be cast
into the following form:

A(k, Pr, Ra,wG,0, rb) X̂ = sB X̂, (28)

where X̂ = (ûG, û, ε̂G)tr . A linear differential operator A
with respect to z depends on the wave number k and the
parameters (Pr, Ra,wG,0, rb). The coefficient matrix B is con-
stant. We discretize the eigenvalue problem (28) with the
Lobatto-Gauss-collocation method based on Chebyshev series
expansion and determine eigenvalues s by the QZ decomposi-
tion.

IV. RESULTS

A. Stability diagram

The growth rate σ of the least stable mode determined from
the eigenvalue problem (28) changes its sign from negative
to positive with increasing Rayleigh number Ra from zero at
a given wave number k. Determining the marginal stability
condition where the sign of σ changes for different wave
numbers while keeping rb and wG,0 constant, we obtain the
marginal stability curve σ (k, Ra) = 0 [Fig. 2(a)]. The curve
shifts downward with decreasing Prandtl number Pr chang-
ing its shape. It has only a single minimum point for Pr >

4.13 × 10−5, while there exist two local minima otherwise. At
Pr = 3.25 × 10−5 (=: Pr∗) the two minima are found at the
same value of Ra = 645 (=: Ra∗). Marginally stable modes
are stationary except for a range of k found at small Pr (see
the lowest curve in the figure).

Eigenvectors of some marginal modes are shown in
Fig. 2(b) for the gas volume fraction ε′

G and liquid velocity
u′. The perturbation gas volume fraction ε′

G exhibits different
structures consisting of horizontal arrays of bubble-rich and
bubble-poor cells [Fig. 2(b)]. For stationary modes [Fig. 2(b)
i–viii], the horizontal flow of the liquid phase converges and
diverges in cells of large and small ε′

G, respectively. In the
lowest layer attached to the bottom wall, where the unstable
density stratification is the most significant, the liquid moves
upward inside bubble-rich cells and downward inside bubble-
poor cells. Convection rolls on the bottom do not extend to
the top free surface of fluid layer for large k [Fig. 2(b) i–
iii, v, vii]: multilayer convection rolls are observed, though
the flow in convection rolls away from the bottom wall is
much weaker than that in the rolls on the wall. For small
k, in contrast, convection rolls on the wall occupy the entire
fluid layer [Fig. 2(b) iv, vi, viii]. We call them whole-layer
convection rolls. The gas velocity field u′

G exhibits the same
flow patterns as the liquid velocity field u′. The slip velocity
u′

G − u′ is only on the order of a few percent of u′. Pr de-
termines the types of convection rolls, i.e., either multi- or
whole-layer mode, at critical conditions. Oscillatory eigen-
modes [Fig. 2(b) ix] are also composed of multilayer cells
of gas volume fraction. The perturbation flow rises and falls
in bubble-rich and bubble-poor cells attached to the bottom,
respectively. In contrast to stationary modes, the structures of
cells and flows of oscillatory modes lack x → −x reflection
symmetry.

Variations of the critical parameters (kc, Rac) determined
from the marginal curves are shown in Fig. 3. The critical
Rayleigh number Rac increases with Pr, while the critical
wave number kc varies nonmonotonically. The behavior of
(kc, Rac) for Pr < Pr∗ is distinct from the behavior for Pr >

Pr∗, since whole-layer and multilayer modes are critical in the
former and latter cases, respectively. At the codimension-two
point Pr = Pr∗, both types of modes are critical.

Whole-layer convection rolls were observed in the nu-
merical simulation by CM99 [17]. These authors reported
convection rolls of different geometrical characteristics for
the same set of parameter values (Pr, Ra, rb) = (2.5 ×
10−4, 2.07 × 105, 2 × 10−3). The aspect ratio � of the
wavelength of observed convection pattern to the fluid layer
thickness is either 1 or 0.5. For this Prandtl number and bubble
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FIG. 2. (a) Marginal stability curves, above which the quiescent state is unstable, for different values of the Prandtl number Pr in the k-Ra
space. The gas injection velocity and the bubble radius are fixed at wG,0 = 1000 and rb = 0.01. The temporal natures of marginally stable
mode are indicated on curves by s (stationary) and o (oscillatory). (b) Eigenvectors at the local minimum points (i)–(ix). The liquid velocity
u′ = (u′, w′) and the gas fraction ε′

G are shown by vectors and colors, respectively. Bubble-rich and bubble-poor cells correspond to red and
white zones. Some streamlines are also shown in (b) to visualize the structures of liquid flows.

radius, the present linear stability analysis does not predict any
instability.

Experiments on a RT-like instability of bubble layers by
IK07 [16] showed the formation of whole-layer convection
rolls at Pr = O(10−2), Ra = O(105), and rb = O(10−3). The
numerical simulations performed by these authors showed
also the formation of whole-layer convection for experimental
values of Pr and Ra. The ratio � was found to increase with
Ra and to take a value 2.7 close to the onset of convection
formation. For the critical modes reported in Fig. 3, the ra-
tio � (= π/kc) is smaller than 1.3 for multilayer mode and
between 1.5 and 3.1 for whole-layer mode. Bubbly convec-
tion observed by IK07 [16] might correspond to whole-layer
modes in the present work. The present linear stability theory

10−5 10−4

Pr

102

103

104

R
a

c

1.0

2.0

3.0

4.0

5.0

6.0

7.0

k c

Ra c

k c

Pr*

FIG. 3. Variation of critical parameters (kc, Rac ) as function of
Pr. The whole- and multilayer modes are critical on the left and right
of a codimension-two point Pr = Pr∗, respectively. The best-fitting
power laws Rac ∝ Prn are shown in dashed lines. The exponent n is
2.68 and 1.93 for the left and right lines.

predicts, however, no instability at Ra ∼ 105 for the values
of (Pr, rb) considered by IK07 [16]. In fact, for tiny bubbles
in a viscous liquid such as considered in IK07 [16], the base
state (8) has a uniform bubble distribution throughout the fluid
layer, ε̄G = const, so that the density stratification is stable to
gravity. The instability investigated by IK07 [16] would be
related to a particular initial configuration, i.e., an unstable
superposition of a pure liquid layer over a bubble layer, and
would be distinct from the instability considered in the present
work.

B. Energy budget analysis

We consider the energy transfer from the base to pertur-
bation flows in order to obtain insights into the instability
mechanism. The transfer to liquid perturbation flows will be
similar to that in RB convection because of the similarity
of Eqs. (23) and (24) with the corresponding equations for
thermal convection [30]. The perturbation flows gain and lose
energy due to buoyancy and viscous energy dissipation, re-
spectively. To confirm this scenario we can derive an evolution
equation for the kinetic energy of liquid flows by taking the
inner product of Eq. (24) with u′. After integrating the result-
ing equation over the whole liquid layer and averaging it with
respect to the horizontal direction, we obtain

dK

dt
= WB − DV , (29)

where the kinetic energy K , the power of the buoyancy
force WB, and the rate of viscous energy dissipation DV are

053102-5



NAKAMURA, YOSHIKAWA, TASAKA, AND MURAI PHYSICAL REVIEW E 102, 053102 (2020)

1.0 2.0 3.0 4.0 5.0
k

−4.5
−3.0
−1.5

0.0
1.5
3.0
4.5

W
/
(2

K
G

)

(iii) Pr = 1.84 × 10−5

1.0 2.0 3.0 4.0 5.0
k

−4.5
−3.0
−1.5

0.0
1.5
3.0
4.5

W
/
(2

K
G

)

(ii) Pr = 2.65 × 10−5

1.0 2.0 3.0 4.0 5.0
k

−4.5
−3.0
−1.5

0.0
1.5
3.0
4.5

W
/
(2

K
G

)

×104

(i) Pr = 4.70 × 10−5

kc kckc

FIG. 4. Powers providing energy to perturbation gas flows at marginally stable conditions: WI (solid line), WD (dotted line), and WL (dashed
line) represent the powers of liquid inertia and drag and lift forces, respectively. The powers have been normalized by twice the kinetic energy
KG of perturbation flows. Different panels show results for different values of the Prandtl number Pr. The values of critical wave number kc

are marked on the k axis. The temporal natures of marginally stable mode are indicated by s (stationary) and o (oscillatory) at the top of each
panel.

defined by

K =
〈(

1 − ε̄G
Ra · r2

b

9Pr

)
u′2 + w′2

2

〉
, (30)

WB = Ra

Pr2 〈ε′
Gw′〉, (31)

DV = 〈〉, (32)

where the dissipation function  is given as  = 2(∂xu′)2 +
(∂zu′ + ∂xw

′)2 + 2(∂zw
′)2 and the angle brackets denote the

following integral operation:

〈 • 〉 = k

2π

∫ 1

−1

∫ 2π/k

0
• dx dz. (33)

Equation (29) confirms that convection develops when the
buoyancy overcomes the viscous energy dissipation.

We should now turn to the energy transfer in gas phase, as
the driving buoyancy effect WB is created by a heterogeneous
distribution of the gas phase due to perturbation gas flows.
By similar procedures used to obtain Eq. (29), we derive the
following evolution equation from Eq. (22).

dKG

dt
= WI + WD + WL, (34)

where the kinetic energy KG and the powers of the liquid
inertia WI , of the drag WD, and of the lift WL are defined by

KG =
〈

u′2
G + w′2

G

2

〉
, (35)

WI = −
〈
w̄G

∂

∂z

‖u′
G‖2

2
+ dw̄G

dz
w′

G
2
〉
+ 3

〈
∂u′

∂t
· u′

G

〉
, (36)

WD = −18

r2
b

〈(u′
G − u′) · u′

G〉, (37)

WL = 〈w̄Gζ ′u′
G〉. (38)

Energy budgets of the gas flow are computed for marginal
modes for different values of Pr (Fig. 4). For stationary modes,
the liquid inertia provides energy to perturbation flows (i.e.,
WI > 0) regardless of the type of convection roll, while the
drag and lift have stabilizing effects (i.e., WD,WL < 0). The
liquid inertia and the lift become stabilizing and destabilizing
for some oscillatory modes, e.g., when Pr = 1.84 × 10−5 for
wave numbers k between 2.9 and 3.8.

V. DISCUSSION

The results for the critical parameters presented in Sec. IV
are in marked contrast with the observations for the RT-like in-
stability by CM99 [17]. These authors observed the formation
of whole-layer convection of different aspect ratios (� = 1
and 0.5) for the same set of parameter values (Pr, Ra) =
(2.5 × 10−4, 2.07 × 105) and suggested the absence of wave
number selection. The present results (Fig. 2) show, in con-
trast, that a unique mode, either a multilayer mode (� � 1.3)
or a whole-layer mode (� = 1.5–3.1), is selected depending
on Pr. Like the present work, CM99 assumes no hydrody-
namic diffusion and is based on the same governing equations
as Eqs. (1)–(4) except for the Lagrangian approach to the bub-
ble dynamics. The absence of wave number selection would
hence not be related to the absence of hydrodynamic diffu-
sion. Our analysis showed that the selection mechanism exists
even in the absence of bubble-bubble interactions. Different
convection patterns observed in CM99 would thus indicate
the multistability of the bubbly flow system rather than the
absence of wave number selection. Different attractors would
be present under a given flow condition. A nonlinear bifurca-
tion analysis and a stability analysis of secondary flows could
elucidate this point.

As the energy budget equation (29) shows, the instability of
bubbly flows found in Sec. IV is provoked by the buoyancy.
More buoyant lower fluid overturns less buoyant upper fluid,
once the buoyancy overcomes the stabilization by the viscous
force. This principal mechanism is similar to that of thermal
instabilities. There exist, however, essential differences be-
tween these instabilities in the transport of buoyancy sources.
In thermal convection, the heat diffusion tends to homogenize
temperature fields to produce stabilizing effects. In bubble
convection, in contrast, stabilization arises from the transport
of bubbles by the lift forces as shown by the energy budget
analysis in Sec. IV B. In fact, the lift force w̄Gζ ′ex in the
gas momentum equation (22) is directed from bubble-rich to
bubble-poor cells on the wall [see Fig. 2(b), noting that ζ ′ > 0
and <0 inside clockwise and counterclockwise convection
rolls, respectively]. Thus, the lift force tends to homogenize
the bubble distribution in the bottom layer of fluid where the
buoyancy drives convection [31]. Stabilizing effects of lift
force are also reported in the literature on bubble columns
[32].
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The transport of buoyancy sources in bubble convection
can give rise to multilayer convection rolls, even though
the mean density increases monotonically in the base state
[Fig. 1(a)]. Multilayer convection rolls are observed in double
diffusive systems and have been investigated in geophys-
ical and astrophysical contexts. For example, a variety of
convection patterns can be produced in the Earth’s mantle
depending on the competition between destabilizing thermal
density anomaly and stabilizing chemical density anomaly
[33]. When the former effect predominates the latter one,
whole-layer convection rolls develop. Otherwise, multilayer
convection rolls emerge [34,35]. In ordinary thermal convec-
tion, superposed convection rolls can be observed in particular
configurations, e.g., above a localized heat source in a sta-
bly stratified fluid layer [36], where the thermal stratification
is unstable to gravity only slightly above the heat source.
Otherwise, multilayer structures are rarely formed even for
nonlinear temperature profiles due to internal heating [37].
In the present two-phase system, critical multilayer modes
are observed for small Pr. The formation of multilayer con-
vection could be explained from the perturbation in bubble
distribution. In contrast to the ordinary thermal convection,
the cells of buoyancy sources, i.e., the cells of positive ε′

G [see
Fig. 2(b)] attached on the bottom wall extend only up to half
the height of convection rolls. Above each of these cells, there
is a cell of negative buoyancy sources, i.e., cells of negative
ε′

G, in which the upward motion of convective flow is impeded
by a net downward force resulting from a small number of
bubbles. This implies a stabilizing effect at the upper part
of convection rolls as in double diffusive systems exhibiting
multilayer convection rolls.

VI. SUMMARY

In the present paper, we have revisited the problem of
homogeneous-heterogeneous regime transition by performing
a linear stability analysis for ascending bubbles in a quies-
cent liquid layer. We determined marginal stability curves
Ra = Ra(k) for different values of Pr. While the curves have
single minima for Pr > 4.13 × 10−5, there exist multiple min-
ima otherwise. The marginal modes are stationary except for
limited ranges of wave number at small Pr. Critical conditions
(kc, Rac) for Pr < Pr∗ = 3.25 × 10−5 are distinct from those
for Pr > Pr∗. In the former and latter cases, the critical modes
consist of whole-layer and multilayer convection rolls, respec-
tively. At a condimension two point (Pr, Ra) = (Pr∗, Ra∗),
both multi- and whole-layer modes are critical. These results
show that the mechanism of wave number selection exists
even in the absence of bubble-bubble interactions. Different
convection patterns observed in CM99 [17] indicate the mul-
tistability of the bubbly flow system. A nonlinear bifurcation
analysis could elucidate the presence of different attractors
and their stability.

We have also examined the energy transfer from the base
to perturbation flows in order to understand the instability
mechanism. Liquid perturbation flows gain and lose energy
due to buoyancy and viscous dissipation, respectively. The
driving buoyancy is created by a heterogeneous distribution
of bubbles. For critical modes, gas perturbation flows, which
generate this nonequilibrated bubble distribution, gain energy

from the inertial forces on bubbles. The lift forces on bubbles
tend, in contrast, to damp the gas flows through homogeniza-
tion of the bubble distribution close to the wall. The drag
forces are also found to have stabilizing effects.
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APPENDIX A: EFFECTS OF DRAG COEFFICIENT MODEL

The model of drag coefficient affects the stability of
the bubbly flow system, as the inverse density profile
in the base state is different between models. In addi-
tion to the stability analysis obtained with CD = 48/Reb,
we have performed similar analyses with different mod-
els of drag coefficient: CD = 16/Reb [38,39] for bubbles
in a pure liquid in the low Reynolds number limit, CD =
24/Reb [40] for bubbles in a liquid contaminated by sur-
factants also in the low Reynolds number limit, and CD =
(24/Reb){2/3 + [12/Reb + 0.75(1 + 3.315/

√
Reb)]

−1} [41]
which interpolates smoothly CD for bubbles in a pure liquid
from the low Reynolds number limit (CD = 16/Reb) to the
large Reynolds number limit (CD = 48/Reb). Marginal sta-
bility conditions are quantitatively different between models.
For models giving larger drags (i.e., for models with a larger
value of CDReb), the inverse density profile is confined in a
thinner sublayer of fluid on the bottom wall and the critical
value of Ra becomes larger. The analyses predict, however,
the qualitatively same behavior of the bubbly flow system as
that reported in the main text. In all the analyses, multi- and
whole-layer critical modes are observed, and the transition
between these two modes is predicted with varying Pr (Fig. 5).
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FIG. 5. Marginal stability curves, above which the quiescent
state is unstable, for different values of Prandtl number Pr in the k-Ra
space. The bubble radius and the bubble injection velocity are fixed
at rb = 0.01 and wG,0 = 1000. The drag coefficient is modeled by
CD = 16/Reb [38,39].
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APPENDIX B: EFFECTS OF THE BUBBLE RADIUS rb AND
THE INJECTION VELOCITY wG,0

The value of the rb affects the stability of the bubbly flow
layer significantly, as the inverse density profile in the base
state is sensitive to rb. For example, the critical value of Ra is
Rac = 73.96 for rb = 0.014 and Rac = 2997 for rb = 0.006
(Fig. 6). These values are, respectively, 0.22 times smaller
and 8.91 times larger than the critical Ra for rb = 0.01.
However, the predicted behavior of the bubbly flow system
is qualitatively the same as that reported in the main text.
Multi- and whole-layer critical modes are observed, and the
transition between these two flow patterns is predicted with
varying Pr.

The inverse density profile of the base state changes only
slightly with varying the injection velocity wG,0. As a con-
sequence, the variation of wG,0 does not affect the stability,
unless wG,0 is very close to the dimensionless terminal ris-
ing velocity v∞ = V∞/ν/d . For example, no qualitative and
quantitative difference is produced by a variation of wG,0 in a
range 0 < wG,0/v∞ < 0.15 for Pr = 2.65 × 10−5.
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FIG. 6. Marginal stability curves for different values of bubble
radius rb in the k-Ra space. Prandtl number Pr and the injection
velocity are fixed at Pr = 2.65 × 10−5 and wG,0 = 1000. The tem-
poral natures of marginally stable mode are indicated on curves by s
(stationary) and o (oscillatory).

[1] D. Lohse, Bubble puzzles: From fundamentals to applications,
Phys. Rev. Fluids 3, 110504 (2018).

[2] S. L. Ceccio, Friction drag reduction of external flows with bub-
ble and gas injection, Annu. Rev. Fluid Mech. 42, 183 (2010).

[3] Y. Murai, Frictional drag reduction by bubble injection, Exp.
Fluids 55, 1773 (2014).

[4] B. Dollet, P. Marmottant, and V. Garbin, Bubble dynamics in
soft and biological matter, Annu. Rev. Fluid Mech. 51, 331
(2010).

[5] K. Ferrara, R. Pollard, and M. Borden, Ultrasound microbubble
contrast agents: Fundamentals and application to gene and drug
delivery, Annu. Rev. Biomed. Eng. 9, 415 (2007).

[6] F. Risso, Agitation, mixing, and transfers induced by bubbles,
Annu. Rev. Fluid Mech. 50, 25 (2018).

[7] R. F. Mudde, Gravity-driven bubbly flows, Annu. Rev. Fluid
Mech. 37, 393 (2005).

[8] W. K. Harteveld, R. F. Mudde, and E. Akker, Dynamics of bub-
ble column: Influence of gas distribution on coherent structures,
Can. J. Chem. Eng. 81, 389 (2003).

[9] W. K. Harteveld, Bubble column: Structures and stability?
Ph.D. thesis, Delft University of Technology, Delft, the Nether-
lands, 2005.

[10] D. Colombet, D. Legendre, F. Risso, A. Cockx, and P. Guiraud,
Dynamics and mass transfer of rising bubble in a homogeneous
swarm at large gas volume fraction, J. Fluid Mech. 763, 254
(2015).

[11] M. C. Ruzicka, On stability of a bubble column, Chem. Eng.
Res. Des. 91, 191 (2013).

[12] A. I. Shnip, R. V. Kolhatkar, D. Swamy, and J. B. Joshi, Criteria
for the transition from the homogeneous to the heterogeneous
regime in two dimensional bubble column reactors, Int. J.
Multiphase Flow 18, 705 (1992).

[13] S. M. Monahan and R. O. Fox, Linear stability analysis of a
two-fluid model for air-water bubble columns, Chem. Eng. Sci.
62, 3159 (2007).

[14] S. M. Monahan and R. O. Fox, Validation of two-fluid simula-
tions of a pseudo-two-dimensional bubble column with uniform
and nonuniform aeration, Ind. Eng. Chem. Res. 48, 8134
(2009).

[15] R. Kimura, Cell formation in the convective mixed layer, Fluid
Dyn. Res. 3, 395 (1988).

[16] K. Iga and R. Kimura, Convection driven by collective buoy-
ancy of microbubbles, Fluid Dyn. Res. 39, 68 (2007).

[17] E. Climent and J. Magnaudet, Large-Scale Simulations of
Bubble-Induced Convection in a Liquid Layer, Phys. Rev. Lett.
82, 4827 (1999).

[18] M. C. Ruzicka and N. H. Thomas, Buoyancy-driven instabil-
ity of bubbly layers: Analogy with thermal convection, Int. J.
Multiphase Flow 29, 249 (2003).

[19] G. Kong, H. Mirsandi, K. A. Buist, E. J. A. F. Peters, M. W.
Baltussen, and J. A. M. Kuipers, Hydrodynamic interaction of
bubbles rising side-by-side in viscous liquids, Exp. Fluids 60,
155 (2019).

[20] M. C. Ruzicka, J. Zahradnik, J. Drahos, and N. H. Thomas,
Homogeneous–heterogeneous regime transition in bubble
columns, Chem. Eng. Sci. 56, 4609 (2001).

[21] J. R. Grace, T. Wairegi, and T. H. Nguyen, Shapes and velocities
of single drops and bubbles moving freely through immiscible
liquids, Trans. Inst. Chem. Eng. 54, 167 (1976).

[22] M. K. Tripathi, K. C. Sahu, and R. Govindarajan, Dynamics
of an initially spherical bubble rising in quiescent liquid, Nat.
Commun. 6, 6268 (2015).

[23] J. Magnaudet and I. Eames, The motion of high-Reynolds-
number bubbles in inhomogeneous flows, Annu. Rev. Fluid
Mech. 32, 659 (2000).

[24] V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall,
NJ, 1962).

[25] O. A. Druzhinin and S. Elghobashi, Direct numerical simulation
of bubble-laden turbulent flows using the two fluid formulation,
Phys. Fluids 10, 685 (1998).

053102-8

https://doi.org/10.1103/PhysRevFluids.3.110504
https://doi.org/10.1146/annurev-fluid-121108-145504
https://doi.org/10.1007/s00348-014-1773-x
https://doi.org/10.1146/annurev-fluid-010518-040352
https://doi.org/10.1146/annurev.bioeng.8.061505.095852
https://doi.org/10.1146/annurev-fluid-122316-045003
https://doi.org/10.1146/annurev.fluid.37.061903.175803
https://doi.org/10.1002/cjce.5450810308
https://doi.org/10.1017/jfm.2014.672
https://doi.org/10.1016/j.cherd.2012.07.011
https://doi.org/10.1016/0301-9322(92)90040-N
https://doi.org/10.1016/j.ces.2007.03.021
https://doi.org/10.1021/ie801202x
https://doi.org/10.1016/0169-5983(88)90099-8
https://doi.org/10.1016/j.fluiddyn.2006.08.003
https://doi.org/10.1103/PhysRevLett.82.4827
https://doi.org/10.1016/S0301-9322(02)00150-7
https://doi.org/10.1007/s00348-019-2798-y
https://doi.org/10.1016/S0009-2509(01)00116-6
https://doi.org/10.1038/ncomms7268
https://doi.org/10.1146/annurev.fluid.32.1.659
https://doi.org/10.1063/1.869594


LINEAR STABILITY ANALYSIS OF BUBBLE-INDUCED … PHYSICAL REVIEW E 102, 053102 (2020)

[26] M. R. Maxey, E. J. Chang, and L. P. Wang, Simulation of
interactions between microbubbles and turbulent flows, Appl.
Mech. Rev. 47, 70 (1994).

[27] P. M. Rightley and J. C. Lasheras, Bubble dispersion and in-
terphase coupling in a free-shear flow, J. Fluid Mech. 412, 21
(2000).

[28] I. M. Mazzitelli, D. Lohse, and F. Toschi, On the relevance
of the lift force in bubbly turbulence, J. Fluid Mech. 488, 283
(2003).

[29] P. Oresta, R. Verzicco, D. Lohse, and A. Prosperetti, Heat trans-
fer mechanisms in bubbly Rayleigh-Bénard convection, Phys.
Rev. E 80, 026304 (2009).

[30] P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cam-
bridge University Press, Cambridge, England, 2010).

[31] We have performed some linear stability analyses with CL = 0
to confirm that the absence of the lift force leads to the for-
mation of convection at smaller Ra than the critical values
determined in Sec. IV.

[32] D. Lucas, H. M. Prasser, and A. Manera, Influence of the lift
force on the stability of a bubble column, Chem. Eng. Sci. 60,
3609 (2005).

[33] F. M. Richter and D. P. McKenzie, On some consequences and
possible causes of layered mantle convection, J. Geophys. Res.:
Solid Earth 86, 6133 (1981).

[34] M. L. Bars and A. Davaille, Stability of thermal convection in
two superimposed miscible viscous fluids, J. Fluid Mech. 471,
339 (2002).

[35] A. Davaille, M. L. Bars, and C. Carbonne, Thermal con-
vection in a heterogeneous mantle, C. R. Geosci. 335, 141
(2003).

[36] K. E. Torrance, Natural convection in thermally stratified enclo-
sures with localized heating from below, J. Fluid Mech. 95, 477
(1979).

[37] Y. Tasaka and Y. Takeda, Effects of heat source distribution on
natural convection induced by internal heating, Int. J. Heat Mass
Transf. 48, 1164 (2005).

[38] J. Hadamard, Mouvement permanent lent d’une sphère liquid et
visqueuse dans un liquide visqueux, C. R. Acad. Sci. Paris 152,
1735 (1911).

[39] W. Rybczynski, Uber die fortschreitende Bewegung einer flüs-
sigen Kugel in einem zähen Medium, Bull. Acad. Sci. Cracovie
A 1, 40 (1911).

[40] G. G. Stokes, On the effect of the internal friction of fluids on
the motion of pendulums, Trans. Cambridge Philos. Soc. 9, 8
(1851).

[41] R. Mei, J. F. Klausner, and C. J. Lawrence, A note on the history
force on a spherical bubble at finite Reynolds number, Phys.
Fluids 6, 418 (1994).

053102-9

https://doi.org/10.1115/1.3124443
https://doi.org/10.1017/S002211200000817X
https://doi.org/10.1017/S0022112003004877
https://doi.org/10.1103/PhysRevE.80.026304
https://doi.org/10.1016/j.ces.2005.02.032
https://doi.org/10.1029/JB086iB07p06133
https://doi.org/10.1017/S0022112002001878
https://doi.org/10.1016/S1631-0713(03)00003-8
https://doi.org/10.1017/S0022112079001567
https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.044
https://doi.org/10.1063/1.868039

